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Abstract. TBC1 domain containing kinase (TBCK) protein is
composed of three conserved domains, including N-terminal
Serine/Threonine kinase domain, central TBC domain and
C-terminal rhodanese homology domain (RHOD). A total
of 9 different transcripts (classified as long and short TBCK)
generated by alternative splicing have been reported in
different cell lines. Exogenous expression of long TBCK has
been identified to function as a suppressor of cell growth
in certain cell types. On the contrary, TBCK has also been
reported to serve a tumor-promoting role in other cell lines,
indicating that TBCK might function differentially, depending
on the context in different cellular environments. Furthermore,
deleterious homozygous or compound heterozygous mutations
identified by whole-exome sequencing in the TBCK gene could
ablate the function of TBCK, further impacting the mTOR
signaling pathway and leading to neurogenetic disorders,
such as hypotonia, global developmental delay, facial dysmor-
phic features and brain abnormalities. However, as a poorly
explored protein, there are a lot of studies associated with the
functions of TBCK that need to be performed in the future.
The present review summarizes data regarding the structural
features and potential roles of TBCK in developmental and
neurological diseases and tumorigenesis. Future prospects of
TBCK research lie in revealing numerous biological functions
of TBCK.
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. Introduction

TBCI1 domain containing kinase (TBCK), also known as
hematopoietic stem and progenitor cells 302 (HSPC302)
or Mammalian Gene Collection 16169 (MGC16169), was
initially discovered in CD34* hematopoietic stem cells. It was
then reported in the NEDO human ¢cDNA sequencing project
by researchers at the University of Tokyo (1,2). At that time,
TBCK was considered a hypothetic protein with unknown
functions. Since then, several groups have provided mRNA and
peptide data of TBCK in different cell types. Resing et al (3)
in 2004 identified 5130 proteins in the K562 cell line with
high throughput shotgun proteomics, including two peptides of
TBCK; Tanner et al (4) in 2007 also identified the expression
of TBCK in HEK?293 cell line with peptide mass spectrometry.
It has been shown that TBCK comprised three putative
structural domains: S_TKc, TBC (Tre-2, Bub2 and Cdcl16) and
RHOD_Kc (5,6). TBCK included two types of alternatively
spliced isoforms (long TBCK and short TBCK). Long TBCK
comprised all the three conserved motifs, while short TBCK
only comprised TBC and RHOD_Kc domains (Fig. 1A and B).
At present, most of the TBCK-related research focuses on the
relationship between TBCK gene mutations and neuronal
development disorders. Our previous results have demonstrated
TBCK's expression in a cell type-specific manner. The proteins
produced by the two alternative isoforms contribute to differential
functions of TBCK. In the following section, we will summarize
the detailed gene structure, protein expression of TBCK and the
important roles of TBCK in human diseases including cancers.

2. General properties of TBCK
Molecular features of TBCK. TBCK is commonly and

abundantly expressed in mammalian cells according
to the human protein atlas (https://www.proteinatlas.
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Figure 1. Molecular structures of TBCK gene and protein, and potential roles in predicting the prognosis of patients with breast and lung cancer.(A) Schematic
representation of the two categories of TBCK isoforms and the matching functional domains. (a) A diagram of TBCK including known domains and the variants
presented in this manuscript. (b) The S'UTRs are shown as colored bars. Transcripts A/C/D/E/F share the same 5'UTR region (308 bp; green), while Transcript B
(NM_001163436.4) has a relatively shorter 5'UTR region (165 bp; red). Besides, for short TBCK, they have different S'UTR regions (orange). Differential transcription
initiations and the 3'UTRs are shown as blue bars. Separated by introns shown by blue lines, exons are indicated by solid rectangles with yellow for known exons and
purple for a newly-identified exon. A total of five transcripts are listed in the NCBI database with indicated accession numbers. One currently identified miRNA was
matched to the 3'UTR region of TBCK mRNA. (B) Subcellular locations from COMPARTMENTS. The subcellular localizations are derived from database annota-
tions, automatic text mining of the biomedical literature and sequence-based predictions. (C) Candidate interaction partners of TBCK were identified using STRING.
(D) In breast and lung cancer tissues in the Kaplan-Meier Plotter database, high TBCK expression was associated with good prognosis. (E) Oncomine enabled the sys-
tematic analysis of TBCK expression in multiple cancer types. HR, hazard ratio; miR, microRNA; TBCK, TBC1 domain containing kinase; UTR, untranslated region.
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org/ENSG00000145348-TBCK/summary/rna) (7-9). Based
on an in silico analysis, homologues of TBCK in 12 Bilateria,
and the conservation of these homologues was quite high.
The percentage of protein identity in the top 7 species
surpassed 90% (Table I), indicating that TBCK might partici-
pate in important activities.

TBCK has three separate functional domains: N-terminal
Serine/Threonine kinase domain, central TBC domain, and
C-terminal rhodanese homology domain (RHOD). It has
been reported that the kinase domain could bind GTP and
possessed protein kinase activities (10). TBCK was discov-
ered to possess the ability to selectively support coupling of
active EGFR to ERK1/2 regulation (11) and positively corre-
lated highly with rapamycin activity, indicating that TBCK
might be a Serine/Threonine protein kinase (12). The TBC
domain was identified as a conserved sequence in the three
proteins including Tre-2, BUB2p and Cdcl6p. These proteins
have been proven to be functional domains of Rab GAP,
which could catalyze GTP hydrolysis of Rab GTPase via a
dual-finger mechanism (13). For containing the conserved
TBC domain, TBCK was considered to be a member of
the RabGAP family. However, a yeast two-hybrid assay
showed that TBCK had no physical interaction with any one
of the 60 known Rab proteins (14). The RHOD domain is a
homologous domain of rhodanese, but little is known about
its function.

According to the NCBI Core Nucleotide and UCSC
Genome Browser database, 6 TBCK transcripts were listed. Jin
and his colleagues have provided evidence for these transcripts
in 4 different cell types (A431, HeLa, HepG2 and HEK293FT)
using multiple primer sets covering the whole ORF region of
TBCK. Furthermore, three more transcripts were identified
and all isoforms were categorized as long and short types
based on the mRNA sequence. The long isoforms (6 members)
contained STYKc kinase, TBC, and RHOD domains, whereas
the short isoforms (3 members) lacked the region of STYKc
kinase. These two distinctive types were most likely products
of differential transcription initiation (Fig. 1A) (6). Although
the proteins representing the short isoforms of TBCK were
not recognized in the above-mentioned four cell types, addi-
tional bands with a similar molecular mass were observed in
HepG2 and HEK293FT cells, which were possibly generated
by alternative splicing or post-translational modifications (6).
Moreover, Chong et al (15) demonstrated that two major bands
with molecular weights of ~101 and 71 kDa, which represented
long and short TBCK respectively, were observed in two
control fibroblast lines, and the full-length isoform was more
abundant than the short TBCK.

Distribution and interaction partners of TBCK in mammalian
cells. It has been approximately 7 years since the first protein
evidence for TBCK was raised (5). Immunofluorescence
analysis for endogenous TBCK revealed that TBCK was clearly
colocalized with y-tubulin in addition to punctate distribution in
HEK?293 cells. TBCK appeared to be not substantially colocal-
ized with the endoplasmic reticulum, Golgi and endosomes in
both HEK?293 and HeLa cells (5). However, GFP-tagged TBCK
showed cell cycle-dependent distribution in HeLa cells. TBCK
is mainly localized in the cytoplasm during interphase, while
a portion of TBCK accumulated at the mitotic apparatus and

Table I. Homologues of TBCK in different species.

Gene Identity, %

Species Symbol Protein DNA
H. sapiens TBCK

vs. P. troglodytes TBCK 99.6 994
vs. M. mulatta TBCK 97.2 97.0
vs. C. lupus TBCK 96.8 932
vs. B. taurus TBCK 96.5 92.7
vs. M. musulus Tbck 954 89.1
vs. R. norvegicus Tbck 94.1 87.6
vs. G. gallus TBCK 87.2 79.2
vs. X. tropicalis tbck 81.5 739
vs. D. rerio tbck 76.7 69.2
vs. D. melanogaster CD4041 479 493
vs. A. gambiae AgaP_AGAP000552 463 475
vs. C. elegans Tbck-1 339 449

TBCK, TBC1 domain containing kinase.

colocalized with centrosomes and spindle fibers as shown by
the fluorescent staining of a-tubulin. At the end of mitosis, a
clear midbody staining of TBCK was usually observed between
the two daughter cells (6). These inconsistent results might be
due to the specificity of the chosen TBCK antibody. The TBCK
antibody used in 2013 was generated by KLH conjugated
peptide (LFEDGESFGQGRDRSSLLDDT), which was located
adjacent to GAP domain and was not suitable for distinguishing
the long and short isoforms of TBCK. GFP-tagged TBCK only
reflected the distribution of long isoforms of TBCK.

Moreover, TBCK was also probably localized to plasma
membrane, nucleus, and mitochondrion according to the
COMPARTMENTS subcellular localization database
(https://compartments.jensenlab.org/Entity?figures=subcell_cell_
%% &knowledge=10&textmining=10&predictions=10&typel=
9606&type2=-22&id1=ENSP00000273980) (Fig. 1B) (16).

As a poor-explored protein, no evidence has been raised
for identifying the interaction partners of TBCK. Based on the
public STRING database (https://string-db.org/cgi/network.
pl?taskld=KO08rYosvQxGl), several proteins exhibited higher
possibility to be interaction partners of TBCK (Fig. 1C) (17-26).
Besides, our recent research has uncovered 17 candidate
proteins of TBCK using RNAi-mediated TBCK silencing in
combination with 2-DE-DIGE assays (data not shown). These
candidates played important roles in multiple activities, such
as protein folding, post-translational modification, and the
cytoskeleton. These candidates await further investigation.

3. TBCK and neurodevelopmental diseases

Although there is a long way to go to fully understand the func-
tion of TBCK, recent research indicates that TBCK plays an
important role in brain development. Mutations to the TBCK
gene could cause neurological developmental disorders. Until
now, a total of 17 mutations were reported to be associated
with neurodevelopmental diseases (Fig. 1A and Table II).
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Most of the mutations were nonsense mutations, generating
premature stop codons. After categorization, it can be found
that 73.3% (11/15) of mutations were located in the region
containing the first two domains, affecting the translation of
full-length TBCK. It is worth noting that the two missense
mutations happened in the RabGap domain, indicating that
the RabGap domain might be the most important functional
unit for proper brain development. However, the underlying
molecular mechanisms still remain unknown.

Alazami et al (27) identified 69 genes related to neurogenic
diseases through whole exome sequencing of 143 multiplex
consanguineous families, of which an insertion mutation at
1709ntin the TBCK coding region was verified to cause a
frameshift and further influence disease progression. This
insertion was also detected in 13 individuals from nine unre-
lated families, likely being pathogenic variants of TBCK.
Eight other mutations of the TBCK gene were reported to be
the main cause of mental retardation and hypotonic syndrome,
and L-type leucine-mediated activation of the mTOR signaling
pathway helped alleviate related symptoms (28). In the mean-
time, another group verified two novel mutations of TBCK
genes (c.1363A>T [p.Lys455*] and c.1532G>A [p.Arg511His)
via whole-exome sequencing of infants with encephalopathy
in 4 unrelated families, of which the former mutation would
induce a stop codon and lead to the deletion of long TBCK,
while the latter mutation was located in the TBC conserved
domain and might affect the RabGap activity of TBCK (15).
Unlike the overgrowth of the brain caused by mTOR pathway
disorders, a gradually decrease of the brain volume of
infants with encephalopathy would be caused by TBCK defi-
ciency (29). Furthermore, six more mutations (either resulting
in nonsense or frameshift) affecting the TBCK expression
were reported by six different groups (Table IT) (30-35).

It should be noted that four common mutations have
been reported in different patients from at least two different
groups (Table II): c.1897+1G>A (27,28); c.1652T>C (28,36);
¢.803_806delTGAA (28,29); and ¢.376C>T (15,28,37). All of
the mutations would ablate the expression of full-length TBCK
and cause TBCK-related developmental and neurological
diseases. However, TBCK function has been poorly explored.
Previous research shows that TBCK played a role in cell growth
and actin organization by enhancing the signaling pathways
of mammalian target of rapamycin (mTOR), presumably at
a transcriptional or post-transcriptional level (5). Besides,
TBCK deficiency would disturb activation of the mTOR
complex 1 (mTORCY1), thus, affecting the autophagy process
and further leading to autophagosomal-lysosomal dysfunc-
tion (37). Nevertheless, does TBCK directly or indirectly affect
the mTOR signaling pathway? Which domain contributes the
most? What are the binding partners of TBCK? These open
questions await further studies.

4. TBCK and tumorigenesis

TBCK was expressed universally in almost all human tissues,
except a relatively low expression in heart, brain, skeletal
muscle, and peripheral blood leukocytes (data not shown).
Besides, TBCK was proven to be down-regulated in 55.6% of
paired gastric carcinoma and 75.0% pair-matched esophageal
carcinomas. Overexpression of TBCK in HeLa cells could

remarkably inhibit cell growth and arrest cells at S phase,
which was indicative of tumor suppressive function (6). After
analyzing the clinical information collected from TCGA, the
five-year survival rates for patients with high-level TBCK
was significantly higher than that of patients with low-level
TBCK in renal cancer (P=3.20E-4) and pancreatic cancer
(P=3.67E-2). A similar phenomenon could be found in breast
cancer (P=2.50E-3) and lung cancer (P=4.70E-13) (Fig. 1D)
using Kaplan-Meier Plotter database [https:/kmplot.com/anal-
ysis/] (38). This implied that TBCK might also possess the
potential to be a viable prognosis marker for treatment of some
cancer types.

However, TBCK might also exhibit tumor-promoting
functions in certain cancer types. Based on the Oncomine
database (Fig. 1E), it has been shown that TBCK exhibit the
tumor-promoting functions in leukemia, lymphoma, liver
cancer and sarcoma, in addition, individual experiments also
validated that exhibit the functions in squamous cell carci-
noma and renal cancers (11,39). In a human kinase mapping
study using the entire kinome siRNA library targeting
over 600 related genes, TBCK-specific RNAi decreased the
phosphorylation of ERK1/2 and increased the phosphorylation
of STAT3. TBCK was further proven to selectively support
coupling of active EGFR to ERK1/2 regulation (11). A very
recent study on TBCK showed that TBCK was a direct target
of miR-1208, and that the miR-1208/TBCK interaction had
an important role in the regulation of apoptosis, as well as in
the enhancement of cisplatin or TRAIL sensitivities in renal
cancer cells (39). However, how TBCK involved in both tumor
promotion and inhibition in different cancer types is unknown,
and requires further investigation.

5. Future prospects of TBCK research

Previous results indicated that the eukaryotic protein kinase
comprised of 12 essential conserved subdomains to maintain
its kinase activity (40). Due to its lack of two important motifs
(GXGXXG motif and VAIK motif) responsible for ATP
binding, and the replacement of those motifs with mutated
HRD motif that was essential for catalytic activity, TBCK was
considered a pseudokinase (5,41,42). Itis implied that TBCK
might phosphorylate the ERK1/2 protein (11). However,
further direct kinase assays should be performed to clarify
whether TBCK has kinase activity or not. The positive answer
also provides evidence for differential functions between long
and short isoforms of TBCK (6).

TBC domain-containing proteins usually function as
a RabGap (Rab GTPase-activating protein) to negatively
regulate Rab functions through accelerating GTP hydrolysis
via a ‘dual-finger’ mechanism (13,43-45). Although the
crystallographic structure of TBCK has not been reported,
Chong et al (15) generated ahomology model of the TBC1 domain
of TBCK using DeepView and the SwissModel server (46) and
uncovered a structural impact of the disease-causing amino acid
substitution (p.Arg511His). Other reports also demonstrated
that the TBC domain in TBCK included the key conserved
amino acid residues required for RabGAP activity in functional
RabGAPs (5,13). However, the direct substrate of TBCK was
failed to be identified in a systematical screening for target
Rabs (60 Rab proteins) of TBC domain-containing proteins
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Table II. Characteristics of TBCK mutations associated with neurogenetic disorders.
Research Research Variation of Mapping Mutation
Author, year Disease type target approach TBCK region type (Refs.)
Alazami et al, Neurogenetic 143 multiplex Whole-exome NM_033115: RabGap-TBC  Splicing 27
2015 disorders consanguineous sequencing c.1708+1G>A (frameshift)
families
Bhoj et al, Syndrome of 13 individuals Whole-exome NM_001163435.2: RabGap-TBC  Splicing (28)
2016 intellectual from nine sequencing c.1897+1G>A; (frameshift)
disability unrelated
and hypotonia  families c.831_832insTA NA Insertion
(p-Pro278Tyrfs*18) (frameshift)
c.1652T>C RabGap-TBC  Missense
(p-Leu551Pro)
¢.[2060-2A>G] NA Splicing
(frameshift)
¢.803_806delTGAA, S_TKc Frameshift
p-[=];[Met268fsArg*26]
c.376C>T (p.Argl26%) S_TKc Nonsense
c.1370delA NA Frameshift
(p-Asn457Thrfs*15) S_TKc Splice
c455+4 C>G (skipping of
exons 3 and 4)
c.[(658+1_659-1)_ S_TKc Deletion of
(2059+1_2060-1) del] exons 7-22
Chong et al, Infantile Four unrelated Whole-exome ¢.376C>T S_TKc Nonsense (15)
2016 syndromic families sequencing (p-Argl126%*)
encephalopathy c.1363A>T RabGap-TBC Nonsense
[p.Lys455%]
c.1532G>A RabGap-TBC Missense
(p-Arg511His)
Guerreiro et al, Recessive A family with 3 Whole-genome NM_033115: S_TKc Frameshift (29)
2016 developmental siblings affected by genotyping and c.614_617del:
disorder a severe, yet viable, whole-exome  p.205_206del
congenital disorder sequencing
Mandel et al, =~ TBCK-related Two siblings born Whole-exome NM_001163435.2: RabGap-TBC  Frameshift (30)
2017 intellectual to an Arab-Moslem sequencing c.1854delT
disability family living
syndrome in northern Israel
Ortiz-Gonzalez TBCK- Children (n=8) of Whole-exome ¢.376C>T S_TKc Nonsense 37
etal,2018 encephalo- Puerto Rican sequencing (p.Argl26%)
neuronopathy  (Boricua) descent
affected with
homozygous TBCK
p-R126X mutations
Zapata-Aldana TBCK-infantile A family with two Whole-exome NM_001163435.2: S_TKc Nonsense 31
etal,2019 hypotonia siblings who sequencing ¢.753dup;
presented with a p.(Lys252%)
novel TBCK mutation
Beck-Wodl New type of Two siblings born Sanger NM_001163435.2: S_TKc Nonsense (32)
etal,2018 neuronal ceroid in 1972 and 1974 sequencing/ ¢.304C >T,
lipofuscinosis  suffering from whole exome  p.(GIn102%)
the disease sequencing
Sumathipala TBCK A family with Whole genome p.Glu687Valfs*8 NA Splicing (33)
etal,2019 encephalo- two siblings who sequencing (frameshift)
neuropathy presented

with a novel
TBCK mutation
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Table II. Continued.

Research Research Variation of Mapping Mutation
Author, year Disease type target approach TBCK region type (Refs.)
Tsang et al, Pediatric-onset A family with two Whole ¢.976dupT, NA Missense 35)
2020 mitochondrial  siblings who genome p.(Tyr326Leufs*10)
diseases presented with a sequencing
novel TBCK mutation
66 patients with Whole-exome ¢.478G>T, S_TKc Nonsense
pre-biopsy sequencing p.(Glul60%)
MDC scores of
3-8 were recruited
Saredi et al, Muscle disease Two sisters Whole-exome ¢.535_554del, S_TKc Missense (34)
2020 and severe diagnosed with sequencing p.(Leul79ArgfsTer10)
psychomotor  muscle disease
delay and severe
psychomotor delay
Hartley et al, Inherited A cohort of 50 families Whole ¢.1652T>C RabGap-TBC Missense 36)
2018 peripheral affected individuals genome (p-Leu551Pro)
neuropathies with a molecularly sequencing
undiagnosed
IPN features

NM_001163435.2, isoform a of TBCK; NM_033115, isoform d of TBCK. TBCK, TBC1 domain containing kinase; MDC, mitochondrial disease criteria;

IPN, inherited peripheral neuropathy.

(40 proteins including TBCK) based on their Rab-binding
activity (14). Thus, it is necessary to carry out critical experi-
ments to figure out the physiological target of TBCK, which
shall provide direct evidence for the RabGap activity of TBCK.

In addition, previous studies have shown that TBCK muta-
tions would cause neurogenetic disorders. The mTOR pathway
and mTOR-mediated autophagy might play important roles in
such processes (28,37). However, it is still unclear how TBCK
affects the mTOR signaling pathway, what the interacting
proteins of TBCK are and whether there are other pathways
involved remains unsolved. Our current research has uncovered
17 candidate proteins of TBCK using RNAi-mediated TBCK
silencing in combination with 2-DE-DIGE assays. These
candidates played important roles in multiple activities, such as
protein folding, post-translational modification, and the cyto-
skeleton etc. (data not shown). More work on the mechanism of
action needs to be completed in order to clearly clarify the roles
of TBCK in neurogenetic disorders and tumor development.

6. Concluding remarks

An important finding for TBCK function in recent years was
that TBCK functions as a candidate RabGAP. Deleterious muta-
tions of TBCK would ablate the function of TBCK and cause
severe infantile syndromic encephalopathy or other neuroge-
netic disorders. These mutation sites were found in the whole
exons covering three conserved domains. Abnormal function
of TBCK would destroy the mTOR signaling pathway and its
mTOR-mediated autophagy process, which was considered the
major cause of TBCK-related neurogenetic disorders. In addi-
tion, two types of TBCK isoforms were verified, and the kinase

domain might account for the functional differences among
TBCK isoforms. Limited research also suggested that the
distribution of TBCK was cell cycle-dependent, and the role of
TBCK in tumors was cell line-dependent. Overall, the function
of TBCK is poorly explored and awaits further investigation.
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