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Abstract. TBC1 domain containing kinase (TBCK) protein is 
composed of three conserved domains, including N‑terminal 
Serine/Threonine kinase domain, central TBC domain and 
C‑terminal rhodanese homology domain (RHOD). A total 
of 9 different transcripts (classified as long and short TBCK) 
generated by alternative splicing have been reported in 
different cell lines. Exogenous expression of long TBCK has 
been identified to function as a suppressor of cell growth 
in certain cell types. On the contrary, TBCK has also been 
reported to serve a tumor‑promoting role in other cell lines, 
indicating that TBCK might function differentially, depending 
on the context in different cellular environments. Furthermore, 
deleterious homozygous or compound heterozygous mutations 
identified by whole‑exome sequencing in the TBCK gene could 
ablate the function of TBCK, further impacting the mTOR 
signaling pathway and leading to neurogenetic disorders, 
such as hypotonia, global developmental delay, facial dysmor‑
phic features and brain abnormalities. However, as a poorly 
explored protein, there are a lot of studies associated with the 
functions of TBCK that need to be performed in the future. 
The present review summarizes data regarding the structural 
features and potential roles of TBCK in developmental and 
neurological diseases and tumorigenesis. Future prospects of 
TBCK research lie in revealing numerous biological functions 
of TBCK.
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1. Introduction

TBC1 domain containing kinase (TBCK), also known as 
hematopoietic stem and progenitor cells 302 (HSPC302) 
or Mammalian Gene Collection 16169 (MGC16169), was 
initially discovered in CD34+ hematopoietic stem cells. It was 
then reported in the NEDO human cDNA sequencing project 
by researchers at the University of Tokyo (1,2). At that time, 
TBCK was considered a hypothetic protein with unknown 
functions. Since then, several groups have provided mRNA and 
peptide data of TBCK in different cell types. Resing et al (3) 
in 2004 identified 5130 proteins in the K562 cell line with 
high throughput shotgun proteomics, including two peptides of 
TBCK; Tanner et al (4) in 2007 also identified the expression 
of TBCK in HEK293 cell line with peptide mass spectrometry.

It has been shown that TBCK comprised three putative 
structural domains: S_TKc, TBC (Tre‑2, Bub2 and Cdc16) and 
RHOD_Kc (5,6). TBCK included two types of alternatively 
spliced isoforms (long TBCK and short TBCK). Long TBCK 
comprised all the three conserved motifs, while short TBCK 
only comprised TBC and RHOD_Kc domains (Fig. 1A and B). 
At present, most of the TBCK‑related research focuses on the 
relationship between TBCK gene mutations and neuronal 
development disorders. Our previous results have demonstrated 
TBCK's expression in a cell type‑specific manner. The proteins 
produced by the two alternative isoforms contribute to differential 
functions of TBCK. In the following section, we will summarize 
the detailed gene structure, protein expression of TBCK and the 
important roles of TBCK in human diseases including cancers.

2. General properties of TBCK

Molecular features of TBCK. TBCK is commonly and 
abundantly expressed in mammalian cells according 
to the human protein atlas (https://www.proteinatlas.
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Figure 1. Molecular structures of TBCK gene and protein, and potential roles in predicting the prognosis of patients with breast and lung cancer.(A) Schematic 
representation of the two categories of TBCK isoforms and the matching functional domains. (a) A diagram of TBCK including known domains and the variants 
presented in this manuscript. (b) The 5'UTRs are shown as colored bars. Transcripts A/C/D/E/F share the same 5'UTR region (308 bp; green), while Transcript B 
(NM_001163436.4) has a relatively shorter 5'UTR region (165 bp; red). Besides, for short TBCK, they have different 5'UTR regions (orange). Differential transcription 
initiations and the 3'UTRs are shown as blue bars. Separated by introns shown by blue lines, exons are indicated by solid rectangles with yellow for known exons and 
purple for a newly‑identified exon. A total of five transcripts are listed in the NCBI database with indicated accession numbers. One currently identified miRNA was 
matched to the 3'UTR region of TBCK mRNA. (B) Subcellular locations from COMPARTMENTS. The subcellular localizations are derived from database annota‑
tions, automatic text mining of the biomedical literature and sequence‑based predictions. (C) Candidate interaction partners of TBCK were identified using STRING. 
(D) In breast and lung cancer tissues in the Kaplan‑Meier Plotter database, high TBCK expression was associated with good prognosis. (E) Oncomine enabled the sys‑
tematic analysis of TBCK expression in multiple cancer types. HR, hazard ratio; miR, microRNA; TBCK, TBC1 domain containing kinase; UTR, untranslated region.
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org/ENSG00000145348‑TBCK/summary/rna) (7‑9). Based 
on an in silico analysis, homologues of TBCK in 12 Bilateria, 
and the conservation of these homologues was quite high. 
The percentage of protein identity in the top 7 species 
surpassed 90% (Table I), indicating that TBCK might partici‑
pate in important activities.

TBCK has three separate functional domains: N‑terminal 
Serine/Threonine kinase domain, central TBC domain, and 
C‑terminal rhodanese homology domain (RHOD). It has 
been reported that the kinase domain could bind GTP and 
possessed protein kinase activities (10). TBCK was discov‑
ered to possess the ability to selectively support coupling of 
active EGFR to ERK1/2 regulation (11) and positively corre‑
lated highly with rapamycin activity, indicating that TBCK 
might be a Serine/Threonine protein kinase (12). The TBC 
domain was identified as a conserved sequence in the three 
proteins including Tre‑2, BUB2p and Cdc16p. These proteins 
have been proven to be functional domains of Rab GAP, 
which could catalyze GTP hydrolysis of Rab GTPase via a 
dual‑finger mechanism (13). For containing the conserved 
TBC domain, TBCK was considered to be a member of 
the RabGAP family. However, a yeast two‑hybrid assay 
showed that TBCK had no physical interaction with any one 
of the 60 known Rab proteins (14). The RHOD domain is a 
homologous domain of rhodanese, but little is known about 
its function.

According to the NCBI Core Nucleotide and UCSC 
Genome Browser database, 6 TBCK transcripts were listed. Jin 
and his colleagues have provided evidence for these transcripts 
in 4 different cell types (A431, HeLa, HepG2 and HEK293FT) 
using multiple primer sets covering the whole ORF region of 
TBCK. Furthermore, three more transcripts were identified 
and all isoforms were categorized as long and short types 
based on the mRNA sequence. The long isoforms (6 members) 
contained STYKc kinase, TBC, and RHOD domains, whereas 
the short isoforms (3 members) lacked the region of STYKc 
kinase. These two distinctive types were most likely products 
of differential transcription initiation (Fig. 1A) (6). Although 
the proteins representing the short isoforms of TBCK were 
not recognized in the above‑mentioned four cell types, addi‑
tional bands with a similar molecular mass were observed in 
HepG2 and HEK293FT cells, which were possibly generated 
by alternative splicing or post‑translational modifications (6). 
Moreover, Chong et al (15) demonstrated that two major bands 
with molecular weights of ~101 and 71 kDa, which represented 
long and short TBCK respectively, were observed in two 
control fibroblast lines, and the full‑length isoform was more 
abundant than the short TBCK.

Distribution and interaction partners of TBCK in mammalian 
cells. It has been approximately 7 years since the first protein 
evidence for TBCK was raised (5). Immunofluorescence 
analysis for endogenous TBCK revealed that TBCK was clearly 
colocalized with γ‑tubulin in addition to punctate distribution in 
HEK293 cells. TBCK appeared to be not substantially colocal‑
ized with the endoplasmic reticulum, Golgi and endosomes in 
both HEK293 and HeLa cells (5). However, GFP‑tagged TBCK 
showed cell cycle‑dependent distribution in HeLa cells. TBCK 
is mainly localized in the cytoplasm during interphase, while 
a portion of TBCK accumulated at the mitotic apparatus and 

colocalized with centrosomes and spindle fibers as shown by 
the fluorescent staining of α‑tubulin. At the end of mitosis, a 
clear midbody staining of TBCK was usually observed between 
the two daughter cells (6). These inconsistent results might be 
due to the specificity of the chosen TBCK antibody. The TBCK 
antibody used in 2013 was generated by KLH conjugated 
peptide (LFEDGESFGQGRDRSSLLDDT), which was located 
adjacent to GAP domain and was not suitable for distinguishing 
the long and short isoforms of TBCK. GFP‑tagged TBCK only 
reflected the distribution of long isoforms of TBCK.

Moreover, TBCK was also probably localized to plasma 
membrane, nucleus, and mitochondrion according to the 
COMPARTMENTS subcellular localization database 
(https://compartments.jensenlab.org/Entity?figures=subcell_cell_ 
%%&knowledge=10&textmining=10&predictions=10&type1=
9606&type2=‑22&id1=ENSP00000273980) (Fig. 1B) (16).

As a poor‑explored protein, no evidence has been raised 
for identifying the interaction partners of TBCK. Based on the 
public STRING database (https://string‑db.org/cgi/network.
pl?taskId=K08rYosvQxGl), several proteins exhibited higher 
possibility to be interaction partners of TBCK (Fig. 1C) (17‑26). 
Besides, our recent research has uncovered 17 candidate 
proteins of TBCK using RNAi‑mediated TBCK silencing in 
combination with 2‑DE‑DIGE assays (data not shown). These 
candidates played important roles in multiple activities, such 
as protein folding, post‑translational modification, and the 
cytoskeleton. These candidates await further investigation.

3. TBCK and neurodevelopmental diseases

Although there is a long way to go to fully understand the func‑
tion of TBCK, recent research indicates that TBCK plays an 
important role in brain development. Mutations to the TBCK 
gene could cause neurological developmental disorders. Until 
now, a total of 17 mutations were reported to be associated 
with neurodevelopmental diseases (Fig. 1A and Table II).

Table I. Homologues of TBCK in different species.

Gene Identity, %
Species Symbol Protein DNA

H. sapiens TBCK
vs. P. troglodytes TBCK 99.6 99.4
vs. M. mulatta TBCK 97.2 97.0
vs. C. lupus TBCK 96.8 93.2
vs. B. taurus TBCK 96.5 92.7
vs. M. musulus Tbck 95.4 89.1
vs. R. norvegicus Tbck 94.1 87.6
vs. G. gallus TBCK 87.2 79.2
vs. X. tropicalis tbck 81.5 73.9
vs. D. rerio tbck 76.7 69.2
vs. D. melanogaster CD4041 47.9 49.3
vs. A. gambiae AgaP_AGAP000552 46.3 47.5
vs. C. elegans Tbck‑1 33.9 44.9

TBCK, TBC1 domain containing kinase.
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Most of the mutations were nonsense mutations, generating 
premature stop codons. After categorization, it can be found 
that 73.3% (11/15) of mutations were located in the region 
containing the first two domains, affecting the translation of 
full‑length TBCK. It is worth noting that the two missense 
mutations happened in the RabGap domain, indicating that 
the RabGap domain might be the most important functional 
unit for proper brain development. However, the underlying 
molecular mechanisms still remain unknown.

Alazami et al (27) identified 69 genes related to neurogenic 
diseases through whole exome sequencing of 143 multiplex 
consanguineous families, of which an insertion mutation at 
1709ntin the TBCK coding region was verified to cause a 
frameshift and further influence disease progression. This 
insertion was also detected in 13 individuals from nine unre‑
lated families, likely being pathogenic variants of TBCK. 
Eight other mutations of the TBCK gene were reported to be 
the main cause of mental retardation and hypotonic syndrome, 
and L‑type leucine‑mediated activation of the mTOR signaling 
pathway helped alleviate related symptoms (28). In the mean‑
time, another group verified two novel mutations of TBCK 
genes (c.1363A>T [p.Lys455*] and c.1532G>A [p.Arg511His) 
via whole‑exome sequencing of infants with encephalopathy 
in 4 unrelated families, of which the former mutation would 
induce a stop codon and lead to the deletion of long TBCK, 
while the latter mutation was located in the TBC conserved 
domain and might affect the RabGap activity of TBCK (15). 
Unlike the overgrowth of the brain caused by mTOR pathway 
disorders, a gradually decrease of the brain volume of 
infants with encephalopathy would be caused by TBCK defi‑
ciency (29). Furthermore, six more mutations (either resulting 
in nonsense or frameshift) affecting the TBCK expression 
were reported by six different groups (Table II) (30‑35).

It should be noted that four common mutations have 
been reported in different patients from at least two different 
groups (Table II): c.1897+1G>A (27,28); c.1652T>C (28,36); 
c.803_806delTGAA (28,29); and c.376C>T (15,28,37). All of 
the mutations would ablate the expression of full‑length TBCK 
and cause TBCK‑related developmental and neurological 
diseases. However, TBCK function has been poorly explored. 
Previous research shows that TBCK played a role in cell growth 
and actin organization by enhancing the signaling pathways 
of mammalian target of rapamycin (mTOR), presumably at 
a transcriptional or post‑transcriptional level (5). Besides, 
TBCK deficiency would disturb activation of the mTOR 
complex 1 (mTORC1), thus, affecting the autophagy process 
and further leading to autophagosomal‑lysosomal dysfunc‑
tion (37). Nevertheless, does TBCK directly or indirectly affect 
the mTOR signaling pathway? Which domain contributes the 
most? What are the binding partners of TBCK? These open 
questions await further studies.

4. TBCK and tumorigenesis

TBCK was expressed universally in almost all human tissues, 
except a relatively low expression in heart, brain, skeletal 
muscle, and peripheral blood leukocytes (data not shown). 
Besides, TBCK was proven to be down‑regulated in 55.6% of 
paired gastric carcinoma and 75.0% pair‑matched esophageal 
carcinomas. Overexpression of TBCK in HeLa cells could 

remarkably inhibit cell growth and arrest cells at S phase, 
which was indicative of tumor suppressive function (6). After 
analyzing the clinical information collected from TCGA, the 
five‑year survival rates for patients with high‑level TBCK 
was significantly higher than that of patients with low‑level 
TBCK in renal cancer (P=3.20E‑4) and pancreatic cancer 
(P=3.67E‑2). A similar phenomenon could be found in breast 
cancer (P=2.50E‑3) and lung cancer (P=4.70E‑13) (Fig. 1D) 
using Kaplan‑Meier Plotter database [https://kmplot.com/anal‑
ysis/] (38). This implied that TBCK might also possess the 
potential to be a viable prognosis marker for treatment of some 
cancer types.

However, TBCK might also exhibit tumor‑promoting 
functions in certain cancer types. Based on the Oncomine 
database (Fig. 1E), it has been shown that TBCK exhibit the 
tumor‑promoting functions in leukemia, lymphoma, liver 
cancer and sarcoma, in addition, individual experiments also 
validated that exhibit the functions in squamous cell carci‑
noma and renal cancers (11,39). In a human kinase mapping 
study using the entire kinome siRNA library targeting 
over 600 related genes, TBCK‑specific RNAi decreased the 
phosphorylation of ERK1/2 and increased the phosphorylation 
of STAT3. TBCK was further proven to selectively support 
coupling of active EGFR to ERK1/2 regulation (11). A very 
recent study on TBCK showed that TBCK was a direct target 
of miR‑1208, and that the miR‑1208/TBCK interaction had 
an important role in the regulation of apoptosis, as well as in 
the enhancement of cisplatin or TRAIL sensitivities in renal 
cancer cells (39). However, how TBCK involved in both tumor 
promotion and inhibition in different cancer types is unknown, 
and requires further investigation.

5. Future prospects of TBCK research

Previous results indicated that the eukaryotic protein kinase 
comprised of 12 essential conserved subdomains to maintain 
its kinase activity (40). Due to its lack of two important motifs 
(GXGXXG motif and VAIK motif) responsible for ATP 
binding, and the replacement of those motifs with mutated 
HRD motif that was essential for catalytic activity, TBCK was 
considered a pseudokinase (5,41,42). Itis implied that TBCK 
might phosphorylate the ERK1/2 protein (11). However, 
further direct kinase assays should be performed to clarify 
whether TBCK has kinase activity or not. The positive answer 
also provides evidence for differential functions between long 
and short isoforms of TBCK (6).

TBC domain‑containing proteins usually function as 
a RabGap (Rab GTPase‑activating protein) to negatively 
regulate Rab functions through accelerating GTP hydrolysis 
via a ‘dual‑finger’ mechanism (13,43‑45). Although the 
crystallographic structure of TBCK has not been reported, 
Chong et al (15) generated a homology model of the TBC1 domain 
of TBCK using DeepView and the SwissModel server (46) and 
uncovered a structural impact of the disease‑causing amino acid 
substitution (p.Arg511His). Other reports also demonstrated 
that the TBC domain in TBCK included the key conserved 
amino acid residues required for RabGAP activity in functional 
RabGAPs (5,13). However, the direct substrate of TBCK was 
failed to be identified in a systematical screening for target 
Rabs (60 Rab proteins) of TBC domain‑containing proteins 
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Table II. Characteristics of TBCK mutations associated with neurogenetic disorders.

  Research Research Variation of Mapping Mutation
Author, year Disease type target approach TBCK region type (Refs.)

Alazami et al,  Neurogenetic 143 multiplex Whole‑exome NM_033115: RabGap‑TBC Splicing (27)
2015 disorders consanguineous sequencing c.1708+1G>A  (frameshift)
  families

Bhoj et al,  Syndrome of 13 individuals Whole‑exome NM_001163435.2:  RabGap‑TBC Splicing (28)
2016 intellectual from nine sequencing c.1897+1G>A;  (frameshift)
 disability unrelated
 and hypotonia families  c.831_832insTA NA Insertion
    (p.Pro278Tyrfs*18)  (frameshift)
    c.1652T>C RabGap‑TBC Missense
    (p.Leu551Pro)
    c.[2060‑2A>G] NA Splicing
      (frameshift)
    c.803_806delTGAA,  S_TKc Frameshift
    p.[=];[Met268fsArg*26]
    c.376C>T (p.Arg126*) S_TKc Nonsense
    c.1370delA NA Frameshift
    (p.Asn457Thrfs*15) S_TKc Splice
    c.455+4 C>G  (skipping of
      exons 3 and 4)
    c.[(658+1_659‑1)_ S_TKc Deletion of
    (2059+1_2060‑1) del]  exons 7‑22

Chong et al,  Infantile Four unrelated Whole‑exome c.376C>T  S_TKc Nonsense (15)
2016 syndromic families sequencing (p.Arg126*)
 encephalopathy   c.1363A>T RabGap‑TBC Nonsense
     [p.Lys455*]
    c.1532G>A RabGap‑TBC Missense
    (p.Arg511His)

Guerreiro et al,  Recessive A family with 3 Whole‑genome NM_033115: S_TKc Frameshift (29)
2016 developmental siblings affected by genotyping and c.614_617del:
 disorder a severe, yet viable, whole‑exome p.205_206del
  congenital disorder sequencing

Mandel et al,  TBCK‑related Two siblings born Whole‑exome NM_001163435.2:  RabGap‑TBC Frameshift (30)
2017 intellectual to an Arab‑Moslem sequencing c.1854delT
 disability family living
 syndrome in northern Israel

Ortiz‑Gonzalez  TBCK‑ Children (n=8) of Whole‑exome c.376C>T  S_TKc Nonsense (37)
et al, 2018 encephalo‑ Puerto Rican sequencing (p.Arg126*)
 neuronopathy (Boricua) descent
  affected with
  homozygous TBCK
  p.R126X mutations

Zapata‑Aldana TBCK‑infantile A family with two Whole‑exome NM_001163435.2:  S_TKc Nonsense (31)
et al, 2019 hypotonia siblings who sequencing c.753dup; 
  presented with a  p.(Lys252*)
  novel TBCK mutation

Beck‑Wodl New type of Two siblings born Sanger  NM_001163435.2:  S_TKc Nonsense (32)
et al, 2018 neuronal ceroid in 1972 and 1974 sequencing/ c.304C >T, 
 lipofuscinosis suffering from whole exome p.(Gln102*)
  the disease sequencing

Sumathipala  TBCK A family with Whole genome p.Glu687Valfs*8 NA Splicing (33)
et al, 2019 encephalo‑ two siblings who sequencing   (frameshift)
 neuropathy presented
  with a novel
  TBCK mutation
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(40 proteins including TBCK) based on their Rab‑binding 
activity (14). Thus, it is necessary to carry out critical experi‑
ments to figure out the physiological target of TBCK, which 
shall provide direct evidence for the RabGap activity of TBCK.

In addition, previous studies have shown that TBCK muta‑
tions would cause neurogenetic disorders. The mTOR pathway 
and mTOR‑mediated autophagy might play important roles in 
such processes (28,37). However, it is still unclear how TBCK 
affects the mTOR signaling pathway, what the interacting 
proteins of TBCK are and whether there are other pathways 
involved remains unsolved. Our current research has uncovered 
17 candidate proteins of TBCK using RNAi‑mediated TBCK 
silencing in combination with 2‑DE‑DIGE assays. These 
candidates played important roles in multiple activities, such as 
protein folding, post‑translational modification, and the cyto‑
skeleton etc. (data not shown). More work on the mechanism of 
action needs to be completed in order to clearly clarify the roles 
of TBCK in neurogenetic disorders and tumor development.

6. Concluding remarks

An important finding for TBCK function in recent years was 
that TBCK functions as a candidate RabGAP. Deleterious muta‑
tions of TBCK would ablate the function of TBCK and cause 
severe infantile syndromic encephalopathy or other neuroge‑
netic disorders. These mutation sites were found in the whole 
exons covering three conserved domains. Abnormal function 
of TBCK would destroy the mTOR signaling pathway and its 
mTOR‑mediated autophagy process, which was considered the 
major cause of TBCK‑related neurogenetic disorders. In addi‑
tion, two types of TBCK isoforms were verified, and the kinase 

domain might account for the functional differences among 
TBCK isoforms. Limited research also suggested that the 
distribution of TBCK was cell cycle‑dependent, and the role of 
TBCK in tumors was cell line‑dependent. Overall, the function 
of TBCK is poorly explored and awaits further investigation.
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IPN, inherited peripheral neuropathy.
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