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Digital Health and Diabetes: Where Are We Now?

Introduction
Diabetes is one of the significant burden of dis-
eases globally with growing prevalence and leads 
to increased morbidity and mortality.1,2 The 
International Diabetes Federation estimated that 
by 2040, one in every 10 people in the world 
would have diabetes.3 Patients with diabetes often 
present with several co-morbidities, including 
cardiovascular diseases,4,5 stroke, kidney diseases, 
depression,6,7 which affect their quality of life8 

and lead to increased morbidity. Cardiac auto-
nomic neuropathy (CAN) is one of the most 
severe complications of diabetes resulting from a 
complex interaction of blood glucose control, 
duration of disease, age, and blood pressure 
(BP).9–11 CAN affect nerve fibers in the blood 
vessels and the heart muscle in diabetic patients, 
thereby causing cardiac arrhythmias, exercise 
intolerance, myocardial injury, silent myocardial 
ischemia, stroke, and sudden cardiac deaths12,13 
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Abstract
Background: Cardiac autonomic neuropathy (CAN) is a diabetes-related complication with 
increasing prevalence and remains challenging to detect in clinical settings. Machine learning 
(ML) approaches have the potential to predict CAN using clinical data. In this study, we aimed 
to develop and evaluate the performance of an ML model to predict early CAN occurrence in 
patients with diabetes.
Methods: We used the diabetes complications screening research initiative data set containing 
200 CAN-related tests on more than 2000 participants with type 2 diabetes in Australia. 
Data were collected on peripheral nerve functions, Ewing’s tests, blood biochemistry, 
demographics, and medical history. The ML model was validated using 10-fold cross-
validation, of which 90% were used in training the model and the remaining 10% was used in 
evaluating the performance of the model. Predictive accuracy was assessed by area under 
the receiver operating curve, and sensitivity, specificity, positive predictive value, and negative 
predictive value.
Results: Of the 237 patients included, 105 were diagnosed with an early stage of CAN while 
the remaining 132 were healthy. The ML model showed outstanding performance for CAN 
prediction with receiver operating characteristic curve of 0.962 [95% confidence interval 
(CI) = 0.939–0.984], 87.34% accuracy, and 87.12% sensitivity. There was a significant and 
positive association between the ML model and CAN occurrence (p < 0.001).
Conclusion: Our ML model has the potential to detect CAN at an early stage using Ewing’s 
tests. This model might be useful for healthcare providers for predicting the occurrence of 
CAN in patients with diabetes, monitoring the progression, and providing timely intervention.
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and substantially impact the quality of life of 
patients.10,14 Furthermore, CAN independently 
predict the progression of diabetic nephropathy 
and chronic kidney disease in diabetes.15 
Longitudinal studies in patients with CAN have 
shown 5-year mortality rates of 16–50%, with a 
high proportion attributed to sudden cardiac 
death.16

Globally, there is an increase in the occurrence of 
CAN, particularly in patients with type 2 diabe-
tes.17,18 Previous studies estimated that 20–73% of 
type 2 diabetes patients and about 17% of type 1 
diabetes patients develop CAN.19,20 Subclinical 
CAN, manifested as changes in heart rate variabil-
ity (HRV), may be detected within 1–2 years of 
diagnosis of diabetes.16 The clinical symptoms of 
CAN, however, often do not appear until long 
after diabetes onset, thus remaining undiagnosed 
until the disease progresses to an advanced stage.21 
The early detection and appropriate management 
of CAN are essential to prevent future complica-
tions and has been widely recommended.15,22

Despite the importance of early detection, cur-
rently, there is no specific method for predicting 
CAN and its progression.19 CAN diagnosis is 
commonly performed in the clinics using Ewing’s 
test that includes the assessment of HRV, orthos-
tatic hypotension, and 24 h of BP profiles and 
other variables in clinical settings.23 There is, how-
ever, still debate about the diagnostic criteria and 
staging of CAN using Ewing’s test.23 A majority of 
the previous research conducted in this regard has 
focused on using Ewing’s battery test alongside a 
wide range of risk factors to diagnose CAN.24–32 
Although these methods have performed well, the 
progression of CAN remains unclear. This has a 
significant impact on the ability of healthcare pro-
viders to increase the awareness of patients and to 
intervene promptly. In this study, we aimed at 
addressing this gap by developing and validating a 
machine learning (ML) model to detect and pre-
dict the progression of CAN in diabetic patients.

Methods

Design
We conducted secondary analysis from a retro-
spective cohort study. We developed and evalu-
ated the performance of an ML model for 
detecting and prediction of CAN progression 
using the following steps: develop an ML model 

for CAN detection and prediction of progress; 
investigate Ewing’s tests significance in the pre-
diction of normal and early categories of CAN; 
and evaluate the proposed ML predictive model.

Participants, location, and data collection
We used the Diabetes Complications Screening 
Research Initiative (DiScRi) data set,26,33,34 which 
was collected at Charles Sturt University in 
Australia.35 The DiScRi data set contains more 
than 200 variables conducted on more than 2000 
participants with type 2 diabetes in rural New 
South Wales, Australia, between 2011 and 2014. 
Patients were recruited through a public media 
campaign, including newspaper advertisements, 
radio and local television, and advertisements in 
general practice and community health centers. 
Potential participants were requested to contact 
the university if they wished to undergo a health 
check, and an appointment was made to attend the 
clinic. All participants older than 40 years were eli-
gible to participate.33 Participants with existing 
cardiovascular, respiratory, and renal disease as 
well as depression, schizophrenia, and Parkinson’s 
disease were excluded. The data collection proce-
dure involved the following steps: All participants 
were required to stop smoking or to consume 
drinks like alcohol and coffee 24 h before being 
tested. They were required to fast, beginning from 
midnight prior to the testing day. The tests were 
conducted from 9:00 a.m. to 12:00 p.m.

Variables and measurements
The data set contains a record of participants’ 
details, including demographic data such as age 
and sex, and history of diabetes, heart attack, pal-
pitations, and atrial fibrillation. The data set also 
contained measurements of BP, body mass index 
(BMI), blood glucose level (BGL), cholesterol 
profile, and electrocardiography (ECG), and 
tests on peripheral nerve function, Ewing’s bat-
tery tests, HRV, and attributes of different blood 
biochemistry.

In the current study, we used Ewing’s tests, which 
include the five standard tests for CAN proposed 
by Ewing and Clarke.36 The five tests are (1) 
lying to standing heart rate (LSHR) change 
expressed by 30:15 ratio. Such test indicates the 
ratio of longest R-R interval (ranging from 20 to 
40 beats) to the shortest R-R interval (ranging 
from 5 to 25 beats) produced by a change in 
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position (from a horizontal position to vertical 
position); (2) deep breathing heart rate (DBHR) 
change, which refers to the evaluation of beat-to-
beat heart rate variation (R-R variation) based on 
deep breathing; (3) valsalva maneuver heart rate 
(VAHR) change measuring the response of heart 
rate during and after increasing the intra-abdom-
inal and intrathoracic pressure; (4) handgrip 
blood pressure (HGBP) change measuring the 
change in diastolic BP after using a handgrip 
dynamometer; and (5) lying to standing BP 
(LSBP) change measuring the difference in the 
baroreflex-mediated BP after a change in the 
position. The results of Ewing’s test are shown in 
Supplementary Table S2.

Based on the Ewing’s tests, CAN has been catego-
rized into five main classes: (1) normal (all tests 
normal or one borderline); (2) early CAN (one of 
the three heart rate tests abnormal or two border-
line); (3) definite CAN (two or more of the heart 
rate tests abnormal); (4) severe CAN (two or 
more of the heart rate tests abnormal plus one or 
both of the BP tests abnormal or both borderline); 
and (5) atypical CAN (any other combination of 
tests with abnormal results).26 Because there were 
only a few patients with a severe, definitive, and 
atypical CAN in this study, we excluded them 
from the analysis and only included 237 patients 
with normal and early CAN.

Ethics
Written informed consent was obtained from all 
participants before data collection. The protocol 

for the DiScRi study was approved by the Ethics 
in Human Research Committee of the Charles 
Sturt University (ID # 03/164).

The framework of the ML predictive model. Data 
analysis: Figure 1 shows the high-level framework 
along the steps followed to construct the pro-
posed model. We used logistic regression which is 
one of the most common ML algorithms to 
develop the model and compatibility with a wide 
range of tools and platforms like R-language using 
the following formula37

    P z=
1

1 exp-+
 (1)

where P denotes the probability of an outcome 
occurrence and z represents the linear combination 
function which is inclusive of independent varia-
bles. An expression z can also be given as follows

     z v v vn n= + + +β β β β0 1 1 2 2   (2)

where b0 is represents the expected mean value of 
P when all ν = 0; n denotes the number of the 
independent variables; bn is the regression coeffi-
cient of each independent variable which is the 
influence of each independent variable on the like-
lihood of value (P  ), and νn represents the inde-
pendent variables that are included. Through the 
application of the linear combination function 
given in equation (1) for the Ewing’s tests as inde-
pendent variables to determine an outcome (CAN 
progress), the predictive model’s formula performs 

Figure 1. A graphical description of the proposed model.
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the computation of the possibility of the occur-
rence of CAN progress based on the predictability 
of Ewing’s tests as expressed below

  P
T T T T T

=
+ − + + + + +( )( )

1

1 0 1 1 2 2 3 3 4 4 5 5exp
β β β β β β

  (3)

where P denotes the possibility of the occurrence 
of an outcome (CAN progress) based on the 
selected independent variables. b  indicates the 
regression coefficients of Ewing’s test that has 
been included. T1, T2, T3, T4, and T5  refer to Ewing’s 
tests LSHR, DBHR, VAHR, HGBP, and LSBP, 
respectively. The description of Ewing’s battery 
tests is presented below.

Subsequently, the Ewing’s tests coefficients were 
calculated using logistic regression. The results 
obtained from the application of logistic regres-
sion are presented in Table 1. For the logistic 
regression, the dependent variable is CAN, 
whereas the independent variables are Ewing’s 
tests. Table 1 shows a significant association 
between Ewing’s tests and CAN (p < 0.05), and 
as such, have been included in the predictive 
model.

As presented in Table 1, the b0 is 28.88 and coeffi-
cients of T1 and T2 tests were b1T1 = −4.68, 
p = 0.013, and b2T2 = −0.488, p = 0.000, respec-
tively. The coefficients of T3 and T4 tests were 
b3T3 = −11.57, p = 0.000, and b4T4 = −0.197, 
p = 0.000, respectively. As for T5, the coefficient 
was b5T5 = 0.11, p = 0.000.

Negative b coefficient values were obtained as the 
outcomes of T1 (LSHR), T2 (DBHR), T3 
(VAHR), and T4 (HGBP) indicating that they 
have a negative influence on the occurrence of the 
disease. In other words, the influence of the tests 
on the occurrence of the disease is negative. In 
contrast, positive b coefficient values were pro-
duced by the T5 (LSBP), which is indicative of 
the positive effect of the tests on the occurrence of 
the disease. This confirms the correctness of the 
predictive model depending on Ewing’s rules to 
diagnose the condition. Based on equation (3) 
and the outcomes in Table 1, the predictive 
model was built as follows

         
P

T T T T
=

+
− − ×( )− ×( )− ×( )− ×( )

1

1
28 88 4 68 0 488 11 57 0 1971 2 3 4. . . . .

exp
++ ×( )( )( )0 11 5. T  (4)

Subsequent to the construction of the predictive 
model of CAN, if new tests are obtained from 
the clinic, for example, the predictive model can 
be used in calculating the probability of the 
occurrence of CAN. The following cases are 
classic illustrations of the application of the pre-
dictive model in determining the probability of 
CAN. Assume the Ewing’s tests for patient A are 
LSHR = 1.06, DBHR = 16, VAHR = 1.1, 

HGBP = 15, and LSBP = 10; patient B are 
LSHR = 1.4, DBHR = 10, VAHR = 1.23, 
HGBP = 15, and LSBP = 8; and patient C are 
LSHR = 1.1, DBHR = 14, VAHR = 1.1, 
HGBP = 14, and LSBP = 8. Through the 
application of equation (4) with the tests of the 
three patients, the probability that diabetic 
patient A will develop CAN can be computed as 
follows

P A( ) =
+

− − ×( )− ×( )− ×( )−
exp

1

1
28 88 4 68 1 06 0 488 16 11 57 1 1 0 1. . . . . . . 997 1 15 0 11 10

0 82
×( )+ ×( )( )( ) =. .

.

Table 1. The results of logistic regression analysis.

Test Coefficient p value Odds ratio Confidence 
interval (%)

Intercept 28.88 0.000 3.48  

LSHR −4.68 0.013 0.009 0.000−0.373

DBHR −0.488 0.000 0.614 0.53−0.711

VAHR −11.57 0.000 0.009 0.00−0.001

HGBP −0.197 0.000 0.821 0.754−0.894

LSBP 0.11 0.003 1.116 1.038−1.199

DBHR, deep breathing heart rate; HGBP, handgrip blood pressure; LSBP, lying 
to standing blood pressure; LSHR, lying to standing heart rate; VAHR, valsalva 
maneuver heart rate.
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For patient B, the probability of developing 
CAN’s disease can be calculated as follows

P B( ) =
+

− − ×( )− ×( )− ×( )−
exp

1

1
28 88 4 68 1 4 0 488 10 11 57 1 23 0 1. . . . . . . 997 15 0 11 8

0 76
×( )+ ×( )( )( ) =.

.

The probability of patient C developing CAN’s 
disease can be calculated as follows

P C( ) =
+

− − ×( )− ×( )− ×( )−
exp

1

1
28 88 4 68 1 1 0 488 14 11 57 1 1 0 19. . . . . . . 77 14 0 11 8

0 86
×( )+ ×( )( )( ) =.

.

Evaluation of the predictive model. The evaluation 
of the efficiency of the proposed predictive model 
was done using sensitivity, accuracy, specificity, 
type I error and type II error, and confusion 
matrix measurements. The model was validated 
using 10-fold cross-validation to obtain an unbi-
ased evaluation of generalization error. The whole 
data set was randomly divided into 10 subsets, of 
which nine (90%) were used in training the model 
and the remaining 10% was used in testing the 
performance of the model. The training and test-
ing procedures were carried out 10 times repeat-
edly. All experiments were performed using SPSS 
version 20.0 (SPSS, Inc., Chicago, IL, USA) and 
R programming language on a personal computer 
with Intel Core i5, CPU 3.4 GB, 16 GB RAM 
running Windows 10 operating system.

Performance metrics. The performance of the 
model was evaluated using the area under the 
curve (AUC), which is referred to as a receiver 
operating characteristic (ROC) curve using the 
following assessment measures:

 • Sensitivity indicates the number of patients 
with CAN that are correctly predicted

     Senstivity
TP

FN + TP
=
( )

 (5)

 • Specificity indicates the number of controls 
that are correctly predicted

     Specificity
TN

FP TN
=

+( )
 (6)

 • Accuracy exposes the total number of the 
patients and controls that are correctly 
predicted

    Accuracy
TP TN

Total number
=

+( )
( )

 (7)

 • Type I error (α) is the probability that patients 
will be diagnosed into the control group

TypeIerror
FN

FN TP
Sensitivity=

+( )
= −1  (8)

 • Type II error refers to the probability that 
control group will be diagnosed and catego-
rized into patients’ group

 Type II error =
FP

FP TN
Specificity

+( )
= −1  (9)

Results
A total of 237 patients with type 2 diabetes par-
ticipated in this study (55% females, age 
range = 32–90 years), of which 105 were diag-
nosed with an early stage of CAN while the 
remaining 132 participants were found to be 
healthy and disease-free. Of the 132 healthy par-
ticipants, the health statuses of 119 participants 
were correctly predicted as healthy by the predic-
tive model, and of 105 patients, 88 were correctly 
predicted to be at the early stage of the disease. 
The confusion matrix (Table 2) shows the predic-
tive model has achieved a predictive accuracy of 
87.34%. This performance is achieved because 

Table 2. The confusion matrix.

Class Normal Early

Normal 119 13

Early 17 88
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all the included tests are significantly associated 
with the tested categories of CAN (p < 0.05).

The predictive model was able to achieve a sensi-
tivity value of 87.12%, being the number of peo-
ple that were correctly identified with the positive 
disease. Meanwhile, the model was able to achieve 
specificity of 87.5%. Also, the predictive model 
achieved values of 12.88% and 12.5% for type I 
error and type II error, respectively. This is indic-
ative of the ability of the model to efficiently pre-
dict the probability of the occurrence of CAN. 
This model can be exploited with a wide range of 
health conditions.

The ROC curves of the predictive model are pre-
sented in Figure 2, while the AUC of the predictive 

model is enlisted in Table 3. The predictive model 
achieved an ROC of 0.962% with a 95% confi-
dence interval of 0.939–0.984. In addition, the 
model achieved a significant difference from 0.5, 
given that p value (asymptotic significance) is less 
than 0.05, indicating that the proposed model 
achieved a significant prediction better than by 
chance.

Discussion
In this article, we presented an ML model to pre-
dict the probability of CAN occurrence in patients 
with diabetes. The results suggest that an ML 
method can predict the risk of developing CAN in 
patients with diabetes in the primary care setting. 
The model provided high accuracy (87.34%), 

Figure 2. ROC curve of the predictive model.

Table 3. The area under the curve of the predictive model.

Area under the curve

Test result variable(s): predicted probability

Area Std. error Asymptotic sig.a Asymptotic 95% confidence interval

Lower bound Upper bound

0.962 0.012 0.000 0.939 0.984

aP-value (Asymptotic Significance) is < 0.05.
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sensitivity (87.12%) and specificity (87.5%) as 
well as very high stability (0.962%). The cardiovas-
cular autonomic function abnormalities in CAN 
may develop before diabetes is manifested and 
remain subclinical. Our results provide evidence of 
the suitability of the use of the ML model to detect 
CAN early with minimum resources. The predic-
tive model also provided further evidence that 
Ewing’s tests can significantly predict the normal 
and early categories of this condition. Thus, our 
model can be used by healthcare providers to 
detect and follow the progression of CAN over 
time and take appropriate measures.

Our findings support and extend prior studies of 
CAN detection using Ewing’s tests and ML mod-
els. In a previous study by Jelinek et al.,24 the neu-
rological diagnostics of CAN was examined on 
the basis of five Ewing’s test attributes using deci-
sion tree classification like REPtree, J48, 
SimpleCart, and NBTree. In a study by Kelarev 
et al.,25 Ewing’s test features were combined with 
extra features from the clinical data to detect 
CAN using feature selection based on random 
forest and multilevel ensemble classifiers. A 
research conducted by Abawajy et  al.26 focused 
on enhancing the accuracy of the classification of 
CAN using blood biochemistry features alongside 
the results of Ewing’s tests. They achieved the 
enhancement of the classification accuracy 
through the use of the automated iterative multi-
tier ensemble (AIME), which makes use of a vari-
ety of ensemble classifiers in each layer. The 
AIME achieved a high level of accuracy (99.57%) 
and could be used where Ewing’s tests are not 
available. In the current study, however, we used 
logistic regression which is more robust to detect 
CAN and its progression rather than only detect-
ing CAN as performed by previous researchers.

Previous studies have attempted to predict CAN 
using different approaches. A hybrid of wrapper 
filter feature selection was proposed by Huda 
et  al.27 using ECG features and Ewing’s tests. 
Based on Ripple down Rules, ensemble classifiers 
were proposed by Kelarev et al.28 to predict CAN 
using Ewing’s tests. Kelarev et  al.29 proposed 
ensemble classifiers based on decision tree classi-
fiers for the monitoring of diabetic patients 
through using ECG features and Ewing’s tests. A 
different study conducted by Abawajy et al.30 pro-
posed a multitier ensemble classifier for the pre-
diction of CAN, based on the QRS features of 
ECG and Ewing’s tests. Jelinek et al.31 discussed 

an iterative multilayer attributes selection and 
classification model, which used Ewing’s tests 
and HRV for the prediction of CAN. A meta-
ensemble model was proposed in another study32 
to investigate the prediction of CAN using HRV. 
Although these models24–32 demonstrated supe-
rior performances, they did not address the 
problem of predicting the probability of CAN 
occurrence in patients with diabetes. In addition, 
the models were more general, where they have 
been proposed to predict the categories of the dis-
ease (e.g. normal, early, severe, definitive, abnor-
mal). In contrast, our ML model can measure the 
relationship between the CAN categories and 
Ewing’s tests by estimating probabilities using a 
logistic function, which is the cumulative logistic 
distribution and a simple novel method.

The main strength of the study is the applicability 
of the results to the primary care diabetes popula-
tion in rural settings. This study has limitations 
that should be considered. First, the small sample 
size might not be representative of all diabetes 
patients. Therefore, the results should be inter-
preted with caution. Second, individuals in our 
study were diagnosed using only the Ewing’s test 
with normal and early categories. Third, the 
probabilities predicted by our model were not 
calibrated to true occurrence probabilities. 
Furthermore, we did not correlate our model 
with clinical findings and biochemical data. In 
future, we aim to compare the model with various 
clinical and biochemical tests in more extensive 
studies with a more varied population.

CAN is a serious medical complication of diabetes 
and an independent predictor of cardiovascular 
morbidity and mortality. The importance of early 
diagnosis of CAN is widely recognized. Diagnosis 
of CAN, however, is problematic due to the medi-
cal expertise required for evaluating the data from 
Ewing’s test even when resources for the test are 
available. More broadly, our proposed model 
points toward the application of innovative meth-
ods for the early detection of CAN. The unique 
feature of our model is that it is easy and simple to 
employ and does not require a complex code. 
Thus, our model can be applied as a mobile appli-
cation or online tool,38 for example, in combination 
with the National Heart Foundation of Australia 
heart age calculator which is commonly used by cli-
nicians in general practice (https://www.heartfoun-
dation.org.au/heart-age-calculator). These results 
might be useful for healthcare providers to predict 
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the early occurrence of CAN in people with diabe-
tes and support them in combination with digital 
technologies39–42 such as wearable devices,43 smart-
phone apps44 and text messages45,46 which have 
shown to be cost-effective.47,48

Furthermore, our study suggests several direc-
tions for future work. The ML models can be 
potentially applied in primary healthcare settings 
to early detect CAN by general practitioners and 
specialist nurses where there is a lack of trained 
healthcare specialists. Clinicians may use these 
models to monitor the progress of CAN using 
cheap and straightforward digital health tools 
such as web-based and mobile phone applications 
in their clinics. This may lead to early detection 
and prevention of CAN-related complications 
and morbidity. Furthermore, the methods used in 
this study offer a principled way to help inform 
individualized care using routine data from clin-
ics. Before implementation in clinical practice, 
however, further research using large local data 
sets and randomized trials evaluating the effec-
tiveness and cost-effectiveness is recommended.

Conclusion
The ML model developed in this study showed to 
predict early-stage CAN, which might be useful 
for both healthcare providers and patients for 
early intervention, thereby leading to the preven-
tion of CAN-related complications.
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