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Abstract

Rigorous radiotherapy quality surveillance and comprehensive outcome assessment

require electronic capture and automatic abstraction of clinical, radiation treatment

planning, and delivery data. We present the design and implementation framework

of an integrated data abstraction, aggregation, and storage, curation, and analytics

software: the Health Information Gateway and Exchange (HINGE), which collates

data for cancer patients receiving radiotherapy. The HINGE software abstracts

structured DICOM‐RT data from the treatment planning system (TPS), treatment

data from the treatment management system (TMS), and clinical data from the elec-

tronic health records (EHRs). HINGE software has disease site‐specific “Smart” tem-

plates that facilitate the entry of relevant clinical information by physicians and

clinical staff in a discrete manner as part of the routine clinical documentation.

Radiotherapy data abstracted from these disparate sources and the smart templates

are processed for quality and outcome assessment. The predictive data analyses are

done on using well‐defined clinical and dosimetry quality measures defined by dis-

ease site experts in radiation oncology. HINGE application software connects seam-

lessly to the local IT/medical infrastructure via interfaces and cloud services and

performs data extraction and aggregation functions without human intervention. It

provides tools to assess variations in radiation oncology practices and outcomes and

determines gaps in radiotherapy quality delivered by each provider.
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1 | INTRODUCTION

Advanced technologies in health care are bringing a sharper focus

on clinical outcome assessment and the assessment of health care

quality. Manual abstraction, collation, and subsequent analysis of

health care quality from patient treatment and outcome data are

onerous, expensive, and impractical. Advances in computer storage,

computing power, and the ability to electronically mine data from

disparate sources (e.g., demographics, genetics, imaging, treatment,

clinical decisions, and outcomes) have enabled big data research in

medicine. The evolution of several initiatives in the realm of inter-

connectivity of health care data sources and the availability of

advanced computing frameworks have opened doors for answering a

broad array of questions related to quality, safety, and outcomes of
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patients’ clinical care efficiently, objectively, and in a cost‐effective
manner.

In the radiation oncology domain, large amounts of data are cap-

tured routinely across several clinical systems over the course of a

patient’s treatment as shown in Fig. 1.

The electronic health record (EHR) is used to document clinical

data that typically include demographic information, medical history,

medications, laboratory test results, and radiology reports. The physi-

cian assessments are often stored in unstructured free text from

which key data elements are difficult to abstract for any subsequent

data mining efforts. For each patient receiving radiotherapy treat-

ment, the clinical documentation in EHR typically includes (a) a

detailed initial consultation note, (b) a simulation note describing the

treatment simulation procedure, (c) a treatment planning note docu-

menting the prescription and proposed treatment plan, (d) a weekly

on‐treatment visit (OTV) note from the staff physician documenting

a review of the patient’s treatment progress and any acute side

effects, (e) a treatment summary or survivorship care plan for the

patient and referring physician at the completion of therapy, and (f)

routine follow‐up notes tracking disease outcomes and any late toxi-

cities. These clinical notes are usually dictated on a telephone, tran-

scribed, and imported into the EHR as preliminary documents. These

free‐text formatted notes are then reviewed, edited, and finalized.

There is a wealth of information in clinical notes for big data applica-

tions, but the challenge is to capture and abstract these data in dis-

crete format as part of the regular clinical workflow. However, the

treatment planning data including the radiotherapy plan, images,

dose, structure set, and dose‐volume information from the treatment

planning system (TPS) are in structured formats (DICOM‐RT). Addi-
tionally, the treatment management system (TMS) that contains

information regarding the radiation treatment delivery, fractions, vis-

its, and so on is also structured.

The challenge in radiation oncology is to aggregate data, which

are both structured and unstructured from disparate data sources. It

is extremely difficult to clean, parse, and collate the data intelligibly,

thus making many research and operational tasks that deal with the

optimization of quality care, research‐based analysis of radiation

treatment, and diagnosis‐based research and development of

computer‐aided diagnostic tools at the infrastructural level quite

difficult. Additionally, the lack of interconnectivity and interoperabil-

ity of RT software systems has made the process of data shar-

ing/transfer cumbersome and challenging. Unfortunately, valuable

clinical and radiation treatment data remain trapped behind propri-

etary software systems. There are natural language processing (NLP)

methods that can be employed to extract structured data from clini-

cal narratives dictated in the EHR. These methods utilize text mining

symbolic methods approaches such as named entity recognition

(NER) based on dictionary lookup and information extracting (IE)

relying on pattern matching. Each of these methods provides far

from ideal results in gathering accurate structured information from

the clinical notes because these methods have to deal with the

idiosyncrasies of clinical sublanguage due to the use of nonstandard

ontologies and data dictionaries as well a high degree of spelling and

grammatical errors.1 The accuracy of these approaches can poten-

tially improve when there is a comprehensive cancer ontology used

to enable semantic representation of textual information founds in

clinical narratives. The utilization of these not perfect methods for

extracting structure data from the EHR can adversely affect the out-

come assessment and predictive analytics modules specifically con-

sidering the sensitivity of the data elements to both tasks.

Therefore, the structured template‐based approach alleviates these

concerns and makes structured data capture more credible for clini-

cal use in production quality assurance (QA), outcomes, and big‐data
analytics platforms.

The Veteran Health Administration’s National Radiation Oncol-

ogy Program (NROP) office embarked on an initiative to develop an

integrated enterprise‐wide data curation, storage, and analytics por-

tal, called Health Information Gateway and Exchange (HINGE).

HINGE is a web‐based electronic structured data capture system

that has electronic data sharing interfaces with the EHR, TMS, and

TPS with a specific goal to collect accurate and comprehensive data

and to determine clinical practice variations, outcomes, and gaps in

treatment quality and to compare the effectiveness of various treat-

ment modalities and ultimately enable big data analytics in radiation

oncology. It is an automatic data aggregator that collates data from

different radiotherapy clinical systems/IT applications. It processes

the treatment data for quality assessment, predictive analytics, and

other enterprise‐driven clinical informatics solutions with a single

F I G . 1 . The sequential radiation
treatment workflow: initial patient
consultation, simulation, treatment
planning, treatment delivery, on‐treatment
evaluation, and follow up. The clinical data
are in unstructured and/or semi‐structured
data formats, whereas simulation
treatment planning and treatment delivery
data are inherently in a structured format.
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online data portal and provides benchmark data and quality improve-

ment tools for individual providers. Additionally, HINGE’s design and

infrastructure caters to the imminent need for a research‐based
practice environment and is cognizant of the role of advanced mod-

ern computational strategies involving big‐data predictive analytics

and clinical informatics. Because we realized that achieving these

objectives for the whole cancer domain would be extremely chal-

lenging, we restricted our scope to two disease sites (prostate and

lung cancer). The promise does not come without challenges, and

hence, there were significant technical and workflow‐related chal-

lenges with the actual extraction and aggregation of data from dis-

parate radiotherapy information sources.

2 | IMPETUS FOR AUTOMATED
RADIOTHERAPY DATA ABSTRACTION

The Veterans Health Administration (VHA), which is the largest inte-

grated health care system in the United States, provides care at 1243

health care facilities, including 170 VA medical centers and 1063 out-

patient sites of care of varying complexity. It serves more than 9 mil-

lion enrolled veterans each year. Forty of the large VA medical centers

offer onsite radiation oncology services with the oversight from NROP

office. In 2016, the NROP office embarked on a pilot project to moni-

tor the quality of radiotherapy delivered, determine practice varia-

tions, and identification of the care gaps in the VHA. The pilot effort

addressed intermediate risk and high‐risk prostate cancers (CaP), stage

IIIA/B nonsmall cell lung cancers (NSCLCs), and limited stage small cell

lung cancers (SCLCs). These disease site presentations were selected

for the pilot because radiotherapy (RT) pivotal in the treatment of

these cancers, which together represent more than 60% of patients

receiving RT in the VA.

The VHA NROP office collaborated with the American Society

for Radiation Oncology (ASTRO) to establish clinical quality measures

(CQMs) by which individual patient care would be assessed and

compared with the national VHA practice. ASTRO assembled disease

site panels composed of nationally recognized experts who were

asked to identify CQM for each phase of patient management by

the radiation oncologist as well as dose/volume metrics for the eval-

uation of quality of radiation treatment plans. The genesis of CQM

was the seminal body of work done by the American College of

Radiology’s Quality Research in Radiation Oncology program.2,3

Panels defined CQM in three categories: currently expected perfor-

mance measures, those anticipated for the near future (aspirational

CQM), or CQM for surveillance only. Methods were developed for

manual data abstraction, analytic methods for DICOM‐RT data, data

curation, and the data scoring system. Web‐based user interfaces

were also developed to report patient scores to their VHA radiation

oncologists and aggregate data for benchmarking. Data elements for

1567 patients from the 40 VA radiation oncology practices were

abstracted from the electronic medical records, treatment manage-

ment, and planning systems as part of the pilot. The pilot demon-

strated that clinical measures provide a tangible means to quantify

and improve quality of care.4 It also proved that manual data

abstraction is time‐consuming, onerous, and very expensive. It clearly

established the need for IT infrastructures for automatic data

abstraction and curation.5

There have been several IT initiatives by research groups in radi-

ation oncology to develop integrated data analysis platforms for

either outcome studies and/or decision support systems.6 There are

many large databases such as Surveillance, Epidemiology and End

Results (SEER) program established by the National Cancer Institute

(NCI) in 1973 and Center of Medicare and Medicaid Services (CMS)

that collect data from large number of cancer patients treated over

time.7 The data in these databases include demographics, cancer

incidence, clinical, and survival factors but fail to include detailed

clinical and treatment information. Some of the data analyses from

the SEER database suggests that the database lacks information

about the radiation dose, technique, and radiotherapy receipt.8

The University of Michigan has developed M‐ROAR9 and

MROQC10 as data aggregation systems to collect and assess practice

patterns, perform outcome analyses, and evaluate dosimetry‐related
information. MD Anderson has implemented a system‐wide electronic

data capture system that records patients’ treatment information.11

Johns Hopkins has launched the Oncospace program that captures RT

data containing anatomy, dose distributions, and outcomes data in an

analytical database.12 The Mayo Clinic’s Department of Radiation

Oncology in Florida has linked its radiation oncology information sys-

tem with Mayo Clinic’s internal claims data warehouse along with

Mayo’s tumor registry which allows for large‐scale studies.13 Whitaker

et al. at Mayo Clinic at Rochester developed a patient‐reported out-

come (PRO) collection and management system to implement a large‐
scale aggregation of patients’ treatment data. A majority of these plat-

forms are deployed with very specific goals. Whereas, the HINGE

software is designed to collate more comprehensive radiotherapy epi-

sodic data that include DICOM‐RT data from TPS, treatment data

from TMS, and clinical data from EHR. The overarching goal of HINGE

is to meet the following objectives:

1. To allow health care institutes to assess their practices/treatment

outcomes and make improvements at a systemic level;

2. To better equip and assist the physician with complimentary/sup-

plementary information to aid their clinical decision‐making process;

3. To create systems that would allow for the research and devel-

opment of tools that relate to machine learning, artificial intelli-

gence, and big data analytics;

4. To allow for ease of data interoperability, data access, and

exchange for third‐party applications/programs;

5. To foresee the future trends in the healthcare industry and sub-

sequently design data platforms in alignment with the upcoming

technologies.

3 | OVERVIEW OF THE HINGE PLATFORM

The crucial data elements required to assess the quality of radiother-

apy planning and delivery and to build decision support systems are
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distributed across disparate clinical systems and are recorded along

each sequential step of the radiation treatment (from initial Consult

to follow‐up). Figure 2 shows a brief overview of the HINGE archi-

tecture. HINGE is a real‐time data analytics portal connecting the

EHR, TPS, and TMS. The HINGE local application resides at each

local facility, and the HINGE Central Server is hosted at a HIPPA

compliant secure cloud server. Radiation oncologists enter the infor-

mation via smart disease‐specific templates (user interface), which is

discretized and stored in the database. HINGE Local also communi-

cates with EHR, TPS, and TMS and imports/exports relevant patient

data. The data are anonymized and sent to HINGE Central Server

for data analytics and display of results on an interactive Web‐based
dashboard for end‐users.

4 | KEY DESIGN FEATURES

4.A | Data standardization

HINGE software is designed to facilitate the process of extract,

transform, and load (ETL) of data throughout. Disparate systems are

used to collect clinical, treatment, and process data; however, the

lack of uniformity in data syntax and semantics makes it extremely

difficult for data aggregation and analysis. Unfortunately, at the

present time, there is a paucity of ontologies with radiation

oncology‐specific terms. HINGE deploys “smart” disease‐specific
templates meant for data entry/viewing as part of its user interface

for radiation oncologists. These templates facilitate the physicians

and the clinical staff to enter the relevant clinical information in a

discrete manner. Figure 3 shows the overview of the components of

the HINGE application. The templates are embedded with critical

data elements (data farming) that are required for QA analyses.

These critical data elements are used to score the disease site‐
specific CQMs that are listed in the paper from Hagan et al.4 Most

commonly, electronic case report form templates are utilized rou-

tinely to collect structured data in randomized controlled trials, but

these templates are limited to trial‐specific data elements, and those

are entered in addition to routine clinical documentation. These tem-

plates are utilized as part of the routine clinical workflow and docu-

mentation and are the starting point for the physicians to record

their assessments. The templates mimic the radiotherapy workflow

from consultation, simulation, treatment, and end‐of‐treatment to

follow‐up care. The templates are interfaced with the EHR, allowing

data such as allergies, drug list, lab values, and vitals to be automati-

cally populated into the template from the EHR database. Thus, the

templates facilitate the entry of data in a structured discrete format,

along with simultaneously allowing free‐text data entry sections for

F I G . 2 . Overview of the architecture of Health Information Gateway and Exchange (HINGE) software platform: The clinical workflow
templates (Consult, Sim Directive, etc.) in the HINGE local are automatically populated with data that are available in clinical practice systems
that include electronic health record (EHR), treatment planning system (TPS), and treatment management system (TMS). The complete
radiotherapy data are sent to the HINGE central server, where it is evaluated for data integrity, curated, and prepared for visualization by end
users in a web‐based graphical user interface (GUI).
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recording additional observations. However, much of the data such

as TNM staging, performance status, treatment intent, status, previ-

ous cancer encounters with RT, chemotherapy or surgery as the

treatment modality, prescription, toxicity grades, simulation, treat-

ment planning directive, and survivorship data elements are entered

in discrete format. We used all predefined radiotherapy data nomen-

clature (AJCC,14 CTCAE,15,16 and AAPM TG 26317) and defined

additional ones where no standard data definitions existed. Auto-

matic calculation of assessment scores and graphical indication of

treatment progress are rendered in these templates. At each encoun-

ter, after the data entry has concluded, HINGE prepares the data

into a textual narrative note format by utilizing user specified tem-

plate boilerplate narratives and embedding these discrete data ele-

ments. The full note narratives are then exported to the EHR for

medical records via an interface for the purpose of maintaining clini-

cal documentation and continuity of care because the patient might

be subsequently seen at other clinical services within the hospital.

These templates have been developed with specific UI‐based design

considerations from the physicians' end users. These templates are

specifically designed to save physicians’ time/effort and enhance

their ease of access by incorporating technical UI/UX features like

least amount of page scrolling, reducing the number of mouse clicks,

data entry in a lateral motion within the HINGE application, position-

ing high‐utility patient details on the top of the page, business logic

for auto calculation of certain data elements such as NCCN risk

groups based on staging, and Gleason and PSA values. In addition,

auto population of subsequent note templates (e.g., end of treatment

template) with discrete data from previous templates (consult, treat-

ment planning directive template) also saves physician time that they

can spend with the patients rather than just dictating notes in the

EHR. The templates also perform extensive data entry validation and

data‐completeness check at the entry level and provide helpful error

messages, suggestions, highlighting of critical elements, and so on.

These templates are disease site specific, and relevant data entry

fields appear based on the diagnosis and treatment site codes. The

templates also prepopulate the data fields from TPS and TMS so

that the physicians do not have to make redundant entries.

4.B | Integration with radiotherapy data sources

4.B.1 | EHR‐HINGE integration

HINGE is designed to communicate with VHA’s EHR, that is, VISTA.

HINGE has employed an external interface that is able to communi-

cate (query/retrieve) with VISTA and fetch required patient details

such as demographics, vitals, labs, medications, surgery, pathology,

encounter, allergies, and survival information. The list of data types

retrieved from the EHR is shown in the Fig. 4. Most of the informa-

tion exists in discrete format when it is retrieved from the EHR. The

interface is also able to retrieve information such as health history,

surgery, and radiology reports that only exist as clinical free‐text
notes from the EHR. Additionally, after the note is completed by the

physician, the discrete data are converted into a textual note and

exported to VISTA via this interface. Specifically, this interface‐based

design allows HINGE to be oblivious to the underlying EHR system

(VISTA, Cerner, EPIC, etc.). It helps in its portability and allows it to

be functional even if the EHR system changes by isolating the busi-

ness logic of the integration strictly within the interface.

4.B.2 | TPS‐HINGE integration

HINGE is able to import DICOM‐RT data from any TPS that conform

to the Integrating the Healthcare Enterprise–Radiation Oncology

(IHE‐RO)18 defined profiles. The VA system utilizes all the TPS prod-

ucts sold in the marketplace, and hence, it is imperative that we con-

form to one standard interoperability solution provided by IHE‐RO
to pull data for an enterprise‐wide application such as HINGE. One

of the major challenges with examining patients’ DICOM‐RT data is

the lack of standardized target and organ at risk (OAR) nomencla-

tures, prescription formatting, and ambiguity regarding dose‐volume

histogram metrics, across several disease sites. This impedes any

research into examining dosimetric effects of practice patterns longi-

tudinally. To resolve this issue, an initiative to introduce the stan-

dardizing nomenclature for radiotherapy was implemented under

TG‐263.17 HINGE deploys this naming convention within its system,

requiring treatment planners to match the deemed OARs to their

TG‐263 names. HINGE automatically suggests the equivalent TG‐
263 names for the listed OARs for the planner (Fig. 5). In addition to

simple text mapping, Machine Learning based methods are being

used to automate the process of relabeling physician specified target

and OAR names to the TG‐263 specified names. Success in this

approach has been shown using target and OAR text labels,19 geo-

metric information,20–22 and radiomics features,23 all found in the

DICOM structure set, dose, and reference imaging (CT) datasets. All

these methods have shown reasonably good accuracy over many dif-

ferent structure types, and the HINGE platform has the capability of

deploying such methods as it has all of the treatment planning

DICOM files as well as access to cloud‐based machine learning

frameworks including Amazon Web Services (AWS) Elastic Map

Reduce and Deep Learning Containers. The software calculates and

displays DVH from the uploaded dataset to the dosimetrist for final

verification and selection of the key target and OAR sites. Based on

the DVH dose constraint‐based quality measures, the appropriate

pass/fail/acceptable variation status is stored in the database before

the complete dataset is uploaded to the central server dashboard.

4.B.3 | TMS‐HINGE integration

Existing TMSs are primarily designed to optimize the clinical work-

flow and therefore lack utilities required to facilitate big data appli-

cations. For HINGE to assume the role as the one‐stop‐shop for

managing radiotherapy data, it must have access to the data present

in TMSs such as Varian Aria/Elekta Mosaiq products. To achieve this

goal, we have created a Docker container, named HINGE‐Broker,
which runs on the same network as the TMS’s underlying database.

Within HINGE‐Broker, a Python script provides access to the TMS

database using the SQLAlchemy toolkit, and a Node application
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exposes a web API for HINGE to make remote queries. The TMS

database contains discrete elements such as patient demographics,

prescribed prescriptions, delivered dose, and a listing of all clinical

notes.

However, TMS software upgrades may result in changes to

the underlying database schema, and potentially different versions

of TMS deployed across a health care system will also require the

support of multiple methods of data access. In addition, some ver-

sions of TMS require very complicated, nonintuitive SQL queries

for retrieving current dose information, which potentially makes

this approach very sensitive to schema changes. Although the

TMS software provides methods for directly entering many dis-

crete data elements, these tools are often underutilized, resulting

in little information that could be used for further studies. The

data extracted from TMS are used to populate the simulation,

undertreatment, and end of treatment summary templates in

HINGE and are made available for physicians to view/edit. This

allows for HINGE to access treatment delivery data in a dis-

cretized manner.

Radiotherapy TMS does support the storage and display of Word

documents within the application. We have partially addressed the

lack of discrete treatment data by creating Word templates for the

undertreatment visit and end of treatment summary notes with

tagged fields. Using a Word macro, these discrete template fields

can be exacted as JSON, which can then be stored in a MongoDB

database for analysis.

F I G . 3 . Overview of the components of the Health Information Gateway and Exchange (HINGE) application: Discrete clinical data abstracted
via query/retrieve from the Electronic medical record (EHR) and populated in the HINGE SMART disease‐specific templates UI. Discrete and
free‐text data are transcribed by the providers in the disease‐specific templates. SMART templates have business logic to auto calculate scores,
perform auto‐population of subsequent templates with discrete data, report any missing value or value outside a defined range, and abstract
the data elements for clinical quality measure (CQM) analysis. A free‐text narrative note is generated from all these discrete data elements and
interfaced to the EHR as part of the clinical documentation. All the data from these SMART templates are checked for completeness and
integrity and anonymized before exporting it to the Central Server Dashboard where data visualization tools (charts, graphs with flagging of
outliers, etc.) are deployed to analyze the CQMs, clinical and dosimetry data for a cohort of patients.
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4.C | QA/analyses of radiotherapy data

With data standardization and clinical integration described in the

preceding sections, HINGE software is able to aggregate the critical

data elements from the entire clinical workflow to score all CQMs

for each patient. Once a patient’s treatment is deemed complete for

export, the anonymized data are uploaded to the HINGE’s central

server. The business logic for deriving the CQMs based on the

patient data resides on the central server (see Fig. 2). After the data

are received, the CQMs are calculated and are available for viewing

on the visual dashboards on the central server via a web portal.

Many of the CQMs are not straightforward and require extensive

decision‐tree logic to construe a “pass” or a “fail.” HINGE has

deployed such decision‐tree logic (Fig. 6) in its system to calculate

the CQM scores automatically for each CQM. The automated real‐
time calculation and evaluation of treatment data allow the

F I G . 4 . List of the data types utilized in radiation oncology domain, source system where the data resides, extract/transfer/load (ETL) issues.
Access to server system, unstructured free‐text, and inconsistent nomenclature are among the major ETL issues across the various source
systems. Health Information Gateway and Exchange (HINGE) application gathers data types (green tick) from almost all the mentioned source
systems.

F I G . 5 . Screen capture of the user interface
for selecting the appropriate structures for
target and organ at risk (OAR) renaming in the
Health Information Gateway and Exchange
(HINGE) application.
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physicians to benchmark their treatment practice against their peers

across the VA enterprise, thereby providing a real‐time feedback.

Additionally, postcompletion of treatment, HINGE is able to generate

a treatment scorecard that evaluates each patient’s RT treatment.

This allows the VHA program office and quality managers to assess

the quality of RT in the VA clinics.

4.D | Dashboard analytics

HINGE visual dashboards available through the central server dis-

play visual plots, charts, and graphs each detailing the performance

of every VA practice for each CQM (Fig. 7). The dashboard pro-

vides a vantage position for every physician and the quality man-

agers to assess the performance of each CQM relating to its

current standing, in comparison with expert‐defined thresholds and

their peers’ performance nationwide. This allows the physician to

understand the quality of RT care they deliver and ways to

improve it. The dashboard also provides the quality managers with

insightful information to investigate performance or systemic

issues, marshal resources, and design effective health policy solu-

tions to improve RT care.

In addition to viewing the information through the dashboard,

the central server functions as the data warehouse because all the

patient data from local VA facilities are exported to this data ware-

house. Thus, it is poised for large enterprise analytics that involve

data mining, outcomes research, comparative effectiveness, machine

learning, and other large database interrogation queries.

4.E | Data anonymization

By way of architectural design, HINGE is split into HINGE local and

HINGE central server (Fig. 2). HINGE local is the application facing

the local VHA facility connected to the local environment and

resources such as EHR, TPS, and TMS. The HINGE local application

is hosted on the cloud computing platform hosted by VA’s Enterprise

cloud (VA‐EC)–AWS, and the application is running multiple

instances with the database siloed into partitions for each local VA

center. HINGE central server is hosted on a VA‐EC as well where

data are captured from each of the HINGE‐local instances. After a

treatment is completed, the physician/clinical staff are prompted to

review the patient data and send it to the central server. After the

clinical staff at a local facility initiate the export of data, the data are

anonymized and presented for review and approval. In this review,

the protected health information is removed from the treatment data

collected from all clinical and treatment management notes, DICOM‐
RT datasets is presented to the attending physician for their final

approval. The de‐identified data are compliant as per HIPAA policies.

After approval, the data are exported from HINGE local to the cen-

tral server via a secure encrypted channel.

4.F | Data security

Data security is paramount and a crucial component of any health

care organization and infrastructure. The numbers of cyber‐attacks
on the health care industry are constantly growing for the purposes

F I G . 6 . Example of a decision tree logic for a clinical quality measure. Data from the health information gateway and exchange (HINGE)
SMART templates, treatment planning system (TPS), and treatment management system (TMS) modules are utilized with these decision trees
to generate pass/fail (1/0) for each of the disease site‐specific clinical quality measures.

184 | KAPOOR ET AL.



of medical identity theft and Medicare fraud. HIPPA regulations24

set specific guidelines for maintaining the privacy and security of

any information system deployed in the health care domain. The

HIPPA security rules outline the administrative, physical, and techni-

cal security measures that an organization must take to ensure confi-

dentiality, integrity, and availability of health care datasets.25,26

HINGE is utilizing administrative safeguards where documented pol-

icy and procedures are established to create a uniform process that

clinical users follow to maintain patient privacy and information

security in the software. HINGE also employs technical safeguards

where no PHI/PII is shared within or with other interfaced applica-

tion without appropriate network (SSL) and software encryption. The

VHA has very stringent physical safeguards in place where the data

centers housing the HINGE application have locks and security sys-

tem to protect from PHI data breaches associated with break‐ins.
Keeping the health care data confidential, available and maintaining

integrity have direct relationships with HIPAA compliance.

Confidentiality is the act of ensuring that patient’s health data

are kept completely undisclosed to unauthorized entities. HINGE is

integrated with the VA’s single sign on (SSO) and 2‐factor authenti-

cation (2FA, token key and password) system where enterprise wide

access control measures are undertaken by the VA’s central IT office.

Having the HINGE software run on the cloud environment leads to

an increase in the risk of data compromises, as the data become

accessible to an augmented number of subsystems. In the HINGE

software design architecture, we have made the application tools

self‐contained thereby mitigating the risk that comes with

connecting with third party vendor tools. The electronic interfaces

with the EHR and treatment management & planning systems are

also unidirectional with the intention to pull the data utilizing proper

software encryption modules.

Integrity is important to make sure that the health care data cap-

tured by HINGE are accurate and consistent and not modified in any

way. Treatment decisions based on erroneous data can have serious

and adverse consequences on patients' health. HINGE utilizes check-

sum or a hash, before using the data, and if integrity check fails, the

application reports an error in an audit trail and terminates the trans-

action without processing the data.

For the HINGE application to be successful and serve its pur-

pose, the information must be available at all time in spite of service

disruptions due to hardware failure, system upgrades, power

outages, and denial of service attacks. The deployment of the appli-

cation is on two separate AWS availability zones with load balancers

and multiple redundant copies of the MongoDB backend database

to ensure high availability.

5 | DISCUSSION

Collation of comprehensive population‐based clinical information,

radiation treatment planning, delivery, and health outcome informa-

tion is essential for any robust radiation oncology quality surveillance

and outcome assessment program. The HINGE software platform

allows passive real‐time assessment of a radiotherapy quality of care.

F I G . 7 . Screen capture of the health information gateway and exchange (HINGE) dashboard application showing data from 40 VA practices.
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The quality managers can now grade every treatment against estab-

lished rubric of nationwide norms of outcome, toxicity, and treat-

ment delivery. Some additional benefits include reducing the burden

of basic data collection for quality analysis and creating a single‐
point capture of source data, which protects data integrity by elimi-

nating manual transcription of data from multiple sources and pro-

vides better data traceability and provenance, while reducing the

need for data queries, data cleaning, and source data verification—
processes that within themselves hold the potential for errors. Fur-

thermore, data collected in the HINGE can be used to create deci-

sion support models in the clinical systems that enable clinicians to

improve the quality and safety of care rendered to the patients.

With the increasing emphasis on delivery of value‐based health care,

the HINGE system can not only quantify value and quality of care

but also aggregate outcome data using standard templates/data ele-

ments. An alternative approach to collecting data for quality surveil-

lance and outcome research is to leverage NLP for the extraction of

discrete data from unstructured clinical documentation. However,

there are several challenges with this approach. The free‐text clinical
notes have many different taxonomies, vocabularies, terms, or abbre-

viations that are often used by clinicians because there are currently

no standards that are universally adopted in radiation oncology

domain. The lack of standardization of information presented in the

free‐text notes makes traditional NLP solutions difficult to imple-

ment. Syed et al.27 recently reported on an integrated machine

learning/NLP model using the fast text algorithm28 for standardizing

the OAR names in the DICOM RT structure set files with the TG‐
263 specified standard names. The results for prostate and lung

datasets reported high F1 scores on OAR names but low scores on

tumor/target names due to a wide variability of nonstandard names

utilized for targets. In many cases, even when presented a consistent

vocabulary/taxonomy, it is challenging for the NLP algorithm to

decern information because much of the clinical meaning in free‐text
blobs is context based, and it requires specific decision tree logics

with multiple expression values to extract a single data element.

Another key feature of the next release of software will be the

integration of PROs. We plan to deploy an infrastructure with public

patient facing web‐based tools to capture longitudinal PRO data

within HINGE to facilitate earlier interventions, rapid symptom man-

agement, and track patient reported quality of life assessments. A

similar public facing web‐based tool will be deployed to collect radio-

therapy treatment data from community radiation oncology provi-

ders that are currently treating over 60% of veteran cancer patients.

Such a strategy will allow us to aggregate radiotherapy data for over

45 000 veterans treated annually in the community and at 41 VHA

sites. This has the potential for big data outcome research in radia-

tion oncology and high‐quality continuity of care. Finally, the devel-

opment of future versions of HINGE software will be coordinated

with the medical and surgical oncology programs to ensure harmo-

nization of clinical workflow templates among all cancer care special-

ities.

For big data and smart health care techniques to succeed in

medicine, it is imperative that all stakeholders—physicians, physicists,

nurses, clerks, and commercial vendors—work together on how and

what data needs to be collected. The funding agencies such as

National Institute of Health and NCI should direct their resources to

support the work around integrating the clinical practice with

automating and streamlining clinical workflow around structured data

collection methodologies and define clinically meaningful measures

of care rendered to our patients. The process used to create the

HINGE database and model can be replicated for all domains of

medicine where each domain is responsible to define their own

workflow templates, clinical measures, and data analysis tools that

can be used as a feedback to the practice for quality improvement.
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