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Multiple sclerosis (MS) is an autoimmune disease related to the central

nervous system (CNS). This study aims to investigate the e�ects of MS on the

brain’s functional connectivity network using the electroencephalogram (EEG)

resting-state signals and graph theory approach. Resting-state eyes-closed

EEG signals were recorded from 20 patients with relapsing-remitting MS

(RRMS) and 18 healthy cases. In this study, the prime objective is to calculate

the connectivity between EEG channels to assess the di�erences in brain

functional network global features. The results demonstrated lower cortical

activity in the alpha frequency bands and higher activity for the gamma

frequency bands in patients with RRMS compared to the healthy group.

In this study, graph metric calculations revealed a significant di�erence in

the diameter of the functional brain network based on the directed transfer

function (DTF) measure between the two groups, indicating a higher diameter

in RRMS cases for the alpha frequency band. A higher diameter for the

functional brain network in MS cases can result from anatomical damage.

In addition, considerable di�erences between the networks’ global e�ciency

and transitivity based on the imaginary part of the coherence (iCoh) measure

were observed, indicating higher global e�ciency and transitivity in the delta,

theta, and beta frequency bands for RRMS cases, which can be related to the

compensatory functional reaction from the brain. This study indicated that

in RRMS cases, some of the global characteristics of the brain’s functional

network, such as diameter and global e�ciency, change and can be illustrated

even in the resting-state condition when the brain is not under cognitive load.

KEYWORDS

EEG, functional connectivity, graph theory, independent components, multiple

sclerosis

Introduction

Multiple sclerosis (MS) is an autoimmune disease with disseminated cortical and

white-matter lesions and devastating consequences for the patients (Dendrou et al.,

2015). In the nervous system, axonal fibers provide the anatomical basis for signal

transfer and communication between different regions. The damaged myelin causes
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communication problems between different regions of the

CNS. Further processes of remyelination and structural and

functional rearrangement are hallmarks of the disease (Filippi

and Agosta, 2009). Focal demyelination is spread over the

entire brain, primarily involving white matter, with predilection

sites in the periventricular regions. In contrast, gray matter

lesions are increasingly considered significant trademarks of the

disease and play an essential role in the long-term functional

outcome (Seewann et al., 2011; Droby et al., 2015, 2016). Due

to the damaged axonal fibers and communication problems

between various regions, patients with MS face severe daily

life challenges. Generally, patients with MS show sensory

impairments including pain and unpleasant sensations; an

imbalance that can arise from cerebellar dysfunction, cognitive

impairments, and slowed information processing; depression

that may relate to injury of frontotemporal networks; fatigue,

bladder, and bowel dysfunction; heat sensitivity; headache; and

pseudo relapse. Furthermore, brain stem syndromes such as

double vision and facial weakness are common in these patients.

Relapsing-remitting MS (RRMS) is the most common form

of MS in which relapses are discrete periods of neurologic

dysfunction that commonly evolve over hours to days and then

persist for days to weeks before remitting. In between relapses,

patients are generally stable but still often experience fatigue

and heat sensitivity (Gelfand, 2014). Previous studies have used

multimodal evoked potentials as a robust monitoring tool to

compare the ability of different evoked responses to investigate

and predict the disease course (Schlaeger et al., 2016).

In addition to task-directed studies, another approach to

investigate brain activity is to gather data during the resting state

when the subjects’ nervous system is not responding to a specific

stimulation (Biswal et al., 1995). In previous years, some studies

have focused on monitoring brain activity in patients with MS

during the resting state to investigate the abnormalities using

fMRI to reach a deeper understanding of the impacts of MS on

the brain’s function (Liu et al., 2011; Tahedl et al., 2018; Saccà

et al., 2019). However, although neuroimaging methods such as

MRI and fMRI have a high spatial resolution due to their data

acquisition method, they are usually expensive for continuous

recordings. Continuous recordings help researchers to monitor

disease progression or examine the effects of different treatments

on patients for an extended period. Furthermore, using fMRI

in studying the brain’s function can be time-consuming, which

can cause various problems for patients with MS due to their

physical condition, making the data acquisition process arduous.

Moreover, another problem with fMRI-based methods is that

they have a low temporal resolution that can lead to information

loss, which is not ideal for monitoring the activity of a dynamic

system like the brain.

Electroencephalography can be a decent method to monitor

brain function as its recording cost is less than other

neuroimaging methods. In previous years, researchers have

investigated EEG resting-state to monitor the brain’s cortical

activity and compare the brain activity differences between

healthy people and MS phenotypes in different frequency

bands (Babiloni et al., 2016). The results of these studies show

differences in the activity of various frequency bands between

MS phenotypes and healthy cases in various cortical regions.

Mapping the active functional properties of brain networks

is a crucial goal of basic and clinical neuroscience and medicine.

Brain network theory has been repeatedly used to understand

brain functions. This theory explains that the brain’s complex

functions result from the communication between different

brain regions (Lang et al., 2012; Sporns, 2016). One of the

powerful tools for quantifying and analyzing the characteristics

of connectivity networks is graph theory. Graph theory has

become one of the most useful methods for modeling brain

networks as interconnected systems in recent years (Bassett and

Sporns, 2017). The graph theory approach has been proven

worthy in various brain network research for subjects with both

normal and pathological conditions such as major depressive

disorder and Alzheimer’s disease (Brier et al., 2014; Hasanzadeh

et al., 2020). Network science contributes powerful access to

primary organizational principles of the human brain, and it has

been applied with graph theory to distinguish brain structural

and functional connectivity patterns in MS (Fleischer et al.,

2019). Previous studies have used the graph theory approach to

investigate structural connectivity inMS and introduce methods

to classify patients with MS in several clinical profiles (Kocevar

et al., 2016). fMRI and MEG-based neuroimaging studies

have used the graph theory approach for studying functional

connectivity in MS to assess impaired functional integration

and characterize topological patterns of connectivity changes

(Schoonheim et al., 2013; Dogonowski et al., 2014; Rocca et al.,

2016).

According to previous EEG studies that investigated brain

activity during resting state in MS cases, we hypothesize

that EEG resting-state can show significant differences in

brain functional network characteristics between MS and

healthy cases. To validate this hypothesis, we constructed the

brain network by calculating connectivity measures between

EEG channels after preprocessing. In this study, EEG-based

networks have been constructed to compare the brain network

between RRMS and healthy cases. The directed transfer

function (DTF) and imaginary part of coherence (iCoh) were

chosen to investigate the information flow and their activity

synchronization. The rest of this study has been organized

into four sections: first, in the “Participants and method”

section, we describe the subjects who participated in this

research, then the EEG data recording and preprocessing

procedure are explained. Next, we describe the method used

for constructing brain networks, and then graph theory features

extracted from the networks arementioned. Next, in the “Result”

section, alterations in the networks of patients with MS are

represented, and the two groups’ network characteristics are

compared. Then, the obtained results are discussed in the

“Discussion” section. Finally, this study is concluded in the

“Conclusion” section.
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Participants and method

Participants

For this study, 20 patients withMS and 18 healthy cases were

selected. All patients were diagnosed with relapsing-remitting

MS and had a similar level of disability. RRMS is the most

common initial form of MS. It is described as MS, in which

patients have relapses of the disease and periods of stability in

between relapses. A neurologist assessed all patients using the

expanded disability status scale (EDSS) (Kurtzke, 1983), which

ranges from 0 to 10 in 0.5-point increments and measures the

overall disability level. The EDSS ranged from 3 to 4 for all

patients (12 with EDSS = 3, 6 with EDSS = 3.5, and 2 with

EDSS = 4). The cases showed mild to moderate impairment in

the form of muscle weakness, numbness, and a problem with

balance, with more severity for cases with higher EDSS. Of 20

patients, 2 cases were reported to have occasional remembering

problems, and 3 were reported with occasional sight problems.

TABLE 1 The gender and the average age of participants.

Group Gender Average age

20 RRMS patients 13 females+ 7 males 34.25± 10.2 years

18 Normal subjects 11 females+ 7 males 34.5± 9.4 years

All the patients were in the remitting period of their disease

during data collection. The Wilcoxon rank-sum test compared

the gender and age of the participants in the two groups, and

the two groups were closely matched. All participants provided

written informed consent, and the Iran Medical University

ethics committee approved the study, and we made sure that the

participation process was comfortable for them. The approval

number for the study is “IR.IUMS.REC.1395.9406414.” Tables 1,

2 show the information of participants. The data that support

the results of this research was recorded at the National Brain

Mapping Laboratory (NBML).

EEG recordings

The resting-state EEG data were recorded from healthy and

RRMS subjects in a specialized clinical environment for 6min

using a 32-channel cap with a frequency rate of 512Hz during

eyes-closed with g.HIamp device from g.tec, which has the

FDA and CE approval. Electrodes were positioned according

to the international 10–20 system. The reference is the average

signal recorded from the two electrodes placed on the mastoid

bone on both sides of the skull. Table 3 and Figure 1 show

the EEG recording setting and the location of channels. Before

starting the data acquisition, the operator checked all channels

for the best possible impedance and controlled the recording

process. Although the data collection time was short, we checked

TABLE 2 The information related to the condition of RRMS cases.

Case number Gender EDSS Impairments (In order of severity)

Case-1 Female 3 Muscle weakness+ numbness

Case-2 Female 3 Numbness+muscle weakness+ having problem remembering

Case-3 Male 3 Muscle weakness+ occasional sight problem

Case-4 Male 3 Muscle weakness+ numbness

Case-5 Female 3 Muscle weakness+ problem with balance

Case-6 Female 3 Muscle weakness+ numbness+occasional sight problem

Case-7 Female 3 Muscle weakness+ problem with balance

Case-8 Female 3 Muscle weakness+ problem with balance

Case-9 Male 3 Numbness+ problem with balance

Case-10 Female 3 Muscle weakness+ problem with balance

Case-11 Female 3 Muscle weakness+ problem with balance+ numbness

Case-12 Female 3 Muscle weakness+ numbness+mild problem with balance

Case-13 Male 3.5 Moderate muscle weakness+ problem with balance+mild numbness

Case-14 Female 3.5 Moderate muscle weakness+ problem with balance

Case-15 Male 3.5 Moderate numbness+muscle weakness+ occasional sight problem

Case-16 Female 3.5 Moderate problem with balance+muscle weakness

Case-17 Male 3.5 Moderate problem with balance+muscle weakness+ having problem remembering

Case-18 Male 3.5 Moderate muscle weakness+ problem with balance

Case-19 Female 4 Moderate muscle weakness and numbness+ problem with balance (able to walk by herself, self-sufficient in daily tasks)

Case-20 Female 4 Moderate muscle weakness and numbness+ problem with balance (able to walk by herself, self-sufficient in daily tasks)
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the signals online and ensured that subjects did not show

behavioral drowsiness during the data acquisition. During the

data collection process, all subjects were in stable condition.

Preprocessing

The EEG preprocessing was done using the EEGLAB

toolbox (Delorme and Makeig, 2004). Frequencies lower than

0.5Hz were removed using a high-pass FIR filter with an order

of 826. Furthermore, the line noise was removed using the

CleanLine toolbox (Mullen, 2012). In the next step, independent

component analysis (ICA) (Comon, 1994) was performed to

TABLE 3 EEG recording settings.

Sampling

rate

Input

impedance

Electrode-

Skin

impedance

Number of

channels

512Hz >100 M� <30 K� 32

investigate components individually and remove those related

to artifacts. Here, the original number of extracted independent

components (ICs) equals the number of channels. To specify

artifact-infected independent components, both the Multiple

Artifact Rejection Algorithm (MARA) by the EEGLAB plugin

(Winkler et al., 2011) and ICLABLE by EEGLAB plugin (Pion-

Tonachini et al., 2019) were applied. The core of MARA is a

supervised machine learning algorithm that learns from expert

ratings of 1,290 components by extracting six features from the

spatial, spectral, and temporal domains. In addition, features

were optimized to solve the binary classification problem. By

considering MARA and ICLABLE results simultaneously, the

power spectrum of the extracted components was visually

inspected, and then the non-brain ICs were discarded from the

data (Figure 2). The DIPFIT toolbox (version 3.3) (Oostenvelt

et al., 2003) and boundary element method (BEM) in the head

model were used for source localization and demonstration of

dipoles. DIPFIT can perform source localization by fitting an

equivalent current dipole model using a non-linear optimization

technique (Scherg, 1990) using a 4-shell spherical model

(Kavanagk et al., 1978) or by using a standardized boundary

element head model (Oostendorp and Van Oosterom, 1989). In

FIGURE 1

Channel locations for 32 electrodes.
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FIGURE 2

The results of the ICLABLE toolbox for two components in a subject. (A) An example of the topoplot and power spectrum of a component

related to the activity of the brain and therefore was included in the calculation process. (B) An example of the topoplot and power spectrum of

a component that is mainly related to muscle activity (according to 1-power-spectrum activity, 2-topoplot, and 3-location of this IC in the head

model) and therefore was excluded from the data.

this study, we wanted to investigate if RRMS disease affects the

number and location of brain-related extracted ICs from EEG

signals. After removing the ICs that were not brain-related, EEG

signals from 32 channels were used after back projection for

connectivity measurements.

Connectivity measurements for network
construction

In this study, the connectivity measures monitored the

functional connectivity of the EEG signals. Here, the flow

of information between EEG signals alongside their activity

synchronization is investigated using weighted connectivity

matrices. First, normalized DTF was calculated. The DTF can

be defined as the total flow of information from component

j to component i normalized by the total amount of inflow

to component i and can represent the signal transfer in the

network. In other words, DTF describes the causal influence of

channel j on channel i at frequency f. The DTF method is based

on the adaptive multivariate auto-regressive (AMVAR) model

fitted to the EEG signal. DTF was designed to determine the

interrelations between two signals in relation to all other signals

in the analyzed system. One advantage of the DTF measure is

that it is less likely to show spurious connections (Kamiński

et al., 2001). It is defined using the elements Hij of the transfer

matrix of the MVAR model (Kaminski and Blinowska, 1991).

The H(f ) matrix is called a transfer matrix of the system, where

f denotes frequency.

γij
(
f
)
=

Hij(f )√∑M
k=1

∣∣Hij(f )
∣∣2

(1)

The above equation shows the ratio between the inflow from

component j to i to all the inflows to component i. DTF shows
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direct and cascade flows and has been proven as one of the

valuable connectivity estimators in EEG-based studies (Astolfi

et al., 2007).

The coherence is the frequency domain equivalent to the

time domain cross-correlation function. Coherence between two

signals measures the linear relationship between the two at a

specific frequency. Coherence, Cij
(
f
)
, quantifies the degree of

functional association between two regions in the brain and is

defined as below:

Cij
(
f
)
=

Sij(f )√
Sii(f )Sjj(f )

(2)

Here, theXi(f ) and xj(f ) is the Fourier transforms of the time

series xi(t) and xj(t) of channels i and j, then the cross-spectrum

is defined as follows:

Sij
(
f
)
=< Xi

(
f
)
X

∗

j (f ) > (3)

The imaginary part of the coherence (iCoh) was measured to

investigate the synchronization between the EEG channels. The

imaginary part of coherence provides an excellent candidate for

studying brain interactions (Sander et al., 2010; Pascual-Marqui

et al., 2014; Sun et al., 2019). Although the usual magnitude and

phase of coherency contain the same information as the real

and imaginary parts, the cartesian representation is sometimes

superior for studying brain interactions (Nolte et al., 2004). The

iCoh can determine lag–lead relationships while invariant to

linear instantaneous volume conduction.

iCoh(f )ij = Im(Cij(f )) (4)

The mentioned connectivity measures were calculated

between the EEG channels and averaged for the frequency

range of 0.5–45Hz during the recorded time. In addition, the

connectivity measures were calculated for individual frequency

bands. The output of SIFT for each connectivity matrix is a

32∗32/(frequency–range)/time matrix.

EEG data analysis

A specific network was constructed for each subject in

which the vertices of the networks were the EEG channels,

and the edges were different connectivity measures, which we

calculated between each pair of signals. The source information

flow toolbox (SIFT) by EEGLAB (Mullen, 2010) was used for

calculating the connectivity measurements.

Model order selection and validation

Akaike information criterion (AIC) was used for selecting

the AMVAR model order (Akaike, 1974). Selecting the best

possible model order helps to fit the data to the MVAR model

while ensuring that the model presents valuable information, the

noise is not mixed in the model and is stable. AIC chooses a

model order that minimizes information criteria evaluated over

a range of model orders. In the equation for this information

criterion (equation number 5), the first term characterized the

model’s entropy rate, and the second term described the number

of freely estimated parameters in the model. Here, ln
∣∣∣
∑̃

(p)
∣∣∣

is the logarithm of the determinant of the estimated noise

covariance matrix for the VAR model with the order of P. M is

the number of components, and T̂ = TN is the total number

of samples. To check whether the VAR model was correctly

fitted to the EEG data, three tests were implemented. First, we

checked the stability and stationarity of the model. Second, we

checked the model’s residuals for serial and cross-correlation

and eventually checked the model’s consistency for each case.

Finally, after fitting the estimated model order to the data, the

model was validated by SIFT to ensure that it is useful for the

available data.

AIC
(
p
)
= ln

∣∣∣∣∣
∑̃

(p)

∣∣∣∣∣ +
2

T̂
PM2 (5)

Graph metrics

After calculating the mentioned connectivity measures, the

minimum connected component (MCC) method was used

to binarize connectivity matrixes (Vijayalakshmi et al., 2015).

Implementing MCC can help select the more significant

connections according to the nature of the network. Using

MCC is more logical than manually choosing a threshold

for each network without knowing what value is necessarily

suitable. The MCC method has been used to investigate

the cognitive load in the functional brain network and,

therefore, can be helpful in this study according to the subjects

(Vijayalakshmi et al., 2015). After network construction, graph

theory metrics were compared to assess the characteristics

of networks. The networks’ diameter, global efficiency, and

transitivity were calculated to investigate brain global network

features. The network diameter can demonstrate the linkage of

the network. At the same time, global efficiency and transitivity

are useful features for showing the ease of information

transactions between nodes. Table 4 contains a description

of the investigated graph metrics in this study. The brain

connectivity toolbox was used to calculate the network metrics

(Rubinov and Sporns, 2010).

Results

After calculating the connectivity and construction of the

brain network for each subject, we used the Shapiro-Wilk test

to evaluate the normality of the distribution of results and

the Wilcoxon rank-sum test to distinguish different features

between the healthy and RRMS groups.
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TABLE 4 Description of graph metrics.

Metric Description Equation

Transitivity Transitivity is the ratio of triangles to triplets in the

network

T =
3×number of triangles in the network

number of connected triples of nodes in the network

Global efficiency Global efficiency is the average shortest path length in the

network

Eglobal =
1

N(N−1)

∑
i6=j

1
dij

dij : the shortest path length between node i and j

Diameter Diameter of a graph is the maximum eccentricity of any

vertex in the graph. It is the greatest distance between any

pair of vertices

D = maxi,j{di,j}

dij : the shortest path length between node i and j

FIGURE 3

The topoplot of the average activity of ICA components for the entire frequency range (0.5–45Hz) after preprocessing and excluding non-brain

ICs, healthy group (A) and RRMS group (B). Here, no significant di�erences were investigated between the two groups.

Extracted dipoles and average power
spectrum

The average number of ICs for the healthy group was 16.66,

with a standard deviation of 3.97, while the average number of

ICs for the RRMS group was 15.6, with a standard deviation

of 3.574. According to the statistical analysis, no significant

difference was observed between the number of brain-related

ICs for the two groups. As Figure 3 demonstrates, nomeaningful

difference between the average activity of ICs for the entire

frequency range was revealed between the two groups. The

notable difference between the two groups is that the alpha

peak’s average power is higher in healthy cases than in patients

with MS, with a p-value of 0.0411. In comparison, the average

power of the gamma band is lower in healthy subjects, with a

p-value of 0.0503. There were no other noteworthy differences

in other spectral features for the alpha and gamma frequency

bands. Furthermore, no meaningful differences were observed

in other frequency bands between the RRMS and healthy

groups. Figure 4 shows the average and individual subjects’

power spectrum activity in sensor space for the two groups after

excluding the components related to the artifacts.

Connectivity graph metrics

To compare the linkage of the networks, the diameter of

the networks is investigated. There is a significant difference

between the two groups’ network diameter for the DTF measure

for the average of the frequency range. According to the

Wilcoxon rank-sum test results, the network diameter for DTF is

higher in RRMS cases in the alpha frequency band. The p-value

for the DTF measure was 0.037. The diameter is also increased

for the DTF connectivity measure for the average of the entire

frequency range. The p-values for individual frequency bands

are presented in Table 5.
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FIGURE 4

The average power spectrum plot after removing the artifacts for the healthy group (A) and the RRMS group (B) in black color using EEGLAB.

The power spectrum plots for individual subjects are demonstrated in blue color. The peak in the alpha frequency band is higher in healthy

subjects (red arrow), and the average gamma power is higher in patients with RRMS (green arrow). In this figure, the x-axis indicates the

frequency, and the y-axis indicates the average power (Log Power 10* log10(µv
2)).

TABLE 5 The p-value results of the Wilcoxon rank-sum test after

comparing the graph features of calculated brain networks.

Connectivity

measure

P-Value for

diameter

P-Value for

global-efficiency

P-Value for

transitivity

(A) Total

DTF 0.037 0.621 0.835

iCoh 0.462 0.044 0.027

(B) Delta band

DTF 0.722 0.658 0.881

iCoh 0.645 0.0422 0.0316

(C) Theta band

DTF 0.447 0.534 0.959

iCoh 0.962 0.0522 0.0337

(D) Alpha band

DTF 0.0336 0.794 0.917

iCoh 0.724 0.0315 0.0535

(E) Beta band

DTF 0.149 0.361 0.373

iCoh 0.552 0.0492 0.0518

(F) Gamma band

DTF 0.644 0.972 0.984

iCoh 0.551 0.448 0.691

(A)The results for the entire frequency band. (B)The results for the delta frequency band.

(C)The results for the theta frequency band. (D)The results for the alpha frequency band.

(E)The results for the beta frequency band. (F)The results for the gamma frequency band

(The significant p-values are shown in bold).

Furthermore, both transitivity and global efficiency were

calculated to investigate the brain network’s ability to exchange

data and the efficiency of signal transformation. There are

significant differences between the two groups for the iCoh

measure. According to the Wilcoxon rank-sum test results, both

transitivity and global efficiency for iCoh are generally higher in

patients with RRMS compared to healthy subjects. The p-value

for the average of the entire frequency range global efficiency

was 0.044, and for transitivity was 0.027. Moreover, transitivity

and global efficiency were higher for the iCoh measure in the

delta, theta, and beta frequency bands. Figure 5 demonstrates the

values of graph metrics calculated for the connectivity measures

used in this study. Here, we can see a clear separation in the

distribution of global efficiency and transitivity based on the

iCoh measure and the diameter based on the DTF measure for

the frequency range of 0.5–45Hz between the groups.

Discussion

This study demonstrated a lower amplitude in the alpha

peak and a higher amplitude in the gamma band for patients

with RRMS than healthy subjects. In the previous studies,

irregularities in individual frequency bands’ activity, such as

alpha, beta, and gamma, have been demonstrated. These studies

have shown a lower amplitude for the alpha frequency band

(Babiloni et al., 2016). The resting-state eyes-closed EEG

rhythms exhibit a condition of relative relaxation and inhibition
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FIGURE 5

The figure illustrates the comparison of the spread plot of the graph features for the complete frequency range between the groups. (A) Global

e�ciency from iCoh. (B) Transitivity from iCoh. (C) Diameter from iCoh. (D) Global e�ciency from DTF. (E) Transitivity from DTF. (F) Diameter

from DTF.
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of brain mechanisms subserving the interaction with the

external world. A complex pattern of parallel neural networks

generates these rhythms in which the integrative activity of

the neurons is characterized by a synchronous oscillatory

mode across neural assemblies (Nunez, 1989; Başar, 2012).

A pathological decrease in the resting-state alpha frequency

band in patients with MS probably indicates a pathological

desynchronization of diffuse neural networks regulating the

fluctuation of cortical arousal and tonic alertness. When a

person is involved in a situation that captures his awareness or

implies various actions, alpha and low-frequency beta rhythms

reduce amplitude, which shows a desynchronization. Here, these

slower oscillations are replaced by fast oscillations at high-

frequency beta and gamma (Pfurtscheller and Da Silva, 1999).

Network diameter is the shortest distance between the two

most remote nodes in the network. A higher diameter implies

a less-linked network. According to the DTF connectivity

calculations, which designate the level of signal transformation

and association between different channels, the linkage in RRMS

subjects is lower than in the healthy group. These results are

possibly the effect of axonal demyelination and the existence

of lesions in the neural network, specifically in cortical and

subcortical regions, which not only can manipulate the rate

of signal transfer but also, in more severe conditions, can

lead to the complete loss of communication between different

regions. According to previous studies, a predominant pattern of

decreased global connectivity due to acute neuroinflammation

(Kocevar et al., 2016) or increased lesion load can be associated

with the disease course (He et al., 2009). Several fMRI studies

have shown reduced coherence in resting-state networks in MS

cases (Rocca et al., 2012; Sbardella et al., 2015). Furthermore,

previous studies have shown a correlation between the cortical

and subcortical damage that causes cognitive impairments inMS

disease with the decrease in the coherence connectivity in the

alpha frequency band. In previous EEG-based studies, additional

information from MRI has shown a correlation between the

lesion load and the abnormal characteristics of functional brain

networks related to the cognitive impairments in MS (Leocani

et al., 1998, 2000).

In addition to the network linkage based on DTF, the results

of this study showed significant differences in the level of global

network synchronization between the two groups. According

to the iCoh connectivity measure, the level of transitivity and

global efficiency is generally higher in RRMS cases compared to

normal subjects for the iCoh measure for the average frequency

range and delta, theta, and beta frequency bands. An increase in

transitivity represents a cost-efficient organization principle of

the brain with increased local cliquishness (Newman and Park,

2003). Furthermore, the increase in global efficiency indicates

that information transfer across the whole brain is more

efficient (Latora and Marchiori, 2001). Therefore, the higher

transitivity and global efficiency for iCoh indicate a higher global

synchronization of the brain network in MS cases. Previous

research on functional connectivity changes using MEG resting-

state data indicated an increase in synchronization in the theta,

lower alpha, and beta bands (Schoonheim et al., 2013).

The increased synchronization in the mentioned frequency

bands and differences between DTF and iCoh measures needs

further study to show what exactly it means. However, the global

synchronization increase, especially in the alpha frequency

band, can represent the compensation reaction of the brain in

MS cases. Although in the previous studies, there have been

discrepancies between the results of fMRI and MEG studies that

can be explained by the fundamental differences between fMRI

and MEG since fMRI cannot detect high-frequency oscillations.

Previous fMRI studies have shown that functionally linked brain

regions compensate for the structural damage caused by MS

(Droby et al., 2016). fMRI studies have shown that when MS

causes damage in a specific area, new areas are sometimes

recruited to perform the tasks previously performed by the

damaged area. These studies have elucidated the role of cortical

reorganization in suggestive MS cases (Rocca et al., 2003; Rocca

and Filippi, 2007). Furthermore, another study has shown the

compensatory cortical activation during the earliest stage of MS

(Audoin et al., 2003). Compensation reaction and compensation

failure have been studied in MS disease for cognitive tasks

during task-directed studies (cognitive compensation failure

in MS). The compensation reactions of the brain have been

observed in other studies, and it is not limited to MS cases

(Klöppel et al., 2009; Dixon et al., 2013). A recent fMRI study

showed continuous functional reorganization between specific

brain regions such as fronto-cerebellar connections, which were

closely related to clinical performance, indicated by increasing

effective connectivity over time in MS cases, which was not

noticeable in healthy cases (Fleischer et al., 2020). These results

can show the role of functional reorganization in compensating

for the damage and abnormalities in these cases. Moreover,

results from a recent study showed a correlation between cortical

plasticity and cognitive impairment in which the plasticity is

reduced in cases with cognitive impairment compared to the

cases with preserved cognitive function, and second, generally,

the RRMS group did not show reduced cortical plasticity

compared to the control group (Balloff et al., 2022). Although

this study used a specific approach to investigate cortical

reorganization and does not illustrate the difference between

RRMS patients with normal cases, it shows that in RRMS cases

without cognitive impairment, brain cortical reorganization

compensates for structural damage. Considering the condition

of RRMS cases in this research, the results of our study suggest

that we can detect brain cortical reorganization even during the

resting state while there is no specific cognitive task using surface

EEG. One possible way to further investigate resting-state EEG

capability for monitoring cortical reorganization and its relation

to cognitive functioning is to perform a comprehensive cognitive
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test while recording EEG in addition to the resting-state EEG.

In addition to the increase in global efficiency and transitivity

for the iCoh in the alpha frequency band, the global increase

in synchronization for the average of the entire frequency

range might be related to damaged inhibitory neurons in

MS disease (Schoonheim et al., 2013), which can lead to a

higher possibility of firing rate in the network. However, it is

important to remember that excitatory neurons can be damaged

as well as inhibitory neurons, and further investigations are

needed to explain the global increase in synchronization in

RRMS subjects.

Conclusion

The application of EEG-based connectivity techniques in

patients with MS has undoubtedly helped to improve our

understanding of the mechanisms responsible for clinical

disability and cognitive impairment in this condition. In this

study, we used EEG resting-state signals and calculated the

connectivity between EEG channels to investigate the functional

brain network’s global characteristics in patients with RRMS.

This study’s results demonstrated significant changes in brain

functional network characteristics in patients with RRMS that

are possibly related to damaged cortico-cortical and cortico-

subcortical connections that lead to cognitive impairments

in patients with MS. To have a better understanding of the

relationship between the number of lesions and their location

in the brain to the compensation reaction of the brain’s

functional network related to cognitive impairments, further

studies are necessitated.

Limitations of the study

Regarding the limitations of this study, there is room for

improvement in the data we recorded. First, the number of

channels can be higher, which helps to have better spatial

resolution and source separation. However, it needs to be

mentioned that a higher number of channels increases the

preparation time, making the patients uncomfortable. The

second point which can be improved is that we recorded data

from only the relapsing-remitting subgroup and each patient

in a single session. By increasing the diversity of the patients

and including other subgroups as well, and recording data

from the same subjects several times, not only we can compare

various stages of the disease better, but also, we can assess the

effectiveness of the treatment methods with higher confidence in

the future. However, it must be mentioned that other subgroups

have a delicate situation due to the major development and

progression of their disease, so gathering data from these groups

is much more complicated and needs full permission from

clinical doctors and the ethics committee. Finally, it is expected

that, like any other research work, in terms of the method and

pipeline we used, there is always room for improvement, which

is something we look forward to in future projects related to

this topic.
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