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Abstract

There is a considerable impetus in population genomics to pinpoint loci involved in local adaptation. A powerful
approach to find genomic regions subject to local adaptation is to genotype numerous molecular markers and look
for outlier loci. One of the most common approaches for selection scans is based on statistics that measure population
differentiation such as FST. However, there are important caveats with approaches related to FST because they require
grouping individuals into populations and they additionally assume a particular model of population structure. Here, we
implement a more flexible individual-based approach based on Bayesian factor models. Factor models capture popula-
tion structure with latent variables called factors, which can describe clustering of individuals into populations or
isolation-by-distance patterns. Using hierarchical Bayesian modeling, we both infer population structure and identify
outlier loci that are candidates for local adaptation. In order to identify outlier loci, the hierarchical factor model searches
for loci that are atypically related to population structure as measured by the latent factors. In a model of population
divergence, we show that it can achieve a 2-fold or more reduction of false discovery rate compared with the software
BayeScan or with an FST approach. We show that our software can handle large data sets by analyzing the single
nucleotide polymorphisms of the Human Genome Diversity Project. The Bayesian factor model is implemented in the
open-source PCAdapt software.
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Introduction
With the development of sequencing and genotyping tech-
nologies, there is a considerable impetus in population geno-
mics to pinpoint loci involved in local adaptation (Akey et al.
2002; Bonin et al. 2006). A working hypothesis of population
genomics is that most loci have neutral patterns of variation
that are similarly affected by demographic processes, whereas
loci targeted by natural selection have atypical patterns
(Luikart et al. 2003). Although this working hypothesis is
fiercely debated (Sella et al. 2009), it has led to a protocol
for finding genomic regions subject to local adaptation which
consists of genotyping numerous molecular markers and
looking for outlier loci. Different regions of the genome are
expected to exhibit highly variable levels of genetic differen-
tiation between populations ranging from genomic regions
exhibiting little differentiation to regions where genetic diver-
gence is extremely pronounced. Although high levels of dif-
ferentiation can be explained by various causes, adaptation of
individuals to their local environment is a prominent expla-
nation such that patterns of differentiation for adaptive loci
exceed neutral expectations (Nosil and Buerkle 2010).
Measures of genetic differentiation between populations
such as FST have been commonly used to find outlier loci,
although there are many alternative approaches (Oleksyk
et al. 2010). A proof of concept for approaches based on
genetic differentiation was provided when studying human
adaptation to altitude; the most differentiated variants

between a Tibetan population living in a hypoxic environ-
ment and a lowland Han Chinese population were found in
hypoxia-inducible transcription factors (Yi et al. 2010; Xu et al.
2011).

Genome scans based on FST were proposed by Lewontin
and Krakauer (1973) and have been considerably expanded
since (Beaumont and Nichols 1996; Vitalis et al. 2001;
Beaumont and Balding 2004; Foll and Gaggiotti 2008;
Riebler et al. 2008; Guo et al. 2009; Bazin et al. 2010;
Bonhomme et al. 2010; Gompert and Buerkle 2011; Fariello
et al. 2013). They are not limited to two populations as in the
adaptation-to-altitude example and can be used with multi-
ple populations. One possibility is to compute an overall FST

measure of genetic differentiation and to determine a thresh-
old at which the null hypothesis of neutral evolution can be
rejected (Beaumont and Nichols 1996). Another possibility is
to adopt a model-based perspective by implementing the
multinomial-Dirichlet model or F model, which is parameter-
ized by population-specific F statistics (Beaumont and Balding
2004). The F statistics can be interpreted as measures of di-
vergence from a common immigrant gene pool (Wright
1931) or as a divergence from an initial and hypothetical
ancestral population (Nicholson et al. 2002). The Bayesian
approach for distinguishing between neutral or adaptive evo-
lution offers the opportunity to assign a probability to each of
the two evolutionary models at each locus (Foll and Gaggiotti
2008; Riebler et al. 2008). In the following, approaches based
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on FST or on population-specific F statistics are referred as
genome scans based on F statistics. There are many software-
implementing genome scans based on F statistics (e.g.,
BayeScan, DetSel, fdist2, and Lositan), and they contribute to
the popularity of this approach in population genomics
(Beaumont and Nichols 1996; Vitalis et al. 2003; Antao et al.
2008; Foll and Gaggiotti 2008).

However, a major issue with genome scans based on F
statistics is that they can generate a high rate of false positives
for both biological and statistical reasons (Bierne et al. 2013).
Here, we propose to address the statistical and computational
problems that arise with F statistics. The first problem arises
because F statistics have been derived under Wright’s F model
of population subdivision, which assumes a particular covari-
ance structure for gene frequencies among populations
(Bierne et al. 2013; Fourcade et al. 2013). When spatial struc-
ture departs from Wright’s island model of population sub-
division, genome scans based on F statistics produce many
false positives (Bierne et al. 2013). Alternative statistical mea-
sures that account for population structure have recently
been proposed (Bonhomme et al. 2010; Günther and Coop
2013). A second potential problem concerns the computa-
tional burden of some Bayesian approaches, which can
become an obstacle with a large number of single nucleotide
polymorphisms (SNPs) (Lange et al. 2014). The last intrinsic
problem of genome scans based on F statistics is that indi-
viduals should be grouped into populations. However, it has
been advocated in landscape genetics to rather work at the
scale of individuals because it avoids potential bias in identi-
fying populations in advance and it offers the opportunity to
conduct studies at a finer scale (Manel and Holderegger
2013).

To tackle the aforementioned problems, we propose a
statistical method based on a Bayesian factor model (West
2003) to pick outlier loci involved in local adaptation. With
factor models, we seek to jointly determine population struc-
ture and outlier loci. Factor models are strongly related to
principal component analysis (PCA) because they both ap-
proximate the matrix of individual genotypes by a product of
two lower-rank matrices, albeit using different constraints
and priors for the lower-rank matrices (Engelhardt and
Stephens 2010). One of the two matrices encodes population
structure using latent factors, whereas the second matrix
measures to what extent each individual SNP is related to
the pattern of population structure. The proposed factor
model seeks for loci that are atypically related to population
structure. To show the potential of factor models for genome
scans, we consider two examples. First, we consider a model of
population divergence. In this example, we compare false
discovery rates (FDRs) obtained from the proposed factor
model with BayeScan and with a genome scan based on
FST. The second example is a model of isolation-by-distance
with selection. It is an instance of how factor models can be
used to detect local adaptation when it would be arbitrary to
group individuals into populations. Finally, we analyze the
HGDP human data set (Li et al. 2008) to provide an example
of how factor models can be used to detect local adaptation
with a large number of SNPs.

New Approaches
We denote the n� p matrix of centered allele counts by Y,
where n is the number of individuals and p is the number of
loci. The elements Yi‘, i ¼ 1,: : :,n, ‘ ¼ 1,: : :,p correspond
to the centered allele counts of the ith individual at locus ‘.
Before centering, the allele counts belong to {0, 1} or {0, 1, 2}
for haploid and diploid species, respectively. After centering,
each column of the matrix Y has a mean of 0.

Factor models assume that the matrix of column-centered
genotypes Y can be written as a product of two lower-rank
matrices

Y ¼ UV + �; ð1Þ

where U and V are of dimension (n� K) and (K� p), respec-
tively, K is an hyper parameter that is much smaller than n
and p, and � is the matrix of residuals. In the following, the
column vectors of U referred to as “factors” or “latent factors”
are denoted by U1, . . . , UK . Factor models assume that the
vector—of size n—of centered allele counts Y‘ can be ob-
tained as follows:

Y‘ ¼
XK

k¼1

UkVk‘ + �‘, ‘ ¼ 1, : : :, p, ð2Þ

where �‘ is a vector containing n independent Gaussian re-
siduals of variance s2 and Vk‘ are the elements of the matrix
V. Assuming that the K factors are known, then the elements
Vk‘ of the matrix V are the regression coefficients—some-
times called factor loadings—obtained after regressing the
vector of centered allele counts Y‘ by the K factors
U1, . . . ,UK. As candidates for local adaptation, we consider
the loci ‘ that have large (in absolute value) regression coef-
ficients Vk‘ for one of the factors U1, . . . ,UK. In factor models,
the K factors U1, . . . ,UK are in fact unknown and have to be
estimated; they are parameters of the model and represent
population structure (Engelhardt and Stephens 2010). In our
proposed framework, outlier loci are loci that are excessively
related to population structure, the latter being measured by
the K latent factors. After statistical inference, the factors
U1, . . . ,UK are ordered by decreasing variances
�2

1 > . . . > �2
K , where �2

k measures the variance of the re-
gression coefficients Vk‘, ‘ ¼ 1 : : :p, for the kth factor.

To provide a concrete example of how factors represent
population structure, we consider a model of population di-
vergence. We assume that an initial population splits into two
populations A and B that diverged according to neutral evo-
lution. The initial neutral divergence of duration T is followed
by two concomitant splits where each daughter population A
and B splits into two subpopulations (A1, A2) and (B1, B2). In
contrast to the initial divergence which is purely neutral, the
second phase of divergence between populations assumes
some local adaptation with a small proportion of SNPs con-
ferring selective advantage (fig. 1). We fit the factor models
with K = 3 and we display the three factors in figure 1. The
first factor discriminates individuals according to the initial
split and the second and third factors discriminate individuals
according to the subsequent splits which separate
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subpopulation B1 from B2 (second factor) and subpopulation
A1 from A2 (third factor).

We now specify how we measure the degree of outlying-
ness for each locus using a Bayesian criterion. To account for
outlier and non-outlier loci, we assume that, at a given locus ‘,
the vector of regression coefficients V‘ ¼ ðV1‘,: : :,VK‘Þ

comes from a mixture of two different distributions. We in-
troduce a vector z of indicator variables (z1, . . . , zp) whose
elements are equal to 0 for non-outlier loci and take values
1, . . . , K for outlier loci. For any locus ‘, either outlier or
nonoutlier, we assume that the vector V‘ ¼ ðV1‘,: : :,VK‘Þ

is composed of independent Gaussian random variables.
The model for non-outlier loci is a product of Gaussian
distributions

Vk‘ j z‘ ¼ 0~Nð0,�2
kÞ, k ¼ 1,: : :,K, ð3Þ

where Nðm,�2Þ denotes the Gaussian distribution
with mean m and variance s2. To model outlier loci,
we consider a variance–inflation model which assumes an
inflated variance to account for outlier loci (Box and
Tiao 1968; Devlin and Roeder 1999). The model for
outlier loci is itself a mixture model with K components of
equal weights, where the kth component assumes an inflated
variance for the kth regression coefficient but not for the
other ones. Denoting the variance–inflation parameter
for factor k by c2

k (c2
k > 1), the k0th component of the mix-

ture model for outlier assumes a product of Gaussian
distributions
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FIG. 1. Values of the K = 3 factors for a population divergence model with four populations. The upper-left panel shows the model of population
divergence. The other panels show the values of the first three factors and each dot corresponds to one individual. As candidates for local adaptation,
the factor model with K = 3 looks for SNPs whose variation is atypically well explained by one of the three factors. For the simulations, the effective
population size is Ne = 1,000 diploid individuals in each population, 50 individuals are sampled in each population, and the neutral divergence time is
T = 200 generations and is twice as long as the second phase during which there is adaptation. We assume that 400 SNPs, among a total of 10,000 SNPs,
can confer selective advantage. The 400 adaptive SNPs are split into four sets of 100 SNPs, each set corresponding to adaptation in one of the four
evolutionary lineages. We consider a selection coefficient s = 0.1 for homozygotes carrying two adaptive alleles and s = 0.05 for heterozygotes.
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2
kÞ, k ¼ k0

Vk‘ j z‘ ¼ k~Nð0,�2
kÞ, k 6¼ k0

ð4Þ

The model for outliers has been chosen for the sake of inter-
pretability. Each outlier locus can be related to one of the K
factors because outlier loci should be atypically explained by
one of the K factors. To measure the strength of evidence for
outlyingness for each locus, we compute the Bayes factor of
the outlier model against the non-outlier model. If a locus is
considered as an outlier, the factor with which there is an
atypical correlation is found by computing the posterior
probabilities of each of the K components of the outlier mix-
ture model. To account for linkage disequilibrium, we addi-
tionally consider a Potts model that encourages outlier loci to
be clustered in the genome (see Materials and Methods).

When fitting the factor model with K = 3 to data simulated
under the scenario of population divergence depicted in
figure 1, the outlier model of equation (4) assumes three
different types of outlier loci: loci that have large genetic dif-
ferentiation when comparing the pair of subpopulations
(A1,A2) with the pair (B1,B2) (large values of jV1‘ j ), loci
that have large genetic differentiation when comparing sub-
population B1 with B2 (large values of jV2‘ j ), and loci that
have large genetic differentiation when comparing subpopu-
lation A1 with A2 (large values of jV3‘ j ). Because the simu-
lation assumes that the initial period of divergence is purely
neutral, the first types of outliers (large values of jV1‘ j ) are
in fact false positives.

Results

Simulation Study
Population Divergence Model
The first simulation study investigates to what extent factor
models better account for population structure than meth-
ods based on F statistics. We consider the model of

population divergence depicted in figure 1. An initial neutral
divergence is followed by adaptive divergence where 4% of
the 10,000 simulated SNPs are involved in local adaptation.
The set of adaptive SNPs is split in four equal parts and each
subset of SNP confers a selective advantage in only one of the
four populations. When the initial neutral divergence time T
is null, the population tree is star-like, and the assumption of
the F model is valid. As the initial neutral divergence time T
increases, the departure from the F model increases. The neu-
tral divergence time T is scaled so that T = 1 means that the
neutral and adaptive phases are of same duration.

First, we present results using the factor model with K = 3
factors that is optimal because there are four populations in
the divergence model (Patterson et al. 2006). We consider a
long-enough divergence time T = 2 so that the first factor
corresponds to the initial and neutral divergence, whereas
the second and third factors correspond to the subsequent
divergence events during which biological adaptation took
place (fig. 1). The SNPs that have been truly involved in bio-
logical adaptation are usually associated with the correct
factor because, among the 400 truly adaptive SNPs, 81% are
associated with the second and third factor and this propor-
tion raises to 98% (respectively 92%) when considering the
195 (respectively 305) adaptive SNPs with Bayes factors larger
than 10 (respectively 1) (fig. 2).

Then, we compare the FDRs of three different approaches
including the proposed factor model, BayeScan (version 2.1),
and genome scans based on the FST statistic. For both
BayeScan and the proposed factor model, we use Bayes fac-
tors for ranking SNPs, whereas we use FST values for the last
method. More precisely, we use the q values for ranking SNPs
with BayeScan, but, by definition of the q value, it provides the
same ranking as the Bayes factors. To determine a threshold
above which SNPs are considered as outliers, we enlarge the
lists of top-ranked SNPs, provided by each method, until each
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FIG. 2. Bayes factors for the two different simulation examples. The SNPs under selection are located on the left-hand side of the vertical bar.
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of them contains 50% of the 400 truly adaptive SNPs. This
procedure amounts to setting the sensitivity to 50% (the
sensitivity is also called recall rate in machine learning).
Figure 3 shows that for all methods, the FDR is below 5%
when the population tree is almost star-like (T = 0.04) but it
increases with the initial neutral divergence time T. Although
the FDR always increases with T, the FDRs of the factor model
are always smaller than FDRs obtained with FST and BayeScan.
For instance, when T = 1, the FDRs obtained with FST and
BayeScan are between 20% and 30%, whereas it is smaller
than 5% with the factor model. Instead of using a threshold
of 50%, we also constrain the lists of SNPs to contain 25% or
75% of the truly adaptive SNP (i.e., setting the sensitivity to
25% or 75%). As for the 50% threshold, all methods have small
FDR for sufficiently small initial divergence time T, and, as T
increases, FDR increases at a slower rate for the factor model
(supplementary fig. S1, Supplementary Material online). In
summary, the FDR increases as the model of divergence de-
viates from a star-like phylogeny, but compared with
other methods, the factor model reduces the proportion of
false discoveries by a factor of 2 or more when there is a
strong-enough deviation from the star-like assumption
(T> 0.8).

The results presented so far were obtained using the factor
model with K = 3 factors. By increasing the values of K from 1
to 6, we find that, compared with K = 3, the FDR drastically
increases for underspecification of K (K< 3) but is almost
insensitive to overspecification of K (K> 3, supplementary
fig. S2, Supplementary Material online). We also compute
the mean squared error (MSE) of equation (2) for different
values of K to determine if the MSE can be a guide for choos-
ing K. The MSE decreases from K = 1 to K = 3 before staying
almost constant as K continues to grow (supplementary fig.
S3, Supplementary Material online). In this example of pop-
ulation divergence, the MSE suggests choosing K = 3, but
choosing a more complex model (K> 3) would provide com-
parable FDRs.

Isolation-By-Distance Model
The second simulation study provides an example of how to
search for biological adaptation when there is isolation-by-
distance. Approaches based on F statistics would require to
group individuals into populations, and we want to avoid
that. On a two-dimensional 10� 10 grid, we simulate a step-
ping-stone model with selection acting on individuals located
in the lower-right corner of the grid. We sample 10 diploid
individuals at each of the 100 demes. A total of 50 out of 2,050
SNPs confer selective advantage in this region and the selec-
tion coefficient decreases gradually when moving away from
the point where selection is maximal.

With the factor model, the selection gradient is reflected in
a different factor depending on the value of the selection
coefficients (results not shown). Here, we choose the intensity
of selection so that the selection gradient becomes visible in
the third factor (fig. 4). The other factors have spatial patterns
that are typical for isolation-by-distance models (Novembre
and Stephens 2008; Engelhardt and Stephens 2010). We
choose K = 4 because the MSE decreases from K = 1 to
K = 4 before being almost constant (supplementary fig. S3,
Supplementary Material online). In terms of FDR, this
choice of K is not optimal because K = 3 would provide smal-
ler FDR (supplementary fig. S4, Supplementary Material
online). However, as in the first example, smaller values of
K, compared with the optimal value (K< 3), increase FDR
drastically, whereas too large values of K (K> 3) increase the
optimal FDR more moderately (supplementary fig. S4,
Supplementary Material online). With K = 4, the FDR is
equal to 0% when considering the top 25 SNPs, which corre-
sponds to a sensitivity of 50%. However, when setting the
sensitivity to 75%, the FDR increases to 30%, which corre-
sponds to 38 true positive SNPs among a list of 54 SNPs.
The 50 truly adaptive SNPs are all correctly associated with
the factor corresponding to biological adaptation, which is
the third factor here (fig. 2). When decreasing the number of
sampled individuals from 10 to 1, the FDR, obtained with a
sensitivity of 50%, increases considerably from 0% to 91%
(supplementary fig. S5, Supplementary Material online).

We also investigate to what extent scaling the data matrix
Y such that all columns have unit variance affects the results.
For both models of population divergence and isolation-
by-distance, we compare the FDR obtained when fitting the
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FIG. 3. False discovery rate as a function of the initial divergence time T
in the population divergence model of figure 1. For the proposed factor
model, Bayes factors are used for ranking SNPs, whereas we use q values
with BayeScan and FST values for the genome scan based on FST values.
To determine a threshold above which SNPs are considered as outliers,
we constrain the lists of SNPs provided by each method to contain 50%
of the 400 SNPs truly involved in local adaptation. The neutral diver-
gence time T is scaled so that T = 1 means that the neutral and adaptive
phases are of same duration, which is of 100 generations. For the sim-
ulations, the effective population size is Ne = 1,000 diploid individuals in
each population and 50 individuals are sampled in each population. We
assume that 400 SNPs, among a total of 10,000 SNPs, can confer selec-
tive advantage. The 400 adaptive SNPs are split into four sets of 100
SNPs, each set corresponding to adaptation in one of the four evolu-
tionary lineages. We consider a selection coefficient s = 0.1 for homozy-
gotes carrying two adaptive alleles and s = 0.05 for heterozygotes.
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factor model with the scaled or unscaled data matrix Y. We
do not find univocal evidence in favor or against the scaling.
For the model of population divergence, no scaling is prefer-
able, whereas the results are more complex for the isolation-
by-distance model: with a sensitivity of 25%, no scaling is
again preferable but scaling the data decreases the FDR
when the sensitivity is larger than 50% (supplementary fig.
S6, Supplementary Material online). For the model of isola-
tion-by-distance, we compute the minimum allele frequency
of the SNPs that are part of the list with largest Bayes factors
(setting the sensitivity at 25%). We find that scaling the data
matrix increases the proposition of low-frequency variants
among the list of top SNPs, and this phenomenon is much
more pronounced when looking at the false positives only in
the top list (supplementary fig. S7, Supplementary Material
online).

Analysis of Human SNP Data

The HGDP data set contains 644,199 SNPs, after removal of
the SNPs on the sex chromosomes and on the mitochon-
drion, which have been typed for 1,043 individuals coming
from 53 different populations (Li et al. 2008). First, we fit the
factor model to the unscaled matrix Y of SNPs using different
values of K. In contrast with the two previous examples, there
is no value of K at which the MSE stops to decrease (supple-
mentary fig. S3, Supplementary Material online). By looking at
the different factors (fig. 5 and supplementary fig. S8,
Supplementary Material online), we decide to consider a
model that captures genetic differentiation between, but
not within, continents. When considering K = 8, we find
that factors 5–8 capture population structure within conti-
nents (supplementary fig. S8, Supplementary Material online)
and we choose not to consider evolutionary processes acting
at this scale. Using the fact that we are interested in genetic
differentiation between continents, we consider a factor
model with K = 4. The first factor mostly contrasts African
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from Asiatic and Native American individuals and the second
factor mainly discriminates African from Middle-Eastern and
Western Eurasian individuals. The third factor distinguishes
Native American individuals—coming from Central and
South America—from the rest of the sample, whereas the
last factor separates individuals from Oceania from the rest of
the sample (fig. 5). We additionally check that genomic re-
gions of strong linkage disequilibrium do not distort the
latent factors. Using window sizes of 100 SNPs and a step
size of 10 SNPs, we prune with PLINK the SNPs so that there
are no more pairs of SNPs with a r2 larger than 0.2 resulting in
a total of 160,257 SNPs (Purcell et al. 2007). Comparing the
four latent factors with and without pruning, we find r2 values
larger than 0.93 indicating that LD does not distort the ascer-
tainment of population structure.

We choose to restrict our analysis to the 5,000 top-hit SNPs
(supplementary table S1, Supplementary Material online).
Their values of the Bayes factors range from 1.03 to 5.05 on
a log10 scale. The two SNPs with the largest Bayes factors
(rs1834640 and rs2250072) are correlated with the second
factor. They are located on chromosome 15 and the closest
gene is SLC24A5, which is located at 20–30 kb from the SNPs.
Among the 5,000 SNPs with largest Bayes factors, 851 are
related to factor 1, 844 with factor 2, 1,982 with factor 3,
and 1,323 with factor 4. For each of the four sublists, we
further provide information for the ten SNPs with the largest
Bayes factors (table 1):

� For the first factor, although we consider ten different
SNPs, only two genomic regions are found. One of the
two genomic regions is located on chromosome 10 and
downstream of the oncogene CYP26A1 whose expression
is enhanced in sunlight-damaged human skin (Osanai and
Lee 2011; Mallick et al. 2013). The other SNPs were found in
the SM6 gene which is implicated in the structural main-
tenance of chromosome protein 6 and which has already
been picked as a candidate for selection in another scan
with the HGDP sample (Hao et al. 2013). For all the ten
SNPs, we investigate the worldwide repartition of allele
frequencies with the ALFRED database (Rajeevan et al.
2012). East Asiatic and Native American populations
have allele frequencies that are different from the rest of
the sample (supplementary table S2, Supplementary
Material online) as can be predicted when looking at the
geographic repartition of the first factor (fig. 5).
� For the outlier SNPs associated with the second factor, the

allelic frequencies were mostly different when comparing
Western Eurasian individuals with the rest of the sample
(supplementary table S2, Supplementary Material online).
In addition to the SNPs close to the SLC24A5 gene that is
associated with light skin in Western Eurasia (Canfield et al.
2013), we also find four other regions located close to the
following genes: EDAR in chromosome 2 which has been
associated with various traits including hair thickness and
sweating (Kamberov et al. 2013), SLC35F3 in chromosome
1, KIF3A in chromosome 5, RABGAP1 and STRBP in chro-
mosome 9 with the latter being involved in spermatogen-
esis, and MYO5C and DUT in chromosome 15.

� For the third factor, eight of the ten SNPs with the largest
Bayes factor are found in a 1-Mb region of chromosome 22,
which encompasses many different genes (table 1). For the
SNPs in this large region of chromosome 22, the allelic
frequencies mostly differ between Native Americans and
the rest of the sample. For sub-Saharan African popula-
tions, allelic frequencies of these SNPs are intermediate
with Pygmies populations having frequencies that are
often the most similar to the Native Americans (supple-
mentary table S2, Supplementary Material online).
� The allele frequencies of the SNPs that are the most asso-

ciated with the fourth factor mostly differ between indi-
viduals from Oceania (Papuan and Melanesian) and the
rest of the sample with Native Americans and Pygmies
population having, for some SNPs, allele frequencies that
are the most similar to the Oceanians (supplementary
table S2, Supplementary Material online). Among the ten
outlier SNPs, four SNPs are located in chromosome 8 and
four SNPs are located in chromosome 17. Among the 1,323
SNPs associated with the fourth factor, there is an excess of
outlier SNPs in chromosome 8 (supplementary fig. S9,
Supplementary Material online) pointing to a prominent
role of its genes in adaptation to the local conditions of
Oceania. There are different genomic regions with large
Bayes factors in chromosome 8 and one of these genomic
regions encompasses RP1L1, a gene often found in selec-
tion scans (Barreiro et al. 2008) and related to eye diseases
(Davidson et al. 2013).

We also perform a Gene Ontology (GO) enrichment anal-
ysis on human genes using the 5,000 SNPs with the largest
Bayes factors. We find significant enrichment of biological
processes for each of the four factors (supplementary table
S3, Supplementary Material online). Some interesting in-
stances of the enriched gene ontologies include three differ-
ent GO terms related to regulation of hormone secretion for
the first factor, enrichment of homophilic cell adhesion for
the third factor, and aging for the fourth factor. Finally, we
look at a catalog of published GWAS (Welter et al. 2014) to
search for enrichment of outlier SNPs related to a particular
phenotype (supplementary table S4, Supplementary Material
online). The traits that are the most associated with the out-
lier SNPs are height (6 SNPs), obesity and weight (5 SNPs), and
Crohn’s disease (5 SNPs).

Discussion
Based on a Bayesian factor model, we provide a new approach
to detect loci subject to local adaptation. The hierarchical
factor model considers the SNPs that are atypically related
to population structure as outliers and candidates for local
adaptation. Population structure is captured by a set of K
latent factors. Simulations showed that latent factors can
adequately describe clustering of individuals into populations
(fig. 1), isolation-by-distance patterns, and gradients of selec-
tion (fig. 4). Similarly to approaches based on measures of
genetic differentiation, the hierarchical factor model is a sta-
tistical outlier approach where local adaptation is not
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modeled explicitly. In contrast, another recent statistical ap-
proach for selection scans provides a generative model for
local adaptation based on a diffusion approximation (Vitalis
et al. 2014).

However, there are also important differences with
approaches based on measures of genetic differentiation.
Compared with the software BayeScan or genome scans
based on FST, the factor model does not assume a particular
model of population structure. In a model of population di-
vergence, we show that removing the assumptions of the F
model considerably reduces the FDR. To explain why the

factor model generates fewer false discoveries, we introduce
the notions of mechanistic and phenomenological models
(Hilborn and Mangel 1997). Mechanistic models aim to
mimic the biological processes that are thought to have
given rise to the data, whereas phenomenological models
seek only to best describe the data using a statistical model.
In the spectrum between mechanistic and phenomenological
models, the F model would stand close to mechanistic
models, whereas factor models would be closer to the phe-
nomenological ones. Mechanistic models are appealing be-
cause they provide quantitative measures that can be related

Table 1. List of the Ten SNPs with Largest Bayes Factors for Each of the Four Factors Obtained with the HGDP Data Set.

Chromosome rs Identifier Physical Positiona Closest Gene Dist.b Log10(BF)c Factor No.

chr 10 4918664 94911055 CYP26A1 83 2.8 1

chr 10 10882168 94919424 CYP26A1 92 2.7 1

chr 10 7091054 95008434 MYOF 48 2.7 1

chr 10 11187300 94910281 CYP26A1 83 2.6 1

chr 2 7556886 17771611 SMC6 0 2.6 1

chr 10 12220128 94965001 MYOF 91 2.5 1

chr 10 6583859 94883463 CYP26A1 56 2.5 1

chr 10 4918924 94966946 MYOF 89 2.4 1

chr 2 1834619 17764966 SMC6 0 2.4 1

chr 2 4578856 17716869 SMC6 0 2.4 1

chr 15 1834640 46179457 SLC24A5 21 5.1 2

chr 15 2250072 46172199 SLC24A5 29 4.2 2

chr 2 260714 108928927 EDAR 0 3.2 2

chr 1 7531501 232404926 SLC35F3 0 2.9 2

chr 15 11637235 46420445 DUT 0 2.9 2

chr 9 10760260 124753347 RABGAP1 0 2.9 2

chr 9 2416899 125054924 STRBP 0 2.8 2

chr 5 2406410 132093779 KIF3A 0 2.8 2

chr 15 3751631 50321636 MYO5C 0 2.8 2

chr 9 618746 124777344 RABGAP1 0 2.8 2

chr 22 139553 40517145 MEI1 0 4.1 3

chr 22 5996039 40311903 PMM1 0 4.0 3

chr 22 8139993 40325281 DESI1 0 4.0 3

chr 22 126092 40508387 MEI1 0 4.0 3

chr 22 1005402 39621676 XPNPEP3 0 3.6 3

chr 22 8137373 40059162 ZC3H7B 0 3.6 3

chr 22 133074 39408419 MCHR1 0 3.6 3

chr 22 9611613 40291777 CSDC2 0 3.5 3

chr 20 2424641 24665867 SYNDIG1 71 3.5 3

chr 14 2600814 46054248 LINC00871 13 3.5 3

chr 8 16892216 120271074 MAL2 19 2.8 4

chr 8 6990312 110671493 SYBU 0 2.8 4

chr 17 9908046 50918781 MMD 64 2.7 4

chr 17 575873 39055489 MEOX1 18 2.6 4

chr 4 4691075 164468935 NPY1R 0 2.6 4

chr 17 4471745 50923883 MMD 70 2.5 4

chr 14 12891534 80069114 CEP128 0 2.5 4

chr 8 6988341 110653602 SYBU 2 2.5 4

chr 8 12216712 9933221 MSRA 16 2.5 4

chr 17 11869714 45942306 MYCBPAP 0 2.5 4

aThe positions are given for the NCBI36 assembly.
bDist. is the distance from the closest gene and is measured in kilobase pairs.
cLog10(BF) is the logarithm (in base 10) of the Bayes factor.
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to biologically meaningful parameters. For instance,
F statistics measure genetic drift which can be related to mi-
gration rates, divergence times, or population sizes. In con-
trast, phenomenological models work with mathematical
abstractions such as latent factors that can be difficult to
interpret biologically. The downside of mechanistic models
is that violation of the modeling assumption can invalidate
the proposed framework and generate many false discoveries
in the context of selection scans. The F model assumes a
particular covariance matrix between populations which is
found with star-like population trees for instance
(Bonhomme et al. 2010). However, more complex models
of population structure can arise for various reasons including
non-instantaneous divergence and isolation-by-distance, and
they will violate the mechanistic assumptions and make phe-
nomenological models preferable.

Although PCA or the related factor model is generally used
to investigate population structure, there have already been
several attempts at performing selection scans based on these
statistical approaches. The first idea is to compute FST values
between pairs of populations that contain the top and
bottom individuals for each principal component
(Abdellaoui et al. 2013). This approach provides a list of out-
liers that are specific to each principal component in the
same way as the hierarchical factor model of equations (2)–
(4) provides outliers that are related to one of the K factors. A
second proposition involves new interpretations of PCA re-
lated to F statistics, which provide statistical measures to
detect local adaptation (Laloë and Gautier 2011). A last and
recent proposition called “logistic factor analysis” adds a lo-
gistic link function to the factor model (eq. 2) in order to
guarantee that the predicted values can be interpreted as
frequencies because they lie between 0 and 1 (Hao et al.
2013). Loci involved in biological adaptation were scanned
using a deviance statistic (Hao et al. 2013). These related
approaches are built on the success of PCA and factor
models to capture population structure with a small
number of variables.

Choosing the dimension K of the statistical model that
ascertains population structure is a recurrent problem. One
possibility is to use an objective approach based on a quanti-
tative criterion. Examples of such objective criteria include the
�K measure to detect the number of clusters using the soft-
ware STRUCTURE (Evanno et al. 2005) or the Tracy–Widom
statistic to choose the dimension K in PCA (Patterson et al.
2006). Another possibility is to adopt a subjective approach
and to choose a value of K such that increasing K would
provide results that are considered to be of too little interest.
With the proposed Bayesian factor model, we implemented
both approaches. For the simulations, choosing K based on
the MSE of equation (2) works well because the MSE stops to
decrease when K increases beyond a certain value. However,
for the human data, the choice is more complex because the
MSE decreases regularly as K increases. We chose K = 4 be-
cause we were only interested in biological adaptation that is
related to genetic differentiation between continents, but we
acknowledge that major adaptive processes also occur within
continents (Jarvis et al. 2012). The subjective choice of K is

related to the choice of pairwise comparisons when using FST

between pairs of populations for genome scans (Nosil et al.
2008). Choosing which populations should be compared or
which latent factors should be kept pertains to the biological
questions addressed by the genome scan. To provide recom-
mendations for choosing K, we suggest to fit the hierarchical
factor model with different values of K in order to investigate
if there is a value of K, at which the MSE stops or almost stops
to decrease. If not, the choice of K can be based on subjective
arguments where the latent factors of too little interest can be
discarded.

Although the proposed factor model provides fewer false
discoveries than approaches based on F statistics, there
remain caveats and possible improvements. First, one of
our objectives was to propose a method for selection scans
that avoids the computational burden of some Bayesian
approaches, which can become a serious obstacle when an-
alyzing large-scale SNP data. However, this objective is only
partly fulfilled. The downside of our approach is that it relies
on a Markov chain Monte Carlo (MCMC) algorithm that
quickly grinds to a halt under the sheer mass of SNP data
(Lange et al. 2014). Fortunately, the MCMC algorithm is based
on a Gibbs sampler that alternates the computation of least
square solutions, which are fast to compute. For the HGDP
data set (644,199 SNPs), the run-time ranges from 13 to 16 h
using a single computer processor (2.4 GHz, 64-bit Intel Xeon)
when K increases from 1 to 8. Second, we considered a par-
ticular outlier model (eq. 4) for the sake of interpretability
which assumes that outliers should be atypically explained by
one latent factor. However, other outlier models would be
possible, for instance, by imposing a sparsity prior that forces
most of the factor loadings to be null (Carvalho et al. 2008) or
by assuming that outliers should be atypically related to the K
latent factors and not to only one of them. For handling the
two mentioned caveats, we are currently working on the
development of a faster version of our software where various
outlier models are evaluated. Third, we investigate the effect
of scaling the data matrix Y and find that it can increase or
decrease the FDR because of two opposing effects. The ad-
vantage of the scaling is that it makes the regression coeffi-
cients (the factor loadings) more comparable because all
centered allele frequencies are at the same scale. The down-
side of scaling is that it gives more importance to the low-
frequency variants (supplementary fig. S7, Supplementary
Material online) for which the statistical estimates of popu-
lation differentiation are highly variable (Meirmans and
Hedrick 2011). The fourth caveat occurs if local adaptation
has acted in directions that do not align with the underlying
population structure. For example, in investigating worldwide
convergent evolution of high-altitude adaptation in humans,
it is unlikely that a latent factor will separate high-altitude
populations (Tibet, Andes, Ethiopia) from lowland popula-
tions. An approach incorporating an environmental variable,
that is, a fixed factor, corresponding to altitude would be
more appropriate (Foll et al. 2014). The fifth caveat concerns
the choice of the threshold for the Bayes factor. When ana-
lyzing the HGDP data, we use a threshold of 10 which corre-
sponds to strong evidence for the outlier model according to
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the Jeffrey’s scale of evidence for Bayes factors, but other
choices would have also been possible (Kass and Raftery
1995). The last caveat concerns the inability to pinpoint the
geographic location at which adaptation took place.
Although outlier SNPs are related to latent factors, the
factor model does not provide the population or group of
individuals concerned by adaptation, whereas alternative sta-
tistical models can estimate selection coefficients for each
population separately (Vitalis et al. 2014).

Although the purpose of our article is to present a novel
method and not to provide an in-depth analysis of local
adaptation in the HGDP, fitting the factor model to the
HGDP data provides interesting results. The first two latent
factors mainly measure differentiation between Africa,
Western Eurasia, and East Asia and some outliers
related with these two factors are involved in morphological
traits, which are often reported to be enriched with genes
having signatures of positive selection (Barreiro et al. 2008).
In the list of outliers, we found the genes SLC24A5 and EDAR,
which are often reported as top hits in selection scans (Pickrell
et al. 2009; Hao et al. 2013) and are related to skin pigmen-
tation and hair thickness, respectively (Kamberov et al. 2013;
Mallick et al. 2013). We also found that SNPs close to
the oncogene CYP26A1, whose expression is enhanced in
sunlight-damaged human skin (Osanai and Lee 2011), are
part of the top list for outliers. The third and fourth factors
correspond to genetic differentiation between Native
Americans, individuals from Oceania, and the rest of the
sample. There are many regions in chromosome 8 enriched
with outlier SNPs. One of these regions encompasses the gene
RP1L1 that is associated with retinal diseases and which has
already been reported to have one of the strongest signatures
of positive selection along with other genes related to sensory
functions (Barreiro et al. 2008). Many outlier SNPs strongly
related to the third and fourth factors have allele frequencies
that are similar between Southern Native Americans and
Pygmies (third factor) or between individuals from Oceania,
Southern Native Americans, and Pygmies (fourth factor).
Because these individuals all live in tropical rain forests
and have similar diet consisting of roots and tubers, our
findings support the importance of diet, climate, and poten-
tially pathogen load to explain human adaptation (Hancock
et al. 2010; Fumagalli et al. 2011). The SNPs with similar allele
frequencies in different geographic regions are good candi-
dates for convergent evolution and would deserve further
analysis.

Factor models are enriching the toolbox of population
genetic methods. The main principle is to model population
structure via latent variables called factors. Factors models
have already been proposed to ascertain population structure
(Engelhardt and Stephens 2010) and to account for popula-
tion structure when testing for gene-environment association
(Frichot et al. 2013). We showed that factor models also pro-
vide a convenient individual-based framework to find loci
that have atypical patterns of genetic differentiation. A
major argument supporting the proposed hierarchical
factor model is that it produces fewer false discoveries com-
pared with genome scans based on FST.

Materials and Methods

Hierarchical Bayesian Modeling

We provide the prior distributions for the latent variables
of the hierarchical factor model defined by equations
(2)–(4). To account for linkage disequilibrium in the
genome and encourage outlier loci to be clustered along
the genome, we consider a Potts model with an external
field (Winkler 2003)

pðz1,: : :,zpÞ / ð1� �Þ
p0�ðp�p0Þe

�
P
i~ j

1zi¼zj

, ð5Þ

where the sum in the exponential ranges over all pairs of
neighboring loci. We consider that each locus has two neigh-
bors except at the beginning and at the end of the chromo-
some where a locus has only one neighbor. In equation (5),
the variable p0 is the number of loci such that zi ¼ 0, 1 is the
indicator function, b is the parameter of the Potts model and
is set to b= 1, and p is the prior proportion of outliers. To
model the proportion of outliers, we consider a uniform prior
on the log10 scale reflecting that we are interested in the order
of magnitude of the proportion of outlier loci (Guan and
Stephens 2011). In the following, we consider �4 and �1
for the lower and upper bound of the uniform prior, respec-
tively. The proportion of loci under selection is a priori ex-
pected to be between 10�1 and 10�4 reflecting the working
hypothesis that most loci are neutral and that loci under
selection are rare. For the variance parameters
�2

k , k ¼ 1, . . . ,K, that are specific to each factor (eqs. 3
and 4), we consider the parameterization �2

k ¼ �
2�2

k , where
s2 is the residual variance in equation (2) (Oba et al. 2003).
We consider the non-informative prior for the variance pa-
rameters pð�2Þ / 1=�2 and pð�2

kÞ / 1=�2
k, k ¼ 1, . . . ,K.

For the variance–inflation parameters c2
k of equation (4),

we consider uniform priors with 1 and 10 for the lower and
upper bounds, and we find that a slight variation of the upper
bound does not change the ranking of the SNPs (results not
shown).

With the factor model of equation (2) as with many
models with latent structure (Allman et al. 2009), there is a
well-known issue of identifiability because identical likelihood
values can be obtained from a solution ðU,VÞ after using
orthogonal rotations (West 2003). To add constraints to
the model, we consider a prior with unit variance for each
of the factors

Uk~Nð0,InÞ,

where In is the squared n� n identity matrix (Oba et al.
2003). To further prevent the MCMC algorithm to produce
alternative rotations of the factors (Engelhardt and Stephens
2010), we consider the solution of the singular value decom-
position as starting values for the factors U1, . . . ,UK in the
MCMC algorithm.

To evaluate the strength of evidence for outlyingness
at each locus, we compute the Bayes factor on a log10

scale. The Bayes factor is defined as the ratio of the poste-
rior odds pðz‘ > 0 jYÞ=pðz‘ ¼ 0 jYÞ and the prior odds

2492

Duforet-Frebourg et al. . doi:10.1093/molbev/msu182 MBE

paper 
traits 
,
,
to 
m
--
--
,
)
)
-


pðz‘ > 0Þ=pðz‘ ¼ 0Þ ¼ �=ð1� �Þ. The description of the
MCMC algorithm and the computation of the Bayes factor
is given in the Supplementary Material online.

Simulation of the Four-Population Divergence Model

The first simulation scenario is a divergence model with four
populations. These populations have constant effective pop-
ulation sizes of Ne = 1,000 diploid individuals, with 50 individ-
uals sampled in each population. The genotypes consist of
10,000 independent SNPs. The simulations are performed in
two steps. In the first step, we use the software ms to simulate
a neutral divergence model (Hudson 2002). When looking
backward in time, we instantly merge population A1 with
A2 and population B1 with B2, then after waiting a number
T = 20, 80, 120, 160, 200 of generations, we merge the two
remaining populations A and B. We keep only variants with a
minor allele frequency larger than 5% at the end of this first
step. The second step is performed with the software
SimuPOP (Peng and Kimmel 2005). To run SimuPOP, we pro-
vide the allele frequencies in each of the four populations that
have been generated with ms. Looking forward in time, we
simulate 100 generations after the 2 concomitant divergence
events. We assume no migration between populations. In
each evolutionary lineage, we assume that 100 SNPs confer
selective advantage using a selection coefficient of s = 0.1 for
homozygotes carrying two adaptive alleles. In both simulation
schemes, we assume an additive model for selection.

Simulation of the Stepping-Stone Model

The second simulation scenario is a two-dimensional step-
ping-stone model with a 10� 10 grid. Each of the 100 pop-
ulations has an effective population size of Ne = 1,000 diploid
individuals. We sample ten individuals in each population and
there are 2,050 independent SNPs. We also consider a two-
step procedure for the simulations. First, we simulate an equi-
librium stepping-stone model with the software ms.
Neighboring populations exchange migrants with a rate of
4Nem = 8 per generation. Then we superimpose a selection
gradient using SimuPOP. During 100 generations, we consider
that 50 SNPs confer selective advantage. The selection coef-
ficient s = 0.1 is maximal in population 64, which is located in
the lower-right quarter of the grid. In the eight neighboring
populations, the selection coefficient is s = 0.05, and in the
second layer of neighbors, the selection coefficient is s = 0.025.
The selection coefficient is equal to 0 for the rest of the grid.

False Discovery Rate and Sensitivity

To compare the performances of the different methods for
selection scans, we compute the FDR for fixed values of the
sensitivity. Denoting the number of false positives by FP, the
number of false negatives by FN, and the number of true
positives by TP, the FDR is defined as FP/(FP + TP) and the
sensitivity (also called recall rate) is defined as TP/(TP + FN).

Gene Ontology Analysis

We perform a GO enrichment analysis with the software
Gowinda (Kofler and Schlötterer 2012). The list of genes is

built by considering all genes which contain outlier SNPs with
a tolerance of 5,000 bp upstream and downstream. We use a
threshold of 0.05 for the FDR, and we remove GO terms that
are shared by less than 10 genes or more than 1,000 genes. We
consider the –snp flag in Gowinda that assumes indepen-
dence of SNPs within a gene. If we rather use the –gene
flag, which assumes complete dependence of SNPs within a
gene, there is no GO discovery with an FDR smaller than 5%.
For each factor, we consider the ten GO terms with the
smallest FDRs, and we only report GO terms that are related
to biological processes.

Software Availability

The computer program PCAdapt for fitting the factor model
is available from the authors’ websites (http://membres-timc.
imag.fr/Michael.Blum/, http://membres-timc.imag.fr/Nicolas.
Duforet-Frebourg/, last accessed June 12, 2014).
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Supplementary material, figures S1–S9, and tables S1–S4 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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