

### Heterogeneous Catalysis

## **Integrated In Situ Characterization of a Molten Salt Catalyst Surface: Evidence of Sodium Peroxide and Hydroxyl Radical Formation**

Kazuhiro Takanabe,\* Abdulaziz M. Khan, Yu Tang, Luan Nguyen, Ahmed Ziani, Benjamin W. Jacobs, Ayman M. Elbaz, S. Mani Sarathy, and Franklin (Feng) Tao

**Abstract:** Sodium-based catalysts (such as  $Na_2WO_4$ ) were proposed to selectively catalyze OH radical formation from  $H_2O$  and  $O_2$  at high temperatures. This reaction may proceed on molten salt state surfaces owing to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na<sub>2</sub>WO<sub>4</sub>, which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometry, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result,  $Na_2O_2$  species, which were hypothesized to be responsible for the formation of OH radicals, have been identified on the outer surfaces at temperatures of  $\geq$  800°C, and these species are useful for various gasphase hydrocarbon reactions, including the selective transformation of methane to ethane.

Gas-phase radical chemistry involving OH radicals plays a crucial role in the oxidative coupling of methane (OCM),<sup>[1]</sup> the dehydrogenation of ethane,<sup>[2]</sup> atmospheric chemistry,<sup>[3]</sup> and combustion reactions.<sup>[4]</sup> The catalytic generation of OH radicals from O<sub>2</sub> and H<sub>2</sub>O can occur on Pt metal and alkali earth oxides at high temperatures (>700 °C).<sup>[5]</sup> Alkaline metal containing catalysts (that is, Na supported on oxide) enhanced the rate of H<sub>2</sub>O activation in the presence of O<sub>2</sub> and enhanced both the CH<sub>4</sub> conversion rate and C<sub>2</sub> selectivity during OCM.<sup>[1]</sup> Otsuka et al. demonstrated that Na<sub>2</sub>O<sub>2</sub> reacts with CH<sub>4</sub> to form methyl radicals at relatively low temperatures.<sup>[6]</sup> Recently, kinetic evidence suggests that H<sub>2</sub>O is

Physical Sciences and Engineering Division (PSE) [\*] Prof. K. Takanabe, A. M. Khan, Dr. A. Ziani King Abdullah University of Science and Technology (KAUST) 4700 KAUST, Thuwal, 23955-6900 (Saudi Arabia) KAUST Catalysis Center (KCC) and Physical Sciences and Dr. A. M. Elbaz Engineering Division (PSE) Mechanical Power Engineering Department 4700 KAUST, Thuwal, 23955-6900 (Saudi Arabia) Faculty of Engineering Mataria, Helwan University E-mail: kazuhiro.takanabe@kaust.edu.sa Al Sikka Al Hadid Al Gharbeya, Al Masaken Al Iqtisadeyah Y. Tang, Dr. L. Nguyen, Prof. F. Tao Qism Helwan, Cairo Governorate (Egypt) Department of Chemical and Petroleum Engineering Supporting information (catalyst preparation, catalytic testing, Department of Chemistry, University of Kansas b characterization) and the ORCID identification number(s) for the Lawrence, KS 66045 (USA) author(s) of this article can be found under: Dr. B. W. Jacobs https://doi.org/10.1002/anie.201704758. Protochips, Inc. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. 3800 Gateway Centre Blvd #306, Morrisville, NC 27560 (USA) KGaA. This is an open access article under the terms of the Creative and Commons Attribution Non-Commercial NoDerivs License, which Analytical Instrumentation Facility, Materials Science and permits use and distribution in any medium, provided the original Engineering Department, North Carolina State University work is properly cited, the use is non-commercial, and no 2410 Campus Shore Dr, Raleigh, NC 27695 (USA) modifications or adaptations are made. Dr. A. M. Elbaz, Prof. S. M. Sarathy King Abdullah University of Science and Technology (KAUST) Clean Combustion Research Center (CCRC) and

involved in the activation of  $CH_4$  via the quasi-equilibrated formation of OH radicals when a Na-containing catalyst is used.<sup>[1]</sup> In a similar context, an in situ Raman spectroscopic study identified Ba species on MgO that formed peroxide ions and was proposed as the active sites.<sup>[7]</sup> However, direct evidence of the formation of this sodium peroxide species and an OH radical product are lacking. Here, in situ studies performed at high temperatures using different in situ characterization techniques were performed to identify the authentic active species during catalysis responsible for the OCM reaction. We report evidence for the formation of Na<sub>2</sub>O<sub>2</sub> and OH radicals during the catalysis, and these species play a significant role in high-temperature gas-phase chemistry.

A detailed kinetic investigation that was focused on the effects of  $H_2O$  on the  $CH_4/O_2$  reaction was reported in our previous studies.<sup>[1]</sup> Briefly, the kinetic expression for the  $CH_4/O_2$  reaction on Na-based catalysts at low conversion levels is given in (1):

$$r = r_{\rm O*} + r_{\rm OH*} = k' P_{\rm CH_4} P_{\rm O_2}^{0.5} + k'' P_{\rm CH_4} P_{\rm CH_4} P_{\rm O_2}^{0.25} P_{\rm H_2O}^{0.5}$$
(1)

The first term corresponds to  $CH_4$  activation via surface O (O\*), which is quasi-equilibrated with gas-phase  $O_2$  (dry condition). The second term corresponds to  $CH_4$  activation via an OH radical that is formed from  $O_2$  and  $H_2O$  in quasi-equilibrated steps (wet condition). Among the studied catalysts, the Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub> catalyst exhibited the highest contribution from the OH radical pathway relative to the surface O\* pathway as well as the highest selectivity to  $C_2$ 

Angewandte

hydrocarbons from CH<sub>4</sub>.<sup>[1d]</sup>

In this study, the  $TiO_2$  support was chosen to replace  $SiO_2$ to immobilize Na<sub>2</sub>WO<sub>4</sub> and avoid charging effect during characterization using TEM and AP-XPS. The extensive heat treatment at 900 °C for 15 h in flowing air (100 cm<sup>3</sup> min<sup>-1</sup>) was essential to ensure the stability of the catalyst during OCM. In this process, the excess Na<sub>2</sub>WO<sub>4</sub> was evaporated. The resulting Na contents in the SiO<sub>2</sub> and TiO<sub>2</sub> samples, which were measured using inductively coupled plasma, were about 4 and about 0.6 wt%, respectively, and these values did not change after the OCM kinetic testing at 800 °C. The BET surface areas that were estimated by  $N_2$  sorption were 2 and 3 m<sup>2</sup>g<sup>-1</sup> for Na2WO4/SiO2 and Na2WO4/TiO2, respectively. In our studies, we confirmed that kinetic expression (1) applies to the Na<sub>2</sub>WO<sub>4</sub>/TiO<sub>2</sub> catalyst, which is consistent with the data reported for the Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub> catalyst.<sup>[1]</sup> The Na<sub>2</sub>WO<sub>4</sub>/TiO<sub>2</sub> catalyst exhibits excellent OCM selectivity in the presence of an O<sub>2</sub>/H<sub>2</sub>O mixture and the catalyst most likely has the ability to form OH radicals from an O2 and H2O mixture. The details of the kinetic results are described in the Supporting Information, Figures S2. The proposed catalytic formation of OH radicals on the Na catalyst is as in (2)-(4):<sup>[2,4]</sup>

 $2 \operatorname{Na}_2 \mathrm{O} + \mathrm{O}_2 \to 2 \operatorname{Na}_2 \mathrm{O}_2 \qquad \Delta H^\circ = -99 \,\mathrm{kJ} \,\mathrm{mol}^{-1} \tag{2}$ 

$$Na_2O_2 + H_2O \rightarrow Na_2O + H_2O_2 \tag{3}$$

$$H_2O_2 \to 2 OH^{\bullet}$$
<sup>(4)</sup>

Herein,  $H_2O$  and  $H_2O_2$  can be gas-phase species or adsorbed species on the surface, even though gas-phase  $H_2O_2$ (or decomposed product) is most likely present because its boiling point is 150 °C. The Na<sub>2</sub>O<sub>2</sub> decomposition temperature is 657 °C, which may remain kinetically formed in the presence of O<sub>2</sub>. The overall reaction for the OH radical formation (when quasi-equilibrated in the gas phase) is according to (5):

$$O_2 + 2H_2O \rightarrow 4OH$$
  $\Delta H^\circ = -650 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$  (5)

Direct detection of OH radicals was attempted using a LIF spectrometer with the setup described in the Supporting Information, Figure S1. Owing to the detection limitations of our system, a transient condition was applied for the detection of OH radicals. The catalyst, which was placed in an alumina boat, was initially heated to 900  $^{\circ}$ C under vacuum (<1 Pa), followed by the introduction of 2.3 kPa of H<sub>2</sub>O into the system. As the 20 kPa of O<sub>2</sub> was gradually introduced into the heated reactor with the catalyst, the change in the LIF signal was successively recorded. Figure 1 shows the resulting transient detection of OH radicals. The OH radicals were detected upon introduction of an O<sub>2</sub> and H<sub>2</sub>O mixture at 900 and 950°C, which is consistent with reaction (5). This result unambiguously confirms that the Na catalyst can form OH radicals from an O2 and H2O mixture. To the best of our knowledge, this result is the first evidence for the direct detection of OH radicals from an O<sub>2</sub> and H<sub>2</sub>O mixture on a Na-based catalyst surface.

It is important to note that the melting point of  $Na_2WO_4$  (698 °C) is lower than the typical reaction temperature for the



*Figure 1.* Detection of OH radicals through a quartz window using LIF spectroscopy. The setup details are provided in the Supporting Information.

CH<sub>4</sub> reaction (≥ 800 °C). Therefore, we attempted to capture the change of crystal structure and surface morphology using in situ XRD and TEM at high temperature in air. Figure 2 a shows the XRD patterns of Na<sub>2</sub>WO<sub>4</sub>/TiO<sub>2</sub> collected at 500– 800 °C in flowing air. When the temperature was increased from 500 to 700 °C, the XRD peaks for Na<sub>2</sub>WO<sub>4</sub> disappeared, which suggests the formation of its molten salt state. Exposure to ambient air/moisture at room temperature resulted in recovery of the original phase (that is, cubic Na<sub>2</sub>WO<sub>4</sub>; the top XRD pattern of sample cooled down to 25 °C in Figure 2a). This in situ XRD result (see also the Supporting Information, Figure S3) is consistent with the in situ Raman spectroscopy



**Figure 2.** a) XRD patterns and b)–e) HAADF-STEM images for the  $Na_2WO_4/TiO_2$  catalyst at different temperatures in the presence of air. b) Low magnification measured at 500 °C; high magnification at point in the circle in (b) measured at c) 500 °C, d) 700°, e) 900 °C.

data reported by Yu et al., which confirms the disappearance of characteristic Raman peaks for  $Na_2WO_4$  (supported on CeO<sub>2</sub>) at high temperature.<sup>[8]</sup> Our sample shows very small Raman peak ascribable to  $Na_2WO_4$  owing to its low loading, as shown in the Supporting Information, Figure S4. The fusion temperature coincided with endothermic/exothermic behaviors for the differential scanning calorimetric measurement of the  $Na_2WO_4$  salt during heating/cooling (Supporting Information, Figure S5).

Figure 2b-e also shows in situ the high-angle annular dark field (HAADF)-STEM images that were recorded at different temperatures (500-900°C) in the presence of air. The sample pretreated at 900 °C exhibited a TiO<sub>2</sub> surface that was uniformly covered with a Na2WO4 film, as previously proposed by Lunsford et al. using ion scattering spectroscopy.<sup>[8]</sup> At 700 °C or higher, the salt-covered surface becomes blurry as the z-contrast is weakened in the images (Figure 2d), which is indicative of salt melting. At 900°C, the surface layer seems to disappear and the facet feature of the support surface  $(TiO_2)$  becomes more evident, owing to the absence of lattice of the melted salt, as shown in Figure 2e. Nevertheless, the energy dispersive spectroscopy (EDS) image confirmed the homogeneous distribution of Na and W species after the 800 °C treatment (Supporting Information, Figure S6).

The surface states of the Na2WO4/TiO2 catalyst under different gas atmospheres  $(O_2 + H_2O \text{ or } O_2 + CH_4)$  at 800 °C were investigated using the AP-XPS system using a flowing reaction cell built by the Tao group.<sup>[9]</sup> Photoemission features of subshell electrons of surface atoms can be collected when the catalyst is heated up to 850°C in a flowing gas. The Na 1s, O 1s, and W 4f features of the catalyst in UHV and different gas atmospheres at different temperatures are shown in Figure 3. The binding energies of these spectra were calibrated to Au  $4f_{7/2}$  of Au foil, which was used to support the Na<sub>2</sub>WO<sub>4</sub>/TiO<sub>2</sub> catalyst particles (Supporting Information, Figure S7). As shown in Figure 3, the O1s peak of the catalyst surface in UHV at 20°C was located at 530.6 eV, which is consistent with the reported value.<sup>[10]</sup> The W  $4f_{7/2}$ peak can be identified even though W 4f<sub>5/2</sub> overlaps with Ti 2p, as shown in Figure 3c and f. In UHV, W  $4f_{7/2}$  was located at 36.0 eV, which is in good agreement with the



*Figure 3.* Photoemission features of Na 1s, O 1s, and W 4f for the catalyst collected at UHV, 20°C (black line), 66 Pa  $O_2$  and 66 Pa  $H_2O$  at 800°C (red line), 66 Pa  $O_2$  and 66 Pa  $CH_4$  at 20°C (blue line), and 66 Pa  $O_2$  and 66 Pa  $CH_4$  at 800°C (pink line).

literature.<sup>[10]</sup> The peak intensity of Na 1s was located at 1072.0 eV, which corresponds to Na 1s of Na<sub>2</sub>WO<sub>4</sub> and is consistent with the reported value.<sup>[11]</sup> To explore the surface state of Na<sub>2</sub>WO<sub>4</sub> in the OH radical generation condition at 800°C, a mixture of O<sub>2</sub> and H<sub>2</sub>O was introduced into the flowing reaction cell for AP-XPS.<sup>[10]</sup> The presence of freestate O<sub>2</sub> and H<sub>2</sub>O gases was confirmed based on the observation of the photoemission features of the O 1s peaks (pink and blue line in Figure 3b and red line in Figure 3e) because they appear at a relatively higher binding energy than those of adsorbed species by a few eV. The peak positions at 539.1 and 535.8 eV were assigned to  $O_2$  and  $H_2O$  in the gas phase, respectively, and are consistent with the references.<sup>[12]</sup> The results provide strong evidence for the existence of gas environment around the catalyst. Intriguingly, the photoemission feature of Na 1s of the catalyst in a mixture of O<sub>2</sub> and H<sub>2</sub>O at 800 °C upshifted by 1.0 eV, in contrast to that in a mixture of O<sub>2</sub> and H<sub>2</sub>O at 20 °C (Figure 3 d). This shift does not result from surface charging because there is no shift in W 4f<sub>7/2</sub>. This upshift suggests a definite change in the chemical environment of the Na cations after being heated from 20 to 800 °C in a mixture of  $O_2$  and  $H_2O$ . The high-binding energy peak at 1073.2 eV for Na 1s at 800 °C was assigned to peroxide species (that is,  $Na_2O_2$ ), which is consistent with the observed binding energy of Na 1s of Na<sub>2</sub>O<sub>2</sub> reported previously.<sup>[13]</sup>

To check the authentic chemical state of the Na<sub>2</sub>WO<sub>4</sub> catalyst during OCM catalysis at 800 °C, O2 and CH4 were mixed and then introduced to the reaction cell containing the Na<sub>2</sub>WO<sub>4</sub> catalyst for AP-XPS. At room temperature in a mixture of O<sub>2</sub> and CH<sub>4</sub>, the photoemission features of Na 1s, O 1s, and W 4f (blue lines in Figure 3 a-c) are the same as those in UHV at 20 °C (black lines in Figures 3 d-f), except for the observation of an O 1s peak of gaseous O2. By heating the sample to 800°C by an infrared laser beam and maintaining the catalyst at 800 °C in a mixture of O2 and CH<sub>4</sub> during AP-XPS data acquisition,<sup>[10]</sup> Na 1s with a binding energy at 1073.1 eV was observed during catalysis. Notably, the photoemission feature of Na 1s of the surface of the catalyst during catalysis (pink line in Figure 3 a) is very similar to that observed at 800 °C in a mixture of O2 and H2O (red line in Figure 3d). Clearly, the AP-XPS studies of nominal catalyst Na<sub>2</sub>WO<sub>4</sub> supported on TiO<sub>2</sub> during OCM at 800 °C uncovered that the authentic surface phase of the Na species during catalysis was in fact Na2O2. Therefore, this result was due to the quasi-equilibrated generation of Na2O2 in the presence of O<sub>2</sub> under the studied conditions.<sup>[13]</sup>

The formation of Na<sub>2</sub>O<sub>2</sub> is consistent with the quantitative analysis of the photoemission features collected under (O<sub>2</sub> + H<sub>2</sub>O) and (O<sub>2</sub> + CH<sub>4</sub>) atmospheres. As shown in Figure 4a (data are normalized to the ratio in UHV at 20 °C), the relative ratios of Na 1s to O 1s at 800 °C was higher than those at 20 °C. This result is consistent with the higher Na to O stoichiometric ratio in Na<sub>2</sub>O<sub>2</sub> (1:1) than Na<sub>2</sub>WO<sub>4</sub> (2:1). The peaks centered at 36.3 eV (W 4f<sub>7/2</sub>) and at 38.0 eV (W 4f<sub>5/2</sub> and Ti 3p) were deconvoluted to obtain the relative area ratios of Na 1s and W 4f<sub>7/2</sub>, and the results are plotted in Figure 4b (data are normalized to the ratio in UHV at 20 °C). Notably, the Na 1s/W 4f<sub>7/2</sub> area ratios under (O<sub>2</sub> + H<sub>2</sub>O) or (O<sub>2</sub> + CH<sub>4</sub>) were relatively increased from 20 to 800 °C. These

Angew. Chem. Int. Ed. 2017, 56, 10403–10407 © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org 10405





**Figure 4.** Area ratios of a) Na 1s/O 1s and b) Na 1s/W  $4f_{7/2}$  of the catalyst surface at 800°C in a mixture of 66 Pa  $O_2$  and 66 Pa  $H_2O$ ; and at 20 and 800°C in a mixture of 66 Pa  $CH_4$  and 66 Pa  $O_2$ , relative to the ratios obtained at 20°C in UHV.

increases suggest that the molten salt film became richer in sodium cations on the outer surface and lean in W atoms on the topmost surface layers. These quantitative analyses of the surface composition of nominal Na<sub>2</sub>WO<sub>4</sub> obtained during catalysis suggest the formation of Na<sub>2</sub>O<sub>2</sub> layers on top of the surface, which blocks the photoelectrons of W 4f of Na<sub>2</sub>WO<sub>4</sub> from escaping to travel to gas phase or UHV. Therefore, the Na/W ratio increased once the Na<sub>2</sub>O<sub>2</sub> layer was formed. Thus, we can conclude that Na<sub>2</sub>O<sub>2</sub> formed on the surface of Na<sub>2</sub>WO<sub>4</sub> during catalysis and under the reaction conditions at 800 °C.

With regard to the OCM selectivity, the active site has been extensively discussed for  $Mn/Na_2WO_4/SiO_2$  (or supported on other oxides).<sup>[1,2,9,11,14]</sup> In our previous study,<sup>[1d]</sup> we confirmed that Mn and W are not essential components for the selective OCM reaction. However, H2O was identified as a key reactant (wet condition). In contrast, the supported  $Na_2WO_4$  is a poor catalyst for the activation of  $CH_4$ . Mn is effective for mildly burning CH<sub>4</sub> to generate H<sub>2</sub>O from a CH<sub>4</sub>/  $O_2$  mixture (dry condition), which is taken over by the OH radical pathway at high conversions (leading to the wet condition). WO<sub>4</sub> anions are most likely effective at immobilizing Na cations, which otherwise would sublime easily (NaOH: m.p. 318°C, b.p. 1388°C, Na<sub>2</sub>WO<sub>4</sub>: m.p. 698°C). The support material should be inert and accommodate the Na<sub>2</sub>WO<sub>4</sub> liquid film on its surface at high temperature,<sup>[8]</sup> and the topmost layer becomes Na<sub>2</sub>O<sub>2</sub>, which was observed by AP-XPS.

In conclusion, in situ spectroscopic and microscopic techniques were employed for identifying the authentic species of the Na-based catalyst at 800 °C under OCM relevant conditions. The catalyst was active for generation of OH radicals from  $O_2$  and  $H_2O$  at high temperature, as measured by OH radical selective LIF spectroscopy. The molten salt state of Na<sub>2</sub>WO<sub>4</sub> on oxides at high temperature was confirmed using in situ XRD measurements and STEM images performed at high temperature. The in situ studies using AP-XPS clearly uncovered the formation of Na<sub>2</sub>O<sub>2</sub> under reaction conditions at high temperature (ca. 800 °C),

which is considered to be responsible for OH radical formation. The specific binding energy of Na 1 s and the increased Na/W atomic ratio during catalysis at 800 °C revealed a surface that is richer in newly formed Na<sub>2</sub>O<sub>2</sub>. This study provides an excellent demonstration of integration of in situ electron spectroscopic and in situ electron microscopic techniques in identifying authentic surface phase of a nominal catalyst during catalysis at high temperatures in a mixture consisting of all the reactants of a catalytic reaction.

#### Acknowledgements

The research reported in this study was supported by the King Abdullah University of Science and Technology (KAUST). A part of the work was also financially supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division under Award Number DE-SC0014561. Both instrumentation of the second lab-based AP-XPS system and the design of high temperature AP-XPS reaction cell were supported through the fund of the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under Award (DE-SC0014561). L.N. was partially supported by KAUST. Y.T. and F.T. were supported by the DOE Award (DE-SC0014561).

#### Conflict of interest

The authors declare no conflict of interest.

**Keywords:** ambient-pressure XPS · heterogeneous catalysis · hydroxyl radicals · oxidative coupling · sodium peroxide

How to cite: Angew. Chem. Int. Ed. 2017, 56, 10403–10407 Angew. Chem. 2017, 129, 10539–10543

- a) K. Takanabe, E. Iglesia, Angew. Chem. Int. Ed. 2008, 47, 7689-7693; Angew. Chem. 2008, 120, 7803-7807; b) K. Takanabe, E. Iglesia, J. Phys. Chem. C 2009, 113, 10131-10145; c) K. Takanabe, J. Jpn. Pet. Inst. 2012, 55, 1-12; d) Y. Liang, Z. Li, M. Nourdine, S. Shahid, K. Takanabe, ChemCatChem 2014, 6, 1245-1251.
- [2] K. Takanabe, S. Shahid, AIChE J. 2017, 63, 105-110.
- [3] a) H. Levy II, *Science* **1971**, *173*, 141–143; b) P. K. Patra, M. C. Krol, S. A. Montzka, T. Arnold, E. L. Atlas, et al., *Nature* **2014**, *513*, 219–223.
- [4] a) C. K. Westbrook, *Proc. Combust. Inst.* 2000, 28, 1563–1577;
   b) M. Blocquet, C. Schoemaecker, D. Amedro, O. Herbinet, F. Battin-Leclerc, C. Fittschen, *Proc. Natl. Acad. Sci. USA* 2013, *110*, 20014–20017.
- [5] a) L. C. Anderson, M. Xu, C. E. Mooney, M. P. Rosynek, J. H. Lunsford, J. Am. Chem. Soc. 1993, 115, 6322-6326; b) K. B. Hewett, L. C. Anderson, M. P. Rosynek, J. H. Lunsford, J. Am. Chem. Soc. 1996, 118, 6992-6997; c) K. B. Hewett, M. P. Rosynek, J. M. Lunsford, Catal. Lett. 1997, 45, 125-128; d) S. Noda, M. Nishioka, A. Harano, M. Sadakata, J. Phys. Chem. B 1998, 102, 3185-3191.
- [6] K. Otsuka, A. A. Said, K. Jinno, T. Komatsu, Chem. Lett. 1987, 77–80.

# GDCh

- [7] J. H. Lunsford, X. Yang, K. Haller, J. Laane, G. Mestl, H. Knözinger, J. Phys. Chem. 1993, 97, 13810–13813.
- [8] Z. Yu, X. Yang, J. H. Lunsford, M. P. Rosynek, J. Catal. 1995, 154, 163–173.
- [9] L. Nguyen, F. Tao, Rev. Sci. Instrum. 2016, 87, 064101.
- [10] Z.-C. Jiang, C.-J. Yu, X.-P. Fang, S.-B. Li, H.-L. Wang, J. Phys. Chem. 1993, 97, 12870–12875.
- [11] T. W. Elkins, H. E. Hagelin-Weaver, Appl. Catal. A 2015, 497, 96–106.
- [12] a) B. Eren, C. Heine, H. Bluhm, G. A. Somorjai, M. Salmeron, J. Am. Chem. Soc. 2015, 137, 11186–11190; b) J. T. Newberg, D. E. Starr, S. Yamamoto, S. Kaya, T. Kendelewicz, E. R. Mysak, S. Porsgaard, M. B. Salmeron, G. E. Brown, A. Nilsson, Surf. Sci. 2011, 605, 89–94; c) S. Yamamoto, T. Kendelewicz, J. T. Newberg, G. Ketteler, D. E. Starr, E. R. Mysak, K. J. Andersson, H. Ogasawara, H. Bluhm, M. Salmeron, G. E. Brown, Jr., A. Nilsson, J. Phys. Chem. C 2010, 114, 2256–2266.
- [13] Q.-H. Wu, A. Thißen, W. Jaegermann, Appl. Surf. Sci. 2005, 252, 1801–1805.
- [14] a) X. Fang, S. Li, J. Lin, J. Gu, D. Yang, J. Mol. Catal. 1992, 6, 427;
   b) D. Wang, M. P. Rosynek, J. H. Lunsford, J. Catal. 1995, 155,

390–402; c) A. Palermo, J. P. H. Vazquez, A. F. Lee, M. S. Tikhov, R. M. Lambert, *J. Catal.* **1998**, *177*, 259–266; d) S. Pak, P. Qiu, J. H. Lunsford, *J. Catal.* **1998**, *179*, 222–230; e) S. Pak, J. H. Lunsford, *Appl. Catal.* A **1998**, *168*, 131–137; f) A. Palermo, J. P. H. Vazquez, R. M. Lambert, *Catal. Lett.* **2000**, *68*, 191–196; g) S. Ji, T. Xiao, S. Li, L. Chou, B. Zhang, C. Xu, R. Hou, A. P. E. York, M. L. H. Green, *J. Catal.* **2003**, *220*, 47–56; h) S. Hou, Y. Cao, W. Xiong, H. Liu, Y. Kou, *Ind. Eng. Chem. Res.* **2006**, *45*, 7077–7083; i) M. R. Lee, M.-J. Park, W. Jeon, J.-W. Choi, Y. W. Suh, D. J. Suh, *Fuel Process. Technol.* **2012**, *96*, 175–182; j) S. Arndt, T. Otremba, U. Simon, M. Yildiz, H. Schubert, R. Schomäcker, *Appl. Catal.* A **2012**, *425–426*, 53–61; k) V. Lomonosov, Y. Gordienko, M. Sinev, *Top. Catal.* **2013**, *56*, 1858–1866; T. Serres, C. Aquino, C. Mirodatos, Y. Schuurman, *Appl. Catal.* A **2015**, *504*, 509–518.

Manuscript received: May 9, 2017

- Revised manuscript received: June 19, 2017 Accepted manuscript online: June 26, 2017
- Version of record online: July 24, 2017