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Effect of Noise Reduction Gain Errors
on Simulated Cochlear Implant
Speech Intelligibility

Abigail A. Kressner1 , Tobias May1 , and Torsten Dau1

Abstract

It has been suggested that the most important factor for obtaining high speech intelligibility in noise with cochlear implant

(CI) recipients is to preserve the low-frequency amplitude modulations of speech across time and frequency by, for example,

minimizing the amount of noise in the gaps between speech segments. In contrast, it has also been argued that the transient

parts of the speech signal, such as speech onsets, provide the most important information for speech intelligibility.

The present study investigated the relative impact of these two factors on the potential benefit of noise reduction for CI

recipients by systematically introducing noise estimation errors within speech segments, speech gaps, and the transitions

between them. The introduction of these noise estimation errors directly induces errors in the noise reduction gains within

each of these regions. Speech intelligibility in both stationary and modulated noise was then measured using a CI simulation

tested on normal-hearing listeners. The results suggest that minimizing noise in the speech gaps can improve intelligibility, at

least in modulated noise. However, significantly larger improvements were obtained when both the noise in the gaps was

minimized and the speech transients were preserved. These results imply that the ability to identify the boundaries between

speech segments and speech gaps may be one of the most important factors for a noise reduction algorithm because

knowing the boundaries makes it possible to minimize the noise in the gaps as well as enhance the low-frequency amplitude

modulations of the speech.
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Introduction

Listening to speech in the presence of interfering noise is
a demanding task. This is especially true for cochlear
implant (CI) recipients (e.g., Hochberg, Boothroyd,
Weiss, & Hellman, 1992), at least in part because of
the fact that CI recipients have limited access to the
underlying spectral and temporal information in
speech. More recently, there has been extensive research
on noise reduction algorithms and sound coding
strategies to improve CI recipients’ resilience to noise.
This research has led to speech intelligibility improve-
ments both with single-microphone noise reduction
(e.g., Mauger, Arora, & Dawson, 2012) and with multi-
microphone directional noise reduction (e.g., Hersbach,
Grayden, Fallon, & McDermott, 2013; Spriet et al.,
2007). However, the benefit of these single-microphone
algorithms diminishes in the presence of modulated noise

types (e.g., Mauger et al., 2012). An exception could be
made for algorithms that use machine learning tech-
niques (e.g., Goehring et al., 2017), but these algorithms
currently suffer from limited generalization abilities and
have not yet been implemented in clinical devices.
Furthermore, the benefit of the multimicrophone direc-
tional noise reduction algorithms diminishes when the
target and interfering signals are not well separated in
space. Thus, despite the recent improvements in speech
intelligibility outcomes for CI recipients in noisy
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environments, there still remains room for improvement,
especially in more realistic scenarios, such as a restaur-
ant, where interfering noises typically come from many
directions and are almost certainly fluctuating in time.

One potential barrier for improving speech intelligi-
bility in the presence of noise is that relatively little is
known about which cues CI recipients rely on most to
understand speech in noise. Without knowing which
information should be prioritized for encoding, it is dif-
ficult to properly design and optimize any sound coding
algorithm. In an effort to improve this understanding,
Qazi, van Dijk, Moonen, and Wouters (2013) investi-
gated the effects of noise on electrical stimulation
sequences and speech intelligibility in CI recipients.
They suggested that noise affects stimulation sequences
in three primary ways: (a) noise-related stimulation can
fill the gaps between speech segments, (b) stimulation
levels during speech segments can become distorted,
and (c) channels that are dominated by noise can be
selected for stimulation instead of channels that are
dominated by speech. To measure the effect of each of
these factors, Qazi et al. (2013) generated several artifi-
cial stimulation sequences, each of which contained
different combinations of these errors. They presented
these artificial stimulation sequences to CI recipients,
as well as to normal-hearing listeners with a vocoder,
and measured speech intelligibility in stationary noise.
Their results indicated that the most important factor
for maintaining good speech intelligibility was the pres-
ervation of the low-frequency (i.e., what they called
‘‘ON/OFF’’) amplitude modulations of the clean
speech. Furthermore, they argued that one possible
method for preserving these cues would be to minimize
the noise presented in speech gaps.

Koning and Wouters (2012), however, argued that it
is the information encoded in the transient parts of the
speech signal that contributes most to speech intelligibil-
ity. They demonstrated that enhancing speech onset cues
alone improves speech intelligibility in CI recipients
(Koning & Wouters, 2016). By comparison, Qazi et al.
(2013) also inherently enhanced onset and offset cues in
the conditions where they removed noise in the gaps
between speech segments because they always identified
these segments via onset and offset detection with a
priori information. Thus, by removing noise in the
speech gaps in their experiment, they simultaneously
enhanced the saliency of the onsets and offsets. Qazi
et al. (2013) did not, however, investigate the effect of
reducing noise in the gaps when the boundaries between
the speech segments and speech gaps were not perfectly
aligned. Therefore, it is unclear how advantageous the
minimization of the noise in speech gaps is when it does
not co-occur with accurate onset and offset cues.
Furthermore, the importance of the separation of
these two factors becomes clear when considering that

realistic algorithms will not always be able to perfectly
identify the boundaries between speech segments and
speech gaps.

The main purpose of the present study was to system-
atically quantify the relative impact of errors in the noise
reduction gains that are applied within speech segments,
speech gaps, and the transitions between them to deter-
mine which errors contribute most to reducing the benefit
of noise reduction for CI recipients, especially in nonsta-
tionary noise where a clinically significant benefit has yet
to be shown with existing single-channel noise reduction
algorithms. Specifically, noise reduction gain matrices
(i.e., sets of gains across time and frequency) were synthe-
sized for noisy sentences by combining the sets of gains
calculated in each of the three temporal regions from
either a priori signal-to-noise ratios (SNRs) or SNRs com-
puted by noise power density estimation (Cohen, 2003).
Speech intelligibility was then measured in denoised sen-
tences using a basic CI vocoder simulation with normal-
hearing listeners. This protocol provides insight into the
impact of the spectrotemporal degradation in isolation
from an impaired auditory system.

Methods

Whereas Qazi et al. (2013) primarily manipulated chan-
nel selection and current levels within each temporal
region to investigate the impact of noise-induced errors
in stimulation strategies, the present study manipulated
the gains that were applied in a preceding noise reduction
stage to investigate the impact of noise-induced errors on
noise reduction algorithms rather than on channel selec-
tion. Therefore, an underlying assumption in this study
was that a maxima selection strategy, such as the
Advanced Combination Encoded (ACETM, Cochlear
Ltd., New South Wales, Australia), would stimulate
the correct set of channels if it chooses channels from a
representation that has been sufficiently denoised.

Stimuli

A CI with an N-of-M strategy encodes sound by first
separating the input signal into M channels and subse-
quently stimulating a subset of at most N channels at
each frame l. In this study, speech was divided into
128-sample overlapping frames (8ms with a sampling
rate of 16 kHz), and then a Hann window and the
short-time discrete Fourier Transform was applied with
K¼ 128 points to obtain the time-frequency representa-
tion of speech, X(k, l), where k represents the discrete
Fourier Transform bin index. The short-time
discrete Fourier Transform magnitudes were then com-
bined into M¼ 22 channels using nonoverlapping
rectangular weights with spacing that matches Cochlear
Ltd.’s (New South Wales, Australia) sound processor to
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obtain the time-frequency representation X(m, l), where
m represents the channel index, and l represents the
frame index. The channel center frequencies ranged
from 187.5Hz to 7937.5Hz, with bandwidths of 125Hz
for the lowest 9 bands, 250Hz for bands 10 to 13, 375Hz
for bands 14 and 15, 500Hz for bands 16 and 17, 625Hz
for bands 18 and 19, 750Hz for band 20, 875Hz for
band 21, and 1000Hz for band 22. A new frame was
calculated every 1ms.

Sentences were divided temporally into three regions:
speech segments, speech gaps, and speech transitions.
In comparison, Qazi et al. (2013) divided sentences into
only two temporal regions (i.e., speech segments and
speech gaps).Having three rather than two temporal regions
facilitated manipulation of the noise in the gaps independ-
ently from manipulation of the transitions. More specific-
ally, this protocol made it possible to measure the impact of
minimizing noise in the gaps when the transitions are not
perfectly encoded. To do this segmentation, broadband
channel activity, A(l), was defined for each frame as the
number of channels containing speech above a threshold:

Aðl Þ ¼
XM
m¼1

Tl Xðm, l Þð Þ ð1Þ

where the function T�(�) performs elementwise threshold-
ing and returns a value of one for elements that have a
sound pressure level of more than 25 dB (i.e., the default
threshold level in ACE). As in Qazi et al.’s (2013) study,
speech segment onsets were then identified as frames in
which A(l)¼ 0 and A(lþ 1)> 0, and speech segment off-
sets were defined as frames in which A(l)> 0 and
A(lþ 1)¼ 0. Speech segments with A(l)� 1 for the dur-
ation of the segment were dropped, and speech segments
shorter in duration than 20ms that were within 20ms of
another speech segment were combined. This merging
prevented rapid switches between speech and nonspeech
labels. Subsequently, a transition region was defined at
each onset and offset as the 10ms before and the 10ms
after, such that a transition region of 20ms in duration
was created at the start and end of each speech segment.
Finally, the remaining frames were labeled as speech
gaps. An example stimulation sequence for the Danish
sentence, ‘‘Stuen skal nok blive hyggelig,’’ is shown in
Figure 1(a), wherein the gap regions are indicated with
the underlying dark gray shading, the transition regions
with the light gray shading, and the speech regions with
white shading. The 20-ms duration for the transition
region was heuristically chosen to ensure the transition
regions were long enough to be perceptible but short
enough to maintain a segmentation that was still com-
parable with the segmentation in Qazi et al. (2013).

The following general signal model was thereby
considered: Yðk, l Þ ¼ Xðk, l Þ þDðk, l Þ, with X(k, l )

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 1. (a) Electrodogram showing stimulation levels above

threshold for a clean sentence. Speech segments, transitions, and gaps

are identified by the white, light gray, and dark gray shading,

respectively. (b to j) Electrodograms showing unthresholded levels

for the same sentence mixed with speech-shaped noise at 0 dB and

then denoised using the indicated gain matrix, where ĜgĜtĜs indicates

the use of nonideal gains in the gap, transition, and speech regions,

respectively; ĜgĜtGs indicates the use of nonideal gains in the gap and

transition regions but ideal gains in the speech regions, and so forth.
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representing the clean speech, D(k, l) representing the
noise signal, and Y(k, l ) representing the noisy speech
signal. An estimate of the noise spectrum D̂ðk, l Þ was
computed from the noisy signal Y(k, l) using the
improved minima controlled recursive averaging algo-
rithm (Cohen, 2003) with parameters as specified therein
and an initial noise power estimate calculated from the
first 50ms of the mixture.

D̂ðm, l Þ was then computed from D̂ðk, l Þ using the
same rectangular weights as were used for computing
X(m, l) from X(k, l), and a smoothed SNR estimate
�̂ðm, l Þ was obtained using a CI-optimized smoothing
technique (Mauger et al., 2012), which consists of recur-
sive averaging with a¼ .984. From �̂ðm, l Þ, the gains
Ĝðm, l Þ were obtained using the CI-optimized gain func-
tion (Mauger et al., 2012):

Ĝðm, l Þ ¼
�̂ðm, l Þ

�̂ðm, l Þ þ 2:92

 !1:2

ð2Þ

In addition, the ideal gains G(m, l ) were computed using
�(m, l ), which in turn was based on D(m, l ).

Artificial gain matrices were synthesized by concate-
nating segments from either Ĝðm, l Þ or G(m, l ) for each
of the three temporal regions. For example, to create
stimuli without gain errors in the speech gaps, gains
from G(m, l ) were applied to the noisy signal Y(m, l )
in all of the speech gaps, whereas gains from Ĝðm, l Þ were
applied in all of the speech transitions and speech seg-
ments. This condition was named GgĜtĜs to indicate
that the estimated gains were corrected in the speech
gaps, but not in the transitions and the speech segments.
Accordingly, the condition ĜgGtĜs indicates that the
estimated gains were corrected in the speech transitions,
and it follows that the condition GgGtGs signifies that the
estimated gains were corrected in all of the temporal
regions, which is equivalent to ideal Wiener processing
with a CI-optimized gain function.

The final stimulation sequence was computed by
selecting the N¼ 8 channels with the largest remaining
energy. Figure 1(b) shows the sequences for a noisy ver-
sion of the sentence in Figure 1(a), and Figure 1(b to j)
shows the sequences after denoising with each type of
gain matrix. A visual comparison between Figure 1(c)
and (j) highlights the extent of the estimation errors
in ĜgĜtĜs. Subsequently, the remaining figures contain
the stimulation patterns for the conditions where just one
or two of the temporal regions of the gain matrix have
been corrected.

Procedure

Acoustic signals were constructed from each of the
synthesized stimulation sequences using a 22-channel

noise vocoder. Speech intelligibility was then evaluated
by measuring speech reception thresholds (SRTs) with
normal-hearing listeners using the Danish hearing in
noise test (HINT; Nielsen & Dau, 2011). Through an
adaptive procedure, HINT determines the SNR at
which the participants were able to understand 50% of
the sentence material. Each HINT sentence was padded
with 1 s of zeros before the start of the sentence and with
600ms of zeros after the end of the sentence. The sen-
tences were then combined with a randomly selected
segment of either stationary speech-shaped noise
(Nielsen & Dau, 2011) or the International Speech Test
Signal (Holube, Fredelake, Vlaming, & Kollmeier, 2010).
While the stationary noise is shaped to have the same
long-term average spectrum as the HINT sentences, the
International Speech Test Signal has the same temporal
modulations as speech but is not intelligible and is not
shaped to specifically match the target sentences of the
Danish HINT corpus. This mixing procedure resulted in
the noise being played for 1 s before and 600ms after the
target sentence.

As in the standard Danish HINT, the overall amp-
litude of each mixture was gradually increased over the
first 400ms and, likewise, gradually decreased over
the last 400ms. Because the noise estimate was initia-
lized during this ramp-up segment, the noise was
always underestimated at the start. This setup guaran-
teed the presence of pronounced, but realistic, noise
reduction errors at the start of the target sentence,
even in the case of the stationary noise. The resulting
mixtures were normalized so that the sound pressure
level over the duration of the target sentence was
always 65 dB.

At the start of the session, participants first heard
vocoded sentences in quiet and then in noise to become
familiar with the task. Testing subsequently commenced
with either the stationary or the modulated noise. There
were eight noise reduction conditions, and together with
the reference condition using unprocessed noisy speech
(i.e., processed with unity gains), there were nine test
conditions. One SRT was collected per condition.
The order of the presentation of test lists and conditions
was randomized. The testing was carried out in a double-
walled booth, using equalized Sennheiser HD-650 circu-
maural headphones and a computer running a MATLAB
graphical user interface.

Participants

Thirty normal-hearing listeners participated in this
study. The participants were randomly assigned to one
of two groups, each of which heard either the stationary
or the modulated noise. Thus, each group consisted of 15
participants. Participants were at least 18 years of age,
had audiometric thresholds of less than or equal to 20 dB
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hearing level in both ears (125Hz to 8 kHz), and were
native Danish speakers. All participants provided
informed consent, and the experiment was approved by
the Science-Ethics Committee for the Capital Region of
Denmark (reference H-16036391). The participants were
paid for their participation.

The first six participants in this study took part in an
extended version of the protocol, wherein two SRTs were
collected for each condition, and each listener heard both
stationary and modulated noise. The results for these six
listeners were reported in Kressner et al. (2017).
However, because of the limited size of the HINT
corpus, this extended protocol required that the partici-
pants heard each sentence multiple times. To limit the
influence of the training effects that are inevitable with
this kind of repetition (Yund & Woods, 2010), the proto-
col for the remaining 24 participants removed repetitions
altogether by collecting only one SRT for one type of
noise. The scores for the repetitions (i.e., the second
through fourth presentations of each list) from the first
six participants were discarded.

Analysis

Statistical inference was performed by fitting a linear
mixed-effects model to the SRT improvement scores,
which were calculated for each individual relative to the
individual’s score in the reference unprocessed condition.
The fixed effects terms of the mixed model were the noise
type, the gains in the gap regions, the gains in the transition
regions, and the gains in the speech regions. Themodel also
included a subject-specific intercept (i.e., the participants
were treated as a random factor, as is standard in a
repeated-measures design). The model was implemented
in the R software environment using the lme4 library
(Bates, Mächler, Bolker, & Walker, 2015). Further,
model selection was carried out with the lmerTest library
(Kuznetsova, Brockhoff, & Christensen, 2017), which uses
stepwise deletion of model terms with high p values to per-
form backward elimination of random-effect terms and
then backward elimination of fixed-effect terms
(Kuznetsova, Christensen, Bavay, & Brockhoff, 2015).
The p values for the fixed effects were calculated from F
tests based on Satterthwaite’s approximation of denomin-
ator degrees of freedom, and the p values for the random
effects were calculated based on likelihood ratio tests
(Kuznetsova et al., 2015).

Post hoc analysis was performed through contrasts of
estimated marginal means using the emmeans library
(Lenth, 2018; Searle, Speed, & Milliken, 1980) and the
lme4 model object. The p values were calculated using
the Kenward–Roger’s degrees-of-freedom method, and a
correction for the multiple comparisons was included
using the Tukey method. Significant differences are
reported using a¼ .05.

Results

Figure 2 shows SRT scores for each individual listener,
and Figure 3 shows the group distributions of SRT and
SRT improvement (i.e., SRTs relative to the reference
unprocessed condition). Group results were modeled
using the aforementioned linear mixed-effects model.
The model showed a significant main effect for the
gains in the gap regions, F(1, 196)¼ 757.54, p< .0001;
the gains in the transition regions, F(1, 196)¼ 186.90,
p< .0001; the gains in the speech regions, F(1, 196)¼
392.25, p< .0001; and the noise type, F(1, 28)¼ 9.94,
p< .01. The interactions between the noise type and
the gains in the gap regions and between the noise type
and the gains in the speech regions were both significant,
F(1, 196)¼ 12.73, p< .001; F(1, 196)¼ 7.01, p< .01,
whereas the interaction between the noise type and
the gains in the transition regions was not significant,
F(1, 196)¼ 1.06, p¼ .30. Furthermore, the interactions
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Figure 2. Individual SRTs for listeners who heard (a) stationary

noise and (b) modulated noise. The condition labels along the

abscissa are defined in the text, as well as in the caption of Figure 1.

SRTs¼ speech reception thresholds; UN¼ unprocessed noisy

speech.
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between the gains in the gap regions and the gains in the
transition regions and between the gains in the gap
regions and the gains in the speech regions were both
significant, F(1, 196)¼ 55.09, p< .0001; F(1, 196)¼
133.42, p< .0001. On the other hand, the interaction
between the gains in the transition regions and the gains
in the speech regions was nonsignificant, F(1, 196) 0.73,
p¼ .39. All three-way interactions with the noise type
were significant, F(1, 196)¼ 4.80, p¼ .03 with the gap
and transition regions; F(1, 196)¼ 8.19, p< .01 with the
gap and speech regions; and F(1, 196)¼ 17.68, p< .0001
with the transition and speech regions, but the three-way
interaction between the gains in each of the three temporal
regions was nonsignificant, F(1, 196)¼ 0.11, p¼ .74. Last,
the four-way interaction was significant, F(1, 196)¼ 8.55,
p< .01, meaning that none of the terms could be elimi-
nated during model selection.

Pairwise comparisons were subsequently conducted
between each of the conditions. Groups of conditions

that did not have significantly different means from
one another are indicated via the colored, horizontal
lines in the bottom of Figure 3(b). Neither ĜgGtĜs

nor ĜgĜtGs yielded scores with means that were signifi-
cantly different from the scores with the baseline ĜgĜtĜs

gains. However, the mean SRT improvement after
applying the GgĜtĜs gain matrix was significantly differ-
ent from that of ĜgĜtĜs, but only in the case of the
modulated noise type. Furthermore, each of the gain
matrices with two of the three regions corrected yielded
improvements with means that were significantly differ-
ent from both the baseline ĜgĜtĜs gain matrix and the
ideal GgGtGs gain matrix. Thus, the introduction of any
errors, even in temporal regions with a relatively short
duration such as the transition regions, significantly
influences the intelligibility of the processed speech.

Because normal-hearing listeners generally do not
benefit from single-microphone noise reduction algo-
rithms (Hu & Loizou, 2007), it is not surprising that

(a)

(b)

Figure 3. (a) SRT and (b) SRT improvements relative to the reference condition (UN). Means are marked with stars. Boxplots show the

25th, 50th, and 75th percentiles, together with whiskers that extend to cover all data points not considered outliers. Outliers are marked

with circles. SRT improvements that were not significantly different from one another (a¼ .05) are grouped via colored, horizontal lines at

the bottom of the plot. The condition labels along the abscissa are defined in the text, as well as in the caption of Figure 1.

SRTs¼ speech reception thresholds; UN¼ unprocessed noisy speech.
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the ĜgĜtĜs gain matrix did not provide an SRT improve-
ment for either noise type, despite that the gain matrix
was estimated with a CI-optimized noise reduction algo-
rithm that has been shown to improve speech intelligi-
bility for CI recipients (Mauger et al., 2012). Similarly, it
is not surprising that the SRTs improved by as much as
30 dB when a priori information about the local SNRs
was used, as this was the maximum possible benefit given
the starting SNR and adaptation rules of the SRT meas-
urement method (Nielsen & Dau, 2011).

Gap Regions

The impact of reducing errors in the gap regions can be
evaluated in two ways: (a) by comparing the SRT
improvements with the ĜgGtGs gain matrix to those
with the GgGtGs gain matrix and (b) by comparing the
SRT improvements with the GgĜtĜs gain matrix to those
with the ĜgĜtĜs gain matrix. In the former case where
the only errors that were present were those in the gaps,
SRT improvements were smaller than for the gain matri-
ces which contained errors either only in the speech
regions or only in the transition regions. These results
suggest that errors in the gap regions are more detrimen-
tal than errors in the other regions.

In the latter case where only errors in the gaps were
removed from the estimated gain matrix, the mean
change in SRT in the presence of stationary noise was
not significantly different from the mean change in SRT
with the baseline gain matrix. In the presence of the
modulated noise, however, the mean SRT improvement
was significantly different—though the magnitude of the
change in SRT varied widely across participants. These
results suggest that, when the detection of the transitions
between the gaps and speech segments is imprecise, mini-
mizing noise reduction errors in the gaps may only be
beneficial in nonstationary noise.

Transition Regions

The impact of removing the gain errors in the transition
regions (i.e., ĜgGtĜs compared with ĜgĜtĜs) was non-
significant with both noise types. Furthermore, the high-
est mean SRT improvements obtained, except those
obtained with the ideal gain matrices, were obtained
with the gain matrices that contained errors only in the
transition regions (i.e., GgĜtGs). These results point
toward the conclusion that errors in the transition
regions have limited impact compared with those in the
gap or speech regions. However, the outcomes are likely
confounded by the fact that the duration of the transi-
tion regions is relatively short compared with the other
two temporal regions.

Despite their relatively limited duration, the inter-
action of the gains in the transition regions and the

gains in the gap regions was highly significant. This
interaction is further highlighted by the comparison
between the GgĜtĜs and GgGtĜs gain matrices, where
the paired comparisons within each noise type revealed
significant differences. These results imply that the
potential benefit of minimizing the stimulation in the
gap regions largely depends on how accurately the
boundaries between the gaps and segments of speech
are encoded.

Speech Regions

In the presence of both the stationary and modulated
noise, the impact of removing the gain errors in the
speech regions (i.e., ĜgĜtGs compared with ĜgĜtĜs)
was nonsignificant. On the other hand, when the only
errors that were present were those that were in the
speech regions (i.e., GgGtĜs compared with GgGtGs),
SRT improvements were greater than when the gain
matrices contained only errors in the gap regions but
smaller than when the gain matrices contained only
errors in the transition regions.

Interestingly, the interaction between the gains in the
transition regions and the gains in the speech regions was
nonsignificant, implying that—unlike with the gap
regions—the magnitude of the benefit from correcting
gain errors in the speech regions is not dependent on
how accurately the boundaries between the speech and
gap regions are identified. This is made especially clear
by the nonsignificance of the difference between the
ĜgĜtGs outcomes and the ĜgGtGs outcomes.

Discussion

The primary objective for this investigation was to deter-
mine which noise reduction gain errors are most respon-
sible for limiting the benefit CI recipients receive from
noise reduction algorithms, especially in modulated
noise where a clinically significant benefit has not yet
been shown. In modulated noise, errors in the gap
regions had the most impact because correcting these
errors led to a significant improvement. However, in sta-
tionary noise, these differences were nonsignificant.
Thus, it seems that the region with the most detrimental
effect depends on the temporal characteristics of the
interfering noise. Despite this inconsistency, removing
errors in both the transitions and the gaps simultan-
eously had a large impact in both noise types.
Therefore, correctly encoding these two regions together
seems to contribute substantially to understanding
speech in noise. Overall though, the largest mean SRT
improvements were obtained when both the speech and
gap regions were restored. However, this phenomenon
may, at least in part, be explained by the fact that the
remaining distortions were restricted in time due to the

Kressner et al. 7



relatively short duration of the transition regions com-
pared with the other two regions.

Noise Reduction Errors Versus Stimulation Errors

In this study, artificial noise reduction gain matrices were
created to systematically investigate the effects of noise
reduction errors on speech intelligibility in noise. Despite
the fact that Qazi et al. (2013) focused instead on errors
in the stimulation pattern itself rather than in the
noise reduction gain matrix, many comparisons can be
made between the results in this study with those in
Qazi et al. (2013).

For example, Qazi et al. (2013) measured the impact
of ideal Wiener filtering and obtained a mean SRT of
�16.0 dB for their normal-hearing listeners tested with a
vocoder simulation. This ideal Wiener filtering condition
matches closely to the GgGtGs condition in this study,
with small differences existing only in the gain function
and recursive smoothing that was applied. Listeners in
this study obtained a mean SRT of �18.0 dB in station-
ary noise, which aligns relatively well.

Since the gains in the speech and transition regions in
the ĜgGtGs condition in this study were determined
based on a priori SNRs, one can assume that the enve-
lopes in the speech segments were completely restored by
the noise reduction. The gap regions, on the other hand,
included noise reduction that was based on estimated
SNRs and, thereby, likely contained noise-dominated
stimulation. Therefore, this condition corresponds to
that of the ‘‘noise in the gaps’’ condition in Qazi et al.
(2013), where the stimulation pattern from the clean sen-
tence was presented during speech segments, while the
stimulation pattern from the noise was presented in the
gaps. However, Qazi et al. (2013) reported SRT improve-
ments of about 11.5 dB for the normal-hearing listeners
when the ‘‘noise in the gaps’’ stimuli were presented in
stationary noise. In comparison, the normal-hearing lis-
teners in this study obtained a mean SRT improvement
of only 4.5 dB when presented with the stationary noise.
It is not entirely clear from where this large difference
arises, but one contributing factor could be differences
between the speech and how their respective interfering
noises are shaped. Specifically, the Danish HINT mater-
ial was recorded with a male talker whose speech is
dominated by low-frequency information that falls pri-
marily within only the first channel. In comparison,
results collected using a corpus with a female talker as
in Qazi et al. (2013) would likely show a much stronger
effect, particularly when using a vocoder, as the funda-
mental frequency and formant frequencies of a female
talker are likely to be represented by multiple CI chan-
nels. A second contributing factor could be that the esti-
mated gains that were applied within the gap regions
may actually have introduced distortions that were

more detrimental than presenting the unaltered noise-
dominated envelopes.

An additional comparison can be made between the
GgĜtĜs and GgGtĜs conditions in this study with the
‘‘ideal voice activity detector’’ condition in Qazi et al.
(2013). In the ‘‘ideal voice activity detector’’ condition,
stimulation patterns were synthesized by combining the
channel selection pattern as specified by the clean sen-
tence with the current levels as specified by the noisy
mixture. Therefore, these stimulation patterns contained
zero stimulation in the gap regions and ideal transition
encoding, as well as ideal channel selection in the speech
regions together with distorted current levels. The pri-
mary differences between these stimulation patterns
and the sentences processed with GgĜtĜs gain matrix in
the current study then are whether the transitions were
encoded accurately, as well as whether the channels
were correctly selected within the speech regions.
On the other hand, the sentences processed with the
GgGtĜs gain matrix contained accurate transition encod-
ing and, therefore, only differ in whether the channels
were correctly selected within the speech regions.
In Qazi et al. (2013), the normal-hearing listeners
obtained a mean SRT improvement of 19.0 dB with
these stimulation patterns. In comparison, SRT
improvements in stationary noise in the current study
were on average 0.5 dB with the GgĜtĜs gain matrix
and 7.0 dB with the GgGtĜs gain matrix. Therefore,
even when noise-dominated stimulation in the gap
regions was minimized and the transitions were ideally
encoded, the listeners in the current study obtained a
much smaller benefit than the normal-hearing listeners
listening to the stimulation patterns with ideal channel
selection. This large difference suggests that there
remained enough distortions in the denoised envelopes
within the speech regions to lead to adversely inaccurate
channel selection. Furthermore, when the transition
encoding is imprecise, the remaining benefit from mini-
mizing noise-dominated stimulation in the gap regions
was close to negligible.

Transient- and Onset-Enhancing Stimulation

Comparisons can also be made between this study and
some of the previous studies that argued for the import-
ance of the transition region. Vandali (2001) proposed a
speech coding strategy called the transient emphasis
spectral maxima (TESM) strategy, which was developed
specifically to emphasize short-duration onset cues in
speech. This strategy applied additional gain to a channel
whenever there was a rapid rise in the channel’s enve-
lope. Furthermore, higher gain was applied when there
was a rapid rise followed by a rapid fall (e.g., as might
occur for a consonant burst) when compared with a
rapid rise followed by a steady envelope level (e.g., as
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might occur at the onset of a vowel). In comparison with
the recipients’ everyday strategy, the TESM strategy pro-
vided significant improvements in the perception of
nasal, stop, and fricative consonants. When full sen-
tences were presented in multitalker noise at either 5 or
10 dB SNR—where the SNR presented depended on
whether the recipient was a ‘‘good’’ performer—there
was a statistically significant mean increase in word rec-
ognition of 5.7%. A similar trend was reported in
Bhattacharya, Vandali, and Zeng (2011), where recipi-
ents received a benefit of approximately 8.5% with sen-
tences mixed with stationary, speech-shaped noise at
10 dB SNR, 1.5% with sentences mixed at 5 dB SNR,
and 0% with sentences mixed at 0 dB SNR. In contrast,
however, Holden, Vandali, Skinner, Fourakis, and
Holden (2005) found no significant difference in speech
intelligibility with sentences presented in noise when this
strategy was compared with ACE.

Another stimulation strategy called the envelope
enhancement (EE) strategy focuses on onset enhance-
ment (Geurts & Wouters, 1999; Koning & Wouters,
2012, 2016). Similar to the TESM strategy that enhances
rapid increases in a channel’s envelope, the EE strategy
uses peak detection to enhance rapid increases in the
envelopes. CI recipients in Koning and Wouters (2016)
received a mean improvement of 25.6% in keyword
understanding for sentences mixed with stationary,
speech-shaped noise at �2 dB SNR, a 17.7% mean
improvement at 2 dB SNR, and a 11.7% mean improve-
ment at 6 dB SNR. For speech presented with an inter-
fering talker, there was a significant improvement of 1 dB
with this strategy.

To summarize the results from both the TESM and
EE strategies, there seems to be a small, but significant
benefit with the enhancement of onset information. In
the present study, correcting gain errors in just the tran-
sition regions (i.e., ĜgGtĜs) with a priori information
yielded, on average, a 0.5 dB and 2.5 dB SRT benefit
for stationary and modulated noise, respectively.
Therefore, the results in this study support those of the
previous studies. One important difference between the
ĜgGtĜs condition in this study and the onset-enhance-
ment-based stimulation strategies though is that manipu-
lations have also occurred at the offsets as opposed to
only at the onsets. In addition, nonideal noise reduction
has been applied within the gap and speech regions,
which likely introduces detrimental distortions that
would otherwise not be present.

CI Simulation

The individual SRTs measured for unprocessed speech in
the current study ranged betweenþ 3dB andþ 11dB. For
comparison, SRTs for CI recipients often range anywhere
between �5dB andþ 10dB (see, e.g., Mauger, Warren,

Knight, Goorevich, & Nel, 2014). However, the mean
SRT for the Danish HINT corpus with the speech-
shaped stationary noise is reported to be �2.52dB for
normal-hearing listeners (Nielsen & Dau, 2011). Thus,
the CI simulation (i.e., vocoder processing together with
N-of-M channel selection) increased the mean SRT by
roughly 8.4 dB (i.e., from �2.5 dB toþ 5.9 dB, albeit
with different listeners). Although this elevation in SRT
due to the CI simulation is higher than could be expected
based on vocoder studies in the literature that do not
include a channel selection stage, Qazi et al. (2013) have
shown that the combination of vocoder processing with
N-of-M processing elevated SRTs in their study with the
Flemish/Dutch LIST by 6.3 dB (from �8.5 dB in the
unprocessed condition to �2.2 dB in the simulated condi-
tion). Therefore, a change in SRT on the order of 8.4 dB is
not unprecedented.

Dip Listening

Typically, normal-hearing listeners are able to extract
information related to the target speech during temporal
dips in the interfering noise (Duquesnoy, 1983; Festen &
Plomp, 1990). This process is sometimes called listening
in the dips. However, the normal-hearing listeners in the
current study did not exhibit dip listening, as evidenced
by the fact that SRTs were worse in the presence of
modulated noise than in stationary noise in the unpro-
cessed condition.

Bernstein and Grant (2009), among others, have
demonstrated that hearing-impaired listeners exhibit dif-
ficulties with dip listening, and they have furthermore
suggested that these difficulties may be attributed to
the reduced fluctuating-masker benefit that is associated
with the higher SNRs they require to obtain 50% speech
recognition. Given that the normal-hearing listeners in
the current study had elevated SRTs due to the CI simu-
lation, one may have expected to observe reduced dip
listening rather than a lack thereof. Based on this line
of thought, inducing lower SRTs by, for example, using
a simpler speech corpus or a different CI simulation tech-
nique, would lead to dip listening. However, Qin and
Oxenham (2003) investigated dip listening for a range
of vocoders, and by increasing the number of channels
in their vocoder processing, they effectively lowered the
range of SRTs observed among their listeners, and des-
pite this lowering of the operating range of SNRs, single-
talker interference was still more detrimental to speech
recognition than the steady-state noise.

Fu and Nogaki (2005) further investigated whether the
lack of dip listening due to vocoder processing is a result
of the reduced number of spectral channels or the channel
interactions. They found that, as long as the spectral
channels in their vocoder did not overlap, the normal-
hearing listeners were able to obtain a significant masking
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release; however, whenever crossover between the carrier
bands was introduced, masking release was absent.
Therefore, the lack of dip listening in the current study
can likely be attributed specifically to the presence of
crossover between carrier bands in the vocoder.

Visual Cues

Bernstein and Grant (2009) showed that both normal-
hearing and hearing-impaired listeners obtain a signifi-
cant improvement in their ability to listen in the dips of
fluctuating maskers when they are presented with both
audio and visual cues when compared with audio cues
alone. Their study, among others, highlights the import-
ance of visual cues, as well as the interaction between
audio and visual cues, in the perception of speech in
noise in more realistic environments. Relatively little is
known, however, about the influence of visual cues on
speech perception specifically in CI recipients.
Depending on factors such as whether a recipient was
pre- or postlingually deafened, how early a recipient
was implanted postdeafening, and whether a recipient
can lip-read, the integration of and reliance on visual
cues can vary drastically among CI recipients (see, e.g.,
Champoux, Lepore, Gagné, & Théoret, 2009; Schorr,
Fox, van Wassenhove, & Knudsen, 2005). It is clear
nonetheless that a deeper understanding of the inter-
action between audio and visual cues in general will
become increasingly more relevant as focus turns to the
investigation of more realistic listening scenarios.

An interesting extension of the current investigation
would be to identify whether visual cues influence the
contribution of each of the different temporal regions of
speech to intelligibility. Such an investigation would help
to identify the relative contribution of each of these audio
cues in more realistic listening scenarios. For example, it
could be expected that an enhancement of the temporal
cues which aid in the segmentation of words would pro-
vide a smaller benefit to CI recipients when the audio cues
are presented in combination with visual cues. This
hypothesis is supported by the fact that Dorman et al.
(2016) have shown that CI recipients obtain improved
lexical segmentation when they are provided with visual
information alongside the acoustic information.

Implications and Limitations

The results in the current study provide a framework for
hypothesizing how CI recipients would be affected by
noise reduction errors in the speech, gap, and transition
regions. One of the primary conclusions by Qazi et al.
(2013) was that CI recipients can tolerate significantly
less noise in the gap regions when compared with their
normal-hearing counterparts. Therefore, a logical
hypothesis would be that CI recipients would actually

benefit more from minimizing noise reduction errors in
the gaps between speech segments than the normal-hear-
ing listeners in this study did. On the other hand, because
CI recipients rely so heavily on the low-frequency amp-
litude modulations of speech, presumably more so than
normal-hearing listeners, it is likely that the magnitude
of the benefit from the suppression of noise in the gaps
will be substantially smaller than suggested by Qazi et al.
(2013) in realistic algorithms, given that realistic algo-
rithms will be unable to detect onsets and offsets pre-
cisely. However, it is important to test with CI
recipients rather than with normal-hearing listeners and
a vocoder simulation, as results obtained with CI simu-
lations can be misleading.

An additional, yet potentially important, limitation of
the experimental design in this study is that the sentences
were segmented into speech, gap, and transitions regions
using a heuristically designed method. The transition
regions were fixed to be 20ms in duration, but even
short-duration speech signals range in duration from
just 5ms to as long as 50ms (Vandali, 2001).
Therefore, the current segmentation method may have
led to the labeling of transition regions that did not
accurately reflect the location of the true transition
regions and, thereby, may have led to an over- or under-
estimation of the impact of errors in these regions. On
the other hand, segmenting sentences in this way facili-
tated comparisons with the segmentation of sentences in
Qazi et al. (2013), which was largely advantageous.

Conclusion

Qazi et al. (2013) suggested that the most important
factor for attaining high speech intelligibility in noise
with CI listeners is to preserve the low-frequency ampli-
tude modulations of speech across time and frequency in
the stimulation patterns. In their study, both normal-
hearing listeners tested with a vocoder simulation and
CI recipients achieved the largest improvement in intel-
ligibility when there was no stimulation in the gaps
between speech segments. In a realistic algorithm, how-
ever, the identification of these regions will be imperfect,
and the results from the current study suggest that the
benefit of attenuating stimulation during speech gaps is
largely diminished when the transitions between the
speech and speech gaps are distorted.

Although some listeners in the current study obtained
a large benefit in modulated noise with the minimization
of gain errors in the gaps while errors in the transitions
remained present, their intelligibility improvement can
likely be attributed to the fact that they could listen in
the dips for salient onset cues. Because CI recipients are
typically less able to listen in the dips (Nelson, Jin,
Carney, & Nelson, 2003), this benefit is likely to be less
pronounced in CI listeners. Therefore, removing
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stimulation in the speech gaps may itself not be such a
key component to improving speech intelligibility in
noise with CI recipients. Instead, a more effective goal
may be to identify the boundaries between the speech
and gaps so that, while minimizing the stimulation of
noise-dominated channels in the gaps, it will also be pos-
sible to deliver salient cues related to the transients.
These two components together seem to contribute sub-
stantially to understanding speech in noise, at least with
the normal-hearing listeners tested in the current study
using speech degraded by a vocoder simulation.

Acknowledgments

The authors would like to thank all of the subjects who parti-
cipated in the experiment, as well as Kristine Aavild Juhl and

Rasmus Malik Thaarup Høegh, for helping to conduct the
testing.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this
article.

Funding

The authors disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article:
This work was supported by the Danish Council for
Independent Research with grant number DFF-5054-00072.

ORCID iD

Abigail A. Kressner http://orcid.org/0000-0003-4274-3948
Tobias May http://orcid.org/0000-0002-5463-5509

References
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