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ABSTRACT
Background. Understanding the underlying factors that determine the relative abun-
dance of plant species is critical to predict both biodiversity and ecosystem function.
Biotic and abiotic factors can shape the distribution and the relative abundance of
species across natural communities, greatly influencing local biodiversity.
Methods. Using a combination of an observational study and a five-year plant removal
experiment we: (1) documented how plant diversity and composition of montane
meadow assemblages vary along a plant dominance gradient using an observational
study; (2) tracked above- and belowground functional traits of co-dominant plant
species Potentilla and Festuca along a plant dominance gradient in an observational
study; (3) determined whether plant species diversity and composition was directly
influenced by commonly occurring species Potentilla and Festuca with the use of
a randomized plot design, 5-year plant removal experiment (no removal control,
Potentilla removed, Festuca removed, n= 10).
Results. We found that subordinate species diversity and compositional dissimilarity
were greatest in Potentilla and Festuca co-dominated sites, where neither Potentilla nor
Festuca dominated, rather than at sites where either species became dominant. Further,
while above- and belowground plant functional traits varied along a dominance
gradient, they did so in a way that inconsistently predicted plant species relative
abundance. Also, neither variation in plant functional traits of Festuca andPotentillanor
variation in resources and conditions (such as soil nitrogen and temperature) explained
our subordinate diversity patterns. Finally, neither Potentilla nor Festuca influenced
subordinate diversity or composition when we directly tested for their impacts in a
plant removal experiment.
Discussion. Taken together, patterns of subordinate diversity and composition were
likely driven by abiotic factors rather than biotic interactions. As a result, the role of
abiotic factors influencing local-level species interactions can be just as important as
biotic interactions themselves in structuring plant communities.
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INTRODUCTION
Linkages between species’ relative abundance and ecosystem function are important to
predict ecosystem resistance and resilience to global change pressures. Dominant species,
with high relative abundance (i.e., primary production), have been shown to strongly
impact community dynamics and ecosystem function (Whittaker, 1965; Wardle et al.,
1999; Grime, 1977; Grime, 2001; Grime, 2006; Hooper et al., 2005). Specifically, dominant
species shape the dynamics of communities by influencing subordinate species’ presence
and abundance (Garbin et al., 2016; Gibson et al., 2012; Grman & Suding, 2010). According
to Grime’s (1998) ‘‘mass ratio hypothesis’’ species with greater primary production exert
the main controls for the functioning of ecosystems. Based on this hypothesis, dominant
species are considered more important in an ecosystem because of the greater aboveground
abundance of biomass or leaf area (e.g., foliar cover) that promotes resource uptake.

However, an increasing amount of recent studies (Mariotte et al., 2013a; Mariotte
et al., 2013b; Mariotte, 2014) are showing that the subordinate species potentially have an
even greater impact on ecosystem function, acting sometimes as a sieve that influences
the regeneration of dominant species following perturbations (Grime, 1998). In fact,
the importance of subordinate species may be seen during environmental change. For
example, the results of a mesocosm experiment (Kardol et al., 2010) and a field experiment
in mountain grassland (Mariotte et al., 2013a) demonstrated that subordinate species can
produce relatively more biomass in changed environmental conditions, such as a drought,
promoting community stability in a time of disturbance. This suggests that dominant
species can respond strongly to the direct presence of an abiotic factor, while subordinate
species can be more resistant to abiotic influences and take advantage of the reduced
competition (Mariotte et al., 2013a). As conditions and resources vary along environmental
gradients, such environmental filters can select the ability of species to acquire resources
and/or tolerate conditions and dominate in local communities. In fact, dominant and
subordinate species have been shown to vary in above- and belowground functional traits
(e.g., specific leaf area and height) across environmental gradients (Wellstein et al., 2013).

Understanding the relative importance of biotic vs. abiotic processes determining
the relative abundances of species (Wisz et al., 2013), and how these processes generate
the plant diversity patterns we see across space and time is a critical ecological focus
of studies. Alongside estimating species-specific abundance and biodiversity, functional
traits, provide a critical link between species relative abundances and the functioning
of ecosystems (Lavorel, 2013). Dominant and subordinate species have been shown to
differ in aboveground functional traits that determine plant performance. For instance,
dominant species have fast growing/high resource acquisition strategies while subordinate
species are associated with resource conservation/slow growing strategies across (Diaz
et al., 2004; Wright et al., 2004; Mariotte et al., 2013b; Mariotte, 2014) and within species
(Read et al., 2014; Korner & Renhardt, 1987). We investigated how subordinate species
diversity and composition varied along a plant dominance gradient and then we directly
tested the effects of two co-occurring dominant montane meadow plant species: Festuca
thurberi (hereafter Festuca) and Potentilla graciilis (hereafter Potentilla) on community
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diversity and composition of subordinate species. We first conducted an observational
study that compared subordinate diversity and composition along a plant dominance
gradient (from Potentilla dominance to Potentilla and Festuca co-dominance to Festuca
dominance). We then conducted a four-year plant removal study that directly tested
the effects of Festuca and Potentilla on subordinate species diversity and compositional
similarity with the following treatments: control (no plant removal), Potentilla removed,
Festuca removed. Specifically, we asked the following research questions: (1) does diversity
and composition of subordinate montane meadow plant assemblages vary across and
within a Festuca-Potentilla dominance gradient?; (2) do resources and conditions differ
across andwithin a Festuca-Potentilla dominance gradient?; (3) do above- and belowground
functional traits differ in Festuca and Potentilla across the dominance gradient to explain
differences in subordinate diversity and composition?

MATERIALS AND METHODS
Study site
Our study sites were located at the Rocky Mountain Biological Laboratory (RMBL), Gothic
Colorado (latitude 38◦53′N, longitude 107◦02′W, elevation 2,920 m above sea level)
(Saleska, Harte & Torn, 1999). Annual precipitation averages 750 mm, 80% of which was
snow (snowmelt typically ending in May) (Saleska, Harte & Torn, 1999; Harte & Shaw,
1995). Mean daily-average summer air temperature is ∼10 ◦C. Mean snowfall at RMBL is
11,140 cm with a 24-year trend towards lower snowfall overtime (Inouye et al., 2000) with
field summer seasons ranging from 0.69 m and 0.47 m (water equivalent), respectively
(Harte & Shaw, 1995). Soil texture is a well-drained Cryoboroll, which is a deep rocky
outcrop that is non-calcareous and formed on a glacial till (Saleska, Harte & Torn, 1999).
Below a sparse litter layer (due to snowpack), the soil is uniform in color and texture down
to about 50 cm. Organic content averages ∼10% at a soil depth of 5 cm below the litter
layer and drops to ∼6% at 50 cm (Harte & Shaw, 1995). Soils at the experimental and
observational sites averaged a pH of 5.7–6.3 (Saleska, Harte & Torn, 1999).

Experimental design
Observational study
We selected three montane meadow sites based on the frequency and abundance of
commonly occurring plant species: (1) Festuca dominated site: Festuca thurberi exhibited
high abundance (i.e., Potentilla low abundance), (2) Co-dominated site: Festuca and
Potentilla exhibited similar abundances (i.e., co-dominated), and (3) Potentilla dominated
site: Potentilla gracilis exhibited high abundance (i.e., Festuca low abundance). Specifically,
we determined plant dominance at the scale of the montane meadow site based on the
relative abundance and frequency of plant species (Mariotte et al., 2013a; Mariotte et al.,
2013b; Mariotte, 2014); with dominant species being the most frequent and abundant
(based on species-specific foliar cover measurements). In each observational site, we
established 9, 1-m2 plots along three parallel transects (three 1-m2 plots per transect; each
1-m2 plot along a transect exhibited one of the following categories: Potentilla Dominated,
Festuca Dominated, and Co-Dominated by Potentilla and Festuca).
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Experimental study
We manipulated the presence of Festuca and Potentilla, which co-dominate within this
existing montane meadow vegetation, across 1.5 m × 1.5 m plots (N = 30). The plots
were spaced one meter from each other in a completely randomized plot design with
the following three treatments: (1) control (no plant species removed), Festuca removed,
Potentilla removed. In removal treatments, plant species were clipped (to one cm from
the ground) every other week throughout the growing season (June–August), for three
growing seasons (2013–2015).

Plant community measurements
To examine how subordinate diversity varied along a plant dominance gradient
(Observational Study) and how dominant species directly affected subordinate diversity
(Experimental Study), we measured species-specific foliar cover, species richness (the
number of species), Shannon’s diversity and evenness in each observational and
experimental plot twice in each growing season (Observational Study = one growing
season, Experimental Study = three growing seasons). To estimate species-specific foliar
cover, we used a modified Braun-Blanquet scale that included six categories: <1%, 1–5%,
5–25%, 25–50%, 50–75%, 75–100%. The median of each cover class category was assigned
to each plant species in each plot and used as an estimate of species-specific abundance.
Shannon’s diversity (H ′) was calculated as: H ′ =−sum(pi∗ (ln∗pi)) and evenness was
calculated as J ′=H ′/S, S is species’ richness.

Above and below ground functional trait measurements
To determine above- and belowground variability across the three sites (varying in
dominance of Festuca and Potentilla), two 30-meter transects were established at each
site (outside of our plant sampling plots). Every six meters, a 1 m × 1 m plot was placed
(totaling 5, 1-m2 sampling plots per transect and N = 10 per site). At each plot for Festuca
and Potentilla, percent species-specific foliar cover was recorded (see methods above) and
leaves and roots were harvested according to the methods by Cornelissen et al. (2003). We
quantified specific leaf area (SLA) by harvesting three relatively young, but fully expanded
leaves from each individual. Leaves were then scanned and we used ImageJ to estimate leaf
area (cm2). Leaves were then oven dried for approximately 48 hours at 65 ◦C and weighted.
We then divided area by mass to obtain SLA (cm2 g−1). We sampled absorptive roots
from a single individual of each species (Festuca and Potentilla) per plot in each transect to
estimate specific root length (SRL, cm g−1). For Potentilla we dug up the entire plant and
root systems with a spade and then bagged the entire mass for later analysis. For Festuca
we used a soil core (one cm in diameter ×10 cm in length) to sample roots from the plant
species, by angling the soil core into the base of the plant, to ensure only roots of that
species were extracted. Ten fine root pieces from each core were separated and used for
analysis. Using ImageJ again, we scanned and interpreted the data using a Plugin called ‘IJ
Rhizo v0beta’. We then oven dried roots for approximately 48 hours at 65 ◦C and weighted.
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Microclimate measurements
To determine how resources and conditions varied along a dominance gradient
(Observational study), as well as being impacted by dominant species (Experimental study),
we tracked light and soil nutrient availability (resources) as well as soil temperature
(conditions). We measured photosynthetic active radiation (PAR, hereafter light
availability) once during the peak of the growing season (July) in each of the experimental
and observational plots. Soil temperature and soil nitrogen availability were measured
overtime by being deployed, ibuttons and resin bags, in early June and retrieved from
plots in late July. To estimate light availability below the vegetation canopy, we used a
line-integrating ceptometer (Decagon Accupar; Decagon Devices, Pullman, WA) with all
light availability measurements made on clear days between 11 am and 2 pm. Specifically,
we placed the line-integrating ceptometer approximately 2 centimeters from the ground.
To determine soil temperature, we used ibuttons (MAXIM) that recorded surface soil
temperature every minute. To assess the availability of NO3-N and NH4-N in the soil
solution, we placed mixed-bed ion-exchange resin bags in nylon stockings (H-OH form, #
R231-500; Fisher Scientific International Inc., Pittsburgh, PA, USA) at five-cm soil depth
at two locations in each of the experimental and observational plots (Hart et al., 1994).
Resins were then air-dried, and two g of resins from each plot were extracted with 2 M KCl.
Pool sizes of NO3_ and NH4+ were analyzed on a Lachat AE Flow Injection Autoanalyzer
(Lachat Quikchem 8000; Hach Corporation, Loveland, OH). All values expressed in this
article are based on air-dried resins.

Statistical analyses
To determine how subordinate species diversity, as well as above- (SLA) and below-ground
(SRL) plant functional traits, varied along a plant dominance gradient (Observational
study), we ran a series of one-way analyses of variance (ANOVAs) with ‘site’ as our main
factor (e.g., Potentilla dominated, Festuca dominated, Co-dominated). To determine the
direct role of dominant species on subordinate species diversity we performed one-way
ANOVAs with ‘plant removal’ (control, Potentilla removed, Festuca removed) as our main
fixed effect (Experimental study). All the ANOVA analyses were conducted using Jump 11
(JMP).

To determine (1) how compositional similarity of subordinate species varied along
a plant dominance gradient and (2) how dominant species affected compositional
similarity of subordinate species, we generated a Bray-Curtis similarity matrix from
the log transformed plant composition (log x+1). We then performed a permutational
multivariate analysis of variance (PERMANOVA; Anderson, 2001) on the Bray Curtis
similarity matrix. A pseudo F-ratio is calculated within the PERMANOVA framework
comparing the variability in species composition both within treatments and among
treatments based on the observed variability in species composition vs. the variability in
species composition using a generated null distribution (Anderson, Ellingsen & McArdle,
2006). PERMDISP (permutational multivariate analysis of dispersion) analysis, on the
other hand, is a measure of ‘dispersion’ of community composition in multivariate space
(Anderson, Ellingsen & McArdle, 2006). We used PRIMER version 1.0.3 (Plymouth Marine
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Laboratory, UK) for these analyses. We performed a series of principal coordinate analyses
(PCoA) to illustrate species compositional similarity and dissimilarity in a two-dimensional
multivariate space,. Finally, we used a similarity percentage analysis (SIMPER) to determine
the relative contribution of plant species driving compositional dissimilarities both in the
observational as in the experimental study.

RESULTS
Community structure and compositional similarity across a
dominance gradient (Observational study)
Plant community structure differed across a dominance gradient. Co-dominated sites,
generally, had greater total cover, richness, evenness and diversity than Potentilla or
Festuca dominated sites (Table 1, Fig. 1A). For example, total cover was 26% greater while
evenness, richness, and diversity were 6%, 24%, and 15% greater respectively when both
Festuca and Potentilla co-dominated than when either species became dominant. Plant
species composition, similar to community diversity, differed across a dominance gradient
(Table 1, Fig. 1B). While all sites differed from one another in compositional similarity,
co-dominated sites differed the most in compositional similarity to either Potentilla or
Festuca dominated sites.

Shifts in above-and belowground functional traits across a dominance
gradient (Observational study)
Both above- and belowground plant functional traits varied along a plant dominance
gradient, but plant identity dictated such variation. For example, the average area of Festuca
leaves (F = 9.24, P = 0.001), but not SLA (P > 0.05), was 40% greater in Festuca dominated
(9.79 ± 0.54) and co-dominated sites (11.15 ± 0.75) than in Potentilla dominated sites
(6.86 ± 0.84) where Festuca is subordinate. On the other hand, Festuca SRL was 38%
greater when it became subordinate (e.g., Festuca 2712.88± 351.58 in Potentilla dominated
site) than when it dominated local communities (1990.39 ± 214.44 in Festuca dominated
site) (F = 9.37, P = 0.001).

Similarly, Potentilla differed marginally in aboveground functional traits, while differing
strongly in belowground functional traits across a plant dominance gradient. For the
aboveground functional traits, the average area of Potentilla leaves was greater in Festuca
dominated than co-dominated or Potentilla dominated sites (F = 2.83, P = 0.07). Potentilla
dominated site leaf area was on average 143.9 cm2

± 19.7 while in co-dominated site and
Festuca dominated site leaf area was 171.3 cm2

± 6.9 and 170.2 cm2
± 20.35, respectively.

Specific leaf area, on the other hand, did not differ (F = 0.84, P = 0.44) across dominance
gradient for Potentilla (Potentilla dominated site: 103.4 cm2

± 10.8; Co-dominated site:
102.5 cm2

± 10.21; Festuca dominated site: 131.72 cm2
± 8.42). Belowground functional

trait (SRL) for Potentilla was 30% greater when (F = 3.77, P = 0.35) Potentilla was a
co-dominant than when it was a dominant (Potentilla dominated site) or subordinate
(Festuca dominated site).
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Table 1 Plant dominance and subordinate diversity and composition across sites. Results from plant
dominance effects based on (A) a one-way analysis of variance (ANOVA) testing for effects on total cover,
richness, evenness and diversity including F-ratio (F) and P- values (P) across time (June and July). (B) A
multivariate permutation analysis of variance (PERMANOVA) testing for effects of plant dominance on
subordinate species’ composition including Pseudo-F and P (perm) across time (June and July).

(A)
June July

Source F P F P

Total cover
Dominance 9.9815 0.0006 6.9543 0.0037

α diversity
Dominance 1.1713 0.3252 5.2 0.0123

Shannon’s evenness
Dominance 2.2157 0.1284 7.31 0.0029

Shannon’s diversity
Dominance 7.8929 0.002 11.845 0.0002

(B)
Source df SS MS Pseudo-F P(perm)

June- across site
Dominance 2 20,491 10,245 14.838 0.0001
Residual 45 31,071 690.47
Total 47 51,562

July- across site
Dominance 2 16,977 8,488.5 12.383 0.0001
Residual 45 30,848 685.51
Total 47 47,825

Community structure, compositional similarity (experimental study)
We found that neither dominant species, Potentilla or Festuca, affected plant richness,
evenness and diversity (Table 2, Figs. 2A–2D, Appendix Fig. S1). Similarly, compositional
similarity was not impacted by the removal of neither dominant species (Table 2, Figs.
2E–2F, Appendix Fig. S2).

Microclimate across a plant dominance gradient (Observational &
Experimental study)
We found light availability and temperature, but not soil N availability, to vary along a plant
dominance gradient. Light availability was 25% greater in Festuca dominated sites than co-
dominated or Potentilla dominated communities. Further, co-Dominated sites and Festuca
dominated sites had the largest minimum and maximum temperature difference (60.20 ◦C
and 60.11 ◦C, respectively). Potentilla dominated sites had a lower temperature difference
of 53.28 ◦C, which coincides with having the lowest light availability measurements within
these plots. Finally, we found no effects of dominant species on resources (light availability
and soil N) or conditions (soil temperature) (Table 3).
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Figure 1 Subordinate diversity and composition across a plant dominance gradient. (A) Mean
(±standard error) subordinate species’ cover, richness, evenness and diversity across a plant dominance
gradient (Potentilla dominated, Potentilla and Festuca co-dominated, Festuca dominated) for June and
July of 2014. (B) Principal Coordinate Ordination (PCO) illustrating in a two-dimensional scale (PCO
Axis 1 and PCO Axis 2) subordinate species composition across a plant dominance gradient (Potentilla
dominated, Potentilla and Festuca co-dominated, Festuca dominated) (observational study) for June and
(C) July of 2014.

Full-size DOI: 10.7717/peerj.5619/fig-1

DISCUSSION
Subordinate species diversity and composition varied along a dominance gradient with
highest diversity, yet lowest compositional similarity, in plant communities co-dominated
by both Festuca and Potentilla, rather than communities dominated by either species. In
other words, in co-dominated sites, where Potentilla and Festuca were equally abundant,
subordinate diversity and compositional dissimilarity were the greatest. While above- and
belowground plant functional traits varied along a dominance gradient, neither above- nor
belowground plant functional trait of Festuca and Potentilla consistently predicted relative
abundance. Further, variation in resources and conditions did not explain our subordinate
diversity patterns. Taken together, patterns of subordinate diversity and composition across
meadow sites are likely driven by biotic interactions and abiotic factors unaccounted for in
our measurements. Finally, neither Potentilla nor Festuca short-term removal influenced
subordinate diversity or composition when we directly tested for their impacts in a plant
removal experiment. Plant removal effects, particularly on belowground structure and
function, can be buffered temporally.
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Table 2 Plant removal effects on subordinate diversity and composition. Results from plant removal
effects based on (A) a one-way ANOVA testing for effects on total cover, richness, evenness and diversity
including F-ratio (F) and P- values (P) across time (June and July). (B) PERMANOVA testing for effects
of plant removal on subordinate species’ composition including Pseudo-F and P (perm) across time (June
and July).

(A)
Co-dominated

June July

Source F P F P

Total cover
Dominant removal 0.01 0.98 4.16 0.03

α diversity
Dominant removal 0.06 0.94 0.83 0.44

Shannon’s evenness
Dominant removal 1.07 0.36 0.16 0.85

Shannon’s diversity
Dominant removal 0.21 0.81 0.61 0.54

(B)
Source df SS MS Pseudo-F P(perm)

Co-dominated site june
Removal 2 1,733.1 866.57 1.3565 0.1682
Residual 27 17,249 638.84
Total 29 18,982

Co-dominated site july
Removal 2 1,022.1 511.06 0.70289 0.8319
Residual 27 19,631 727.09
Total 29 20,654

Community diversity and compositional similarity across a dominance
gradient: observation vs. experiment
Co-dominance by Potentilla and Festuca was associated with greater subordinate species’
abundance and overall diversity than when either Potentilla or Festuca were dominant
in a plot, along a dominance gradient. Dominant species have been shown to strongly
impact subordinate species’ abundance and biodiversity by disproportionately utilizing
resources or conditions that would otherwise be available for subordinate species, especially
in favorable (Wardle et al., 1999; Wilsey & Polley, 2002; Diaz et al., 2003) rather than
unfavorable environments (Smith et al., 2004). Under favorable conditions, dominant
species can have antagonistic effects on subordinate counterparts given their higher
competitive abilities with higher resource availability. Over–yielding, dominant individuals
may modify resources and conditions for subordinates drastically. Similar to our
documented patterns, Suding & Goldberg (2001) found dominant species to reduce
subordinate biodiversity by monopolizing resources and therefore exhibiting greater
resource uptake rates, reducing subordinate species’ abundance. Plant dominance may
not only lower biodiversity at the plot level, but overall diversity among subordinate
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Figure 2 Plant removal effects on subordinate diversity and composition.Mean (±standard error) (A)
subordinate species’ cover, (B) richness, (C) evenness and (D) diversity across plant removal treatments
(Potentilla removal, Festuca removal, no removal control) for June and July of 2014. (E) PCO illustrating
in a two-dimensional scale (PCO Axis 1 and PCO Axis 2) subordinate species composition across plant re-
moval treatments (Potentilla removal, Festuca removal, No plant removal) (Experimental Study) for June
and (F) July of 2014.

Full-size DOI: 10.7717/peerj.5619/fig-2

assemblages. Belowground biotic interactions are also critical in determining dominance
patterns and interactions between dominant and subordinate species. For instance,
fungi and earthworms have been shown to strongly influence the individual growth
but also the composition of subordinate species in ecological communities (Mariotte et
al., 2015; Mariotte et al., 2016; Mariotte, Canarini & Dijkstra, 2017). Further, lower among
assemblage diversity or spatial–temporal homogenization of subordinate species, can lead
to a potentially long-term biodiversity deficit due to a lower regional species-pool which
won’t be resupplying local subordinate assemblages with more plant species propagules
(Huston, 1999;Witman, Etter & Smith, 2004). In otherwords, co-dominance patterns could
promote short- (richness, evenness, diversity) and long-term (compositional similarity)
biodiversity patterns in montane meadows.

However, when we directly tested for the effects of co-dominant species to influence
subordinate biodiversity we found that removing either Festuca or Potentilla did not affect
subordinate diversity. Similar to our findings, Smith & Knapp (2003) also found that
dominant species did not affect subordinate species diversity. Smith and Knapp found
that after removing dominant C4 grasses the subordinate assemblage in the grassland
ecosystem did not compensate for the loss of dominant species. Instead, they found that
subordinate productivity was unaffected by even a 50% reduction in density. In a field
experiment conducted by Souza, Weltzin & Sanders (2011), diversity of the subordinate
community was found to be on average 20% greater in plots with the removal of a dominant
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Table 3 Resources and conditions influenced by dominant plant species. ANOVA table indicating the mean and (SE) of (A) light availability
(PAR), minimum and maximum temperature, along with model F-ratio and P-value and (B) soil ammonium, soil nitrate, and total soil nitrogen,
along with model F-ratio and P-value for observational and experimental studies.

(A)
Ammonium Nitrate Total Nitrogen

Mean SE F P Mean SE F P Mean SE F P

Observational Study
Potentilla dominated 2.18 0.64 1.62 0.22 0.28 <0.01 0.28 0.75 2.47 0.67 1.62 0.22
Co-dominated 0.98 0.57 0.30 <0.01 2.88 0.58
Festuca dominated 2.42 0.67 0.29 <0.01 4.77 0.63

Plant removal experiment
Control 0.98 0.22 0.72 0.49 0.29 0.01 1.19 0.31 1.27 0.47 0.72 0.49
Potentilla removal 1.67 0.77 0.29 0.01 1.96 0.55
Festuca removal 1.75 0.57 0.30 0.01 2.04 0.55

(B)
PAR (umol photons m−2s−1) Min temperature (◦C) Maximum temperature (◦C)

Mean SE F P Mean SE F P Mean SE F P

Observational study
Potentilla dominated 970.1 83.6 6.37 0.01 3.78 0.26 3.25 0.06 57.06 2.89 1.26 0.31
Co-dominated 976.7 47.6 3 0.52 63.2 4.11
Festuca dominated 1,310.6 99.3 2.44 0.44 62.56 2.64

Experimental study
Festuca removal 1,089.2 261.50 2.36 0.11 3.17 0.17 0.61 0.56 56.83 7.91 1.38 0.29
Control removal 976.7 47.60 3.00 0.52 63.20 4.11
Potentilla removal 1,086.6 47.20 2.30 0.34 68.10 2.50

forb species, Solidago altissima. Similarly, in Verbesina removal plots, diversity on average
was 30% greater than in plots where Verbesina was present. Even though the removal of
dominant species affected diversity and evenness, there were no effects on composition
of these plots, because richness did not change (Souza, Weltzin & Sanders, 2011). On the
other hand, dominant species may attain high abundance by being good ‘stress-tolerators’
rather than a great competitor relative to other species (Read et al., 2017) that have low
abundance and classified as subordinate or transient.

Whittaker (1965) suggests that a closer look should be taken to differentiate between
subordinate and transient species, as there is a keen distinction that separates them. Where
subordinates consistently co-occur with specific dominants in larger abundance than the
dominants, though smaller in build, transient species lack consistency of association with
dominants and infrequent occurrence temporally and spatially. Transient species have
been found to make a small contribution to biomass, though most are species that occur
as dominants or subordinates in other communities, often nearby. Though through our
observations and experiments, we found that dominant species did not affect subordinate
diversity, as the majority of the plant species in our montane meadows were transient and
very few were actually subordinate species (see Appendix Table S1).
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Changes in biodiversity, along the plant dominance gradient, translated into divergence
in subordinate species’ compositional similarity. Co-dominated subordinate communities
exhibited greater equitability of subordinate forbs than either Festuca or Potentilla
dominated communities that exhibited two main subdominant forbs making up
subordinate species assemblages. Co-dominated communities had a greater proportion of
perennial forb species that differed in identity from perennial forbs in sites domintated
by either Potentilla or Festuca. For example, co-dominated communities had a greater
abundance of Erigeron speciosa, Artemesia ludiciviana, and Fragaria virginiana than
Potentilla or Festuca dominated sites (which had greater proportion of perennial forbs such
asHelianthella quinquenervis and Thalictrum fendleri) which is a clear shift in composition.

Similar to our documented patterns, dominant species have been found to alter
compositional similarity of subordinate assemblages (Grime, 1998). However, when
we directly tested for the effects of co-dominant species to influence subordinate species
composition we found that removing either Festuca or Potentilla did not affect subordinate
compositional similarity. Similar to our findings, Souza, Weltzin & Sanders (2011) also
found that dominant species did not affect subordinate species composition in an old-
field ecosystem. For instance, when Souza, Weltzin & Sanders (2011) removed either C3

perennial forb: Solidago or Verbesina species, compositional similarity of subordinate
species did not converge or diverge relative to dominant species removal treatments.
Further, other plant removal studies were only able to detect strong effects of dominant
species on subordinate species composition over longer time frames (e.g., 8 years or longer)
(Schmitz, 2003; Munson & Lauenroth, 2009).

Shifts in above-and belowground functional traits across a dominance
gradient
Plant functional traits varied along the plant dominance gradient, but the documented
patterns did not support our original prediction that functional traits would be associated
with dominance patterns. Specific root length, plant allocation towards greater investment
on root area than mass increasing surface area to volume ratio that promotes greater
resource uptake, increased for both Festuca and Potentilla when they became more
subdominant than dominant. Such shift in belowground traits for both Festuca and
Potentilla likely resulted from greater resource competition when they are subdominant
than dominant. Such belowground strategy differs from other studies that have found
subdominant species to generally have root traits associated with resource conservation
rather than rapid acquisition (Mariotte et al., 2013a; Mariotte, 2014). Perhaps montane
plant communities with narrower growing season windows relative to other systems, foster
greater plasticity in belowground traits that promote persistence of subdominant species.
Surprisingly aboveground functional traits, such as SLA did not shift when Festuca and
Potentilla became subdominant. Greater total leaf area production (e.g., greater foliar
cover) in dominated sites promoted dominance regardless of changes in leaf function.
There are many different factors that can contribute to a lack of correlation in diversity and
above- and belowground functional traits, such as abiotic constraints (Hooper et al., 2000):
species or groups of plants could be responding to different abiotic constraints, such as
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soil nutrients and water availability (Hooper et al., 2000). Though above- and belowground
functional traits do not directly associate with species relative abundance, functional
traits of dominant plant species influence ecosystem resilience and resistance. Generally,
communities dominated by slow growth plants tend to have low resilience and high
resistance, while the opposite is true for communities dominated by fast growing plants
(Aerts, 1995; Leps, Osbornovakosinova & M, 1982; Macgillivray et al., 1995). However, a
recent study performed in a montane meadow nearby (with greater dominance of Festuca
than our plant removal plots) found fast compensatory responses of functional traits in
subordinate species in removal relative to control plots (Read et al., 2017).

Biotic and Abiotic filters determining species’ relative abundances
Biotic and abiotic filters can determine the distribution and relative abundances of species
across space and time. Abiotic filters, such as environmental factors like climate, can dictate
the distribution and relative abundance of species across biomes (Whittaker, 1965; Grime,
1979; Huston, 1999; Pavoine et al., 2011). Biotic filters, such as species interactions as in
the form of predation or competition, can influence the relative abundance of species in
local assemblages (Mouquet & Loreau, 2003). Subordinate diversity and composition in our
system are likely shaped by differences in environmental factors. Similarly, sedge dominated
plots varied in relative abundance due to soil nutrient as an abiotic factor in montane
meadows studied by Theodose & Bowman (1997). In these montane dry meadow and wet
meadow sites, Theodose and Bowman observed changes in community composition and
diversity following additions of nitrogen and phosphorous fertilizers over a five-year study.
In the dry meadow, Theodose and Bowman found species diversity increased significantly
with fertilization, in the form of Nitrogen and Phosphorus, over the course of the study.
This increase of diversity seems to have been due to an increase in the relative abundance
of rare species, while the dominant species declined. In juxtaposition, the wet-meadow
species diversity decreased in response to fertilization over the course of the study. This
comparison allows for the comparison of the effects of fertilization on diversity between
communities that differ in resource availability (Theodose & Bowman, 1997).

CONCLUSIONS
Our study asked: (1) does diversity and composition of subordinate montane meadow
plant assemblages vary across and within a Festuca-Potentilla dominance gradient?; (2) do
resources and conditions differ across and within a Festuca-Potentilla dominance gradient?;
(3) do above- and belowground functional traits differ in Festuca and Potentilla across the
dominance gradient to explain differences in subordinate diversity and composition? We
found that subordinate species diversity varies along a plant dominance gradient, peaking
when both dominant species co-dominated. We also found that above- and belowground
functional traits varied along a plant dominance gradient, but not in always in a predictable
way of species’ relative abundances. In other words, above- and belowground plant
functional traits of dominant species did not consistently exhibit highest values at high
relative abundance and low at lower abundance. Having said that, we only measured two
functional traits and expanding such measurements could elucidate the role of above- and
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belowground functional traits in our system. Finally, co-occurring dominant species did
not influence the diversity or compositional similarity demonstrated in our short-term
3-year plant removal experiment. Together, abiotic factor and biotic interactions likely
shape dominance patterns and subordinate diversity and composition in Festuca and
Potentilla dominated montane meadow communities; with the direct and indirect effects
of dominant species on co-occurring subordinates taking place over several growing
seasons.
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