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Machine Learning Quantitative Analysis of FDG PET Images of
Medial Temporal Lobe Epilepsy Patients
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Purpose: 18F-FDGPET iswidely used in epilepsy surgery.We established a
robust quantitative algorithm for the lateralization of epileptogenic foci and
examined the value of machine learning of 18F-FDG PET data in medial
temporal lobe epilepsy (MTLE) patients.
Patients and Methods: We retrospectively reviewed patients who under-
went surgery for MTLE. Three clinicians identified the side of MTLE
epileptogenesis by visual inspection. The surgical side was set as the epilep-
togenic side. Two parcellation paradigms and corresponding atlases (Auto-
mated Anatomical Labeling and FreeSurfer aparc + aseg) were used to extract
the normalized PETuptake of the regions of interest (ROIs). The lateralization
index of the MTLE-associated regions in either hemisphere was calculated.
The lateralization indices of each ROI were subjected for machine learning
to establish the model for classifying the side of MTLE epileptogenesis.
Result: Ninety-three patients were enrolled for training and validation, and
another 11 patients were used for testing. The hit rate of lateralization by vi-
sual analysis was 75.3%. Among the 23 patients whose MTLE side of
epileptogenesis was incorrectly determined or for whom no conclusion
was reached by visual analysis, the Automated Anatomical Labeling and
aparc + aseg parcellated the associated ROIs on the correctly lateralized
MTLE side in 100.0% and 82.6%. In the testing set, lateralization accuracy
was 100% in the 2 paradigms.
Conclusions: Visual analysis of 18F-FDG PET to lateralize MTLE
epileptogenesis showed a lower hit rate compared with machine-assisted
Received for publication September 10, 2021; revision accepted November
20, 2021.

From the *Department of Neurology, Neurological Institute, Taipei Veterans
General Hospital; †School of Medicine, National Yang Ming Chiao Tung
University College of Medicine; ‡Brain Research Center, National Yang
Ming Chiao Tung University; Departments of §Nuclear Medicine, and ||Neu-
rosurgery, Neurological Institute, Taipei VeteransGeneral Hospital; and ¶Pro-
fessional Master Program in Artificial Intelligence in Medicine, College of
Medicine, Taipei Medical University, Taipei, Taiwan.

Conflicts of interest and sources of funding: The authors have no conflicts of
interest to declare. This work was supported by the Ministry of Science and
Technology, Taiwan (MOST 110-2221-E-038-008, 110–2314-B-075–042,
and 109–2314-B-075–053) and the National Health Research Institute
(NHRI-EX109-10905N and NHRI-EX110-11006NC).

Correspondence to: Syu-Jyun Peng, PhD, Professional Master Program in
Artificial Intelligence in Medicine, College of Medicine, Taipei Medical
University, 19F, No. 172-1, Sec. 2, Keelung Rd, Da'an District, Taipei
10675, Taiwan. E-mail: sjpeng2019@tmu.edu.tw.

Supplemental digital content is available for this article. Direct URL citation
appears in the printed text and is provided in the HTML and PDF versions
of this article on the journal’s Web site (www.nuclearmed.com).

Copyright © 2022 The Author(s). Published byWolters Kluwer Health, Inc. This
is an open-access article distributed under the terms of the Creative Commons
Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND),
where it is permissible to download and share the work provided it is properly
cited. The work cannot be changed in any way or used commercially without
permission from the journal.

ISSN: 0363-9762/22/4704–0287
DOI: 10.1097/RLU.0000000000004072

Clinical Nuclear Medicine • Volume 47, Number 4, April 2022
interpretation. While reviewing 18F-FDG PET images of MTLE patients,
considering the regions associated withMTLE resulted in better performance
than limiting analysis to hippocampal regions.
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M edial temporal lobe epilepsy (MTLE) is the most common
drug-resistant epilepsy (DRE) in adults.1 Compared with

medical treatment alone, epilepsy surgery is considered an effective
tool for seizure control for surgery-remediable patients with DRE.2
18F-FDG PET has been used for epilepsy surgery assessments for a
long time because the exhibition of regional cerebral hypometabolism
in the 18F-FDG PET process represents both the focus and projection
areas of seizure activity.3 FDG PET is helpful in lateralizing the side
of epileptogenesis and predicting postoperative seizure outcomes.4,5

Also, FDG PET data are valuable in the decision-making process
regarding temporal lobe epilepsy (TLE) surgery, especially in pa-
tients with normalMRI findings or in conditions when ictal electro-
encephalogram (EEG) results are not consistent with MRI find-
ings.6 The concordance rate of 18F-FDG PET in patients with
TLE was 79% (95% confidence interval, 63%–92%) compared
with the reference standard.7 There are several reasons for the vari-
able accuracy in determining the epileptogenic side in MTLE pa-
tients by FDG PET. For instance, PET scans are usually interpreted
by visual inspection in clinical practice. There is interpersonal and
intrapersonal variability in interpretation, especially in those who
exhibited no significant differences in FDG uptake between bilat-
eral temporal regions. Moreover, ipsilateral normal metabolism or
hypermetabolism was noted in 7.8% of the patients with unilateral
mesial temporal sclerosis (MTS).8 Bilateral hypometabolism was
reported in 10% to 30% of MTLE surgical cases of unilateral
MTLE.9,10 The inconsistent results with other presurgical examina-
tions increase doubt about epileptogenic zone localization. This un-
certainty usually leads to an intracranial study that increases inva-
siveness of the patients and the amount of medical resources re-
quired for the management of DRE. Glucose hypometabolism in
TLE patients extends beyond the medial temporal structures.11,12 We
hypothesize that taking all related regions into account in an analysis
increases the concordance rate of lateralization PET inMTLE patients.
FDG PET also has the drawback of low spatial resolution for
parcellation of the region of interest (ROI). Notably, quantitative mea-
sures have emerged in the interpretation of PET results in patients with
epilepsy. There was a wide range of both sensitivity and specificity,
ranging from 89% to 91%, among different methodologies.13–16

Pertinently, artificial intelligence has increased its utility in epilepsy
care. The number of analyses of quantitative functional neuroimag-
ing by machine-assisted classifiers has greatly increased in clinical
practice in recent years.17 We conducted this study to establish a re-
liable and robust method to lateralize the side showing PET
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hypometabolism in patients with MTLE and examine the feasibility
of this method in comparison with traditional visual inspection.
PATIENTS AND METHODS

Subjects
Subjects in the Model Training/Validation Set

We reviewed our database between July 2008 and June 2019
in Taipei Veterans General Hospital, Taiwan. The enrollment
criteria were patients with drug-resistant MTLE who were to un-
dergo epilepsy surgery with anterior temporal lobectomy or selec-
tive amygdalohippocampectomy. The presurgical workups included
long-term video-EEG monitoring, high-resolution brain MRI, 18F-
FDGPET, and neuropsychological tests. The site of surgery was de-
termined as the epileptogenic side. Only patients with a pathological
diagnosis of MTS were enrolled. Patients with other pathological
diagnoses, such as tumors, vascular lesions, and focal cortical dys-
plasia, were excluded. The seizure outcomes were obtained at
2 years after surgery.

Subjects in the Test Set
We established another group of 11 patients whowould serve as

the test set of the establishedmodel. These patients included thosewith
MTLE who completed a stereotactic-EEG (sEEG) study and were
waiting for subsequent resective surgery and those who underwent
anterior temporal lobectomy or selective amygdalohippocampectomy
beyond the period from July 2008 to June 2019. The epileptogenic
sidewas determined according to the surgical side or the sEEG results.

18F-FDG PET and MRI Acquisition Protocol
The patients fasted for at least 6 hours; fasting included

avoidance of IV glucose-containing fluid. No clinical or EEG evi-
dence of seizure onset was recorded for at least 2 hours before
18F-FDG administration. If a patient's blood sugar was less than
150 mg/dL, the patient was intravenously administered 18F-FDG
at a dosage of 5 MBq/kg. Then, he or she would rest in a dim and
quiet room and avoid reading with his or her eyes for approximately
30 minutes. No clinically overt seizure onset was noted during this
30-minute rest period. Afterward, each patient underwent brain PET
in static acquisition mode for 15 minutes. If the brain PET study
was performed before October 2019, PET images were acquired
by the GE Healthcare Discovery STE PET/CT system. After
October 2019, PET images were acquired by the GE Healthcare
Discovery MI DR PET/CT or SIGNATM PET-MR system.

All MRI data (acquired by the Signa HDxt 3 T GE system,
Signa HDxt 1.5 T GE system, or Siemens Magnetom 1.5 T system)
were collected using an 8-channel phased-array neurovascular coil.
Preoperative high-resolution 3-dimensional (3D) structural images
were used for processing. The parameters used to acquire
magnetization-prepared rapid acquisition with gradient echo
(MPRAGE) images were as follows: repetition time, 6.228–
8.988 milliseconds; echo time, 1.576–4.36 milliseconds; flip angle,
8–15 degrees; field of view, 256–256 mm; number of excitations,
1–2; and slice thickness, 1–1.5 mm.

18F-FDG PET Lateralization by Visual Analysis
Two clinical neurologists and 1 nuclear medicine physician,

all of whom were experienced in presurgical evaluation for DRE, re-
viewed the 18F-FDGPET scan of thewhole data set with visual inspec-
tion. The raters categorized the side of MTLE as either the left side,
right side, or uncertain according to the significant hypometabolism
of the medial temporal regions. If there were conflicting results among
the raters, the outcome indicated by themajority of the raterswas taken.
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Figure 1 shows an example of 2 patients with left MTLEwhose results
were both determined unanimously by the 3 physicians (Fig. 1A) and
differed (Fig. 1B) among the 3 physicians.

Quantitative 18F-FDG PET Machine Learning Model
The processing of the 18F-FDG PET and MPRAGE images

was implemented inMATLAB (MathWorks, Inc, Natick, MA) with
applications of the Statistical Parametric Mapping program SPM12
(Functional Imaging Laboratory, Institute of Neurology, University
College London, London, United Kingdom). We created 2 person-
alized atlases (the parcellated Automated Anatomical Labeling
[AAL] atlas for Diffeomorphic Anatomical Registration through
Exponential Lie Algebra [DARTEL] (Fig. 2) and the aparc + aseg
atlas for FreeSurfer) that encompassed the anatomical labels to ex-
tract the normalized PET standardized uptake value of the ROI.

Step 1: Digital Imaging and Communications inMedicine
to Neuroimaging Informatics Technology
Initiative Conversion

The original DICOM (Digital Imaging and Communications
inMedicine) file format of the 18F-FDGPETandMPRAGE images
was converted into the 3D NIfTI-1 (Neuroimaging Informatics
Technology Initiative) file format. Because SPM12 uses NIFTI-1
as the file format of image data, this conversion facilitated the sub-
sequent image preprocessing in SPM12.

Step 2: Resetting the MPRAGE and 18F-FDG PET
Image Orientation

The origin of the 18F-FDG PET and MPRAGE images after
the completion of step 1 was shifted to roughly align with the ante-
rior commissure of the individual brain space. The purpose of this
step was to improve the registering performance between the 18F-
FDG PET and MPRAGE images in SPM12, which occurred in
the next step.

Step 3: Reregistering and Segmenting
The 18F-FDG PET imagewas registered to theMPRAGE im-

age by 3D voxel registration based on the normalized mutual infor-
mation method. The MPRAGE image was a segmented brain tissue
probability map including gray matter (GM, white matter [WM],
and cerebrospinal fluid).

Step 4: 18F-FDG PET Intensity Normalization
and Smoothing

The current study proposes to use whole-brain GM as a ref-
erence region for intensity normalization of quantitative analysis
of brain 18F-FDG PET images. The whole-brain GM mask was de-
fined as the 0.5 threshold and binarized probabilistic GM probabil-
ity map. The intensity-normalized 18F-FDG PET image was spa-
tially smoothed with a Gaussian smoothing kernel of 8 mm full
width at half maximum.

Step 5: Parcellating the Atlas
Paradigm I: Parcellating the AAL Atlas Using DARTEL

The new segment option in the SPM12 software packagewas
applied to the MPRAGE image of the subject and the MPRAGE
image of the AAL atlas to generate the imported tissue class image
sets, that is, the imported GM image, the imported WM image, and
the imported cerebrospinal fluid image. The imported tissue class
image sets of the subject and AAL atlas were used to generate back-
ward and forward flow fields as well as a series of template images
through the DARTEL option embedded in SPM12. The AAL atlas
was warped to match the shape of the subject based on the forward
© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 1. Analytic pipeline for the lateralization of epileptogenic foci interpretation: (1) resetting theMPRAGE and 18F-FDG PET
image orientation; (2) reregistering and segmenting; (3) normalizing and smoothing 18F-FDG PET intensity; (4) generating
imported tissue class images and flow fields to warp the AAL atlas into individual brain spaces; (5) selecting ROIs and calculating
the mean uptake value; (6) acquiring machine learning interpretations of the lateralization of epileptogenic foci in MTLE
patients (Frontal Sup Orb, superior orbital frontal gyrus; Frontal Mid Orb, middle orbital frontal gyrus; Frontal Inf Orb, inferior
orbital frontal gyrus; Cingulum Post, posterior cingulate gyrus; Temporal Pole Sup, temporal pole of superior temporal gyrus;
Temporal Pole Mid, temporal pole of middle temporal gyrus).
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and backward flow fields to obtain a personalized anatomical atlas
through the deformation option of SPM12. Then, 2 epileptologists
(Y.C.S. and H.Y.Y.) and 1 nuclear medicine physician (T.H.L.) val-
idated the anatomical parcellation accuracy of the deformed AAL
atlases by comparing them to the individual 18F-FDG PET images.
FIGURE 2. The comparison of patients with left MTLE presenting
FDG PET results (B) upon visual assessment.

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
Paradigm II: Aparc + Aseg Atlas From FreeSurfer
In addition to paradigm I in which the parcellated AAL atlas

was constructed, we created another personalized atlas (aparc + aseg
atlas from FreeSurfer 7.1.1) that encompassed the anatomical labels
to extract the normalized PET SUVof the ROIs. We ran recon-all
with concordant 18F-FDG PET results (A) and nonconcordant
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commands from FreeSurfer using native-space MPRAGE and
transformed segmentation into aparc + aseg atlas space to extract
specific anatomical regions.

Step 6: Selecting ROIs and Calculating the
Mean Uptake Value

We created 2 personalized atlases (the AAL atlas parcellated
using DARTEL and the aparc + aseg atlas from FreeSurfer) that
encompassed the anatomical labels that could be used to extract
the normalized PET uptake of the ROIs. We were interested in
the hippocampus andMTLE-associated regions. For the parcellated
AAL atlas, the 11MTLE-associated ROIs included the superior orbital
frontal gyrus, middle orbital frontal gyrus, inferior orbital frontal gyrus,
insula, posterior cingulate gyrus, hippocampus, parahippocampus,
amygdala, thalamus, temporal pole of superior temporal gyrus, and
temporal pole of middle temporal gyrus. For the aparc + aseg atlas,
the 13 MTLE-associated ROIs were the thalamus, hippocampus,
amygdala, entorhinal, lateral orbital gyrus, medial orbital gyrus, poste-
rior cingulate gyrus, temporal pole, insular gyrus, parahippocampus,
superior temporal gyrus,middle temporal gyrus, and inferior temporal
gyrus. The mean SUVof each ROI was obtained by dividing the up-
take count by the whole cerebral GM. For each subject, the corre-
spondingmean uptake values of 18F-FDGPETwere calculated for bi-
lateral ROIs. Also, the lateralization index was calculated for each
ROI and was defined as 2 � (L − R)/(L + R).

Step 7: Machine Learning Classification Modeling
Eleven lateralization indices for the parcellated AAL atlas

and 13 lateralization indices for the aparc + aseg atlas were sub-
mitted to the training/validation set model to use in the classifica-
tion of patients' MTLE sides. Seven machine learning models (in-
cluding decision trees, discriminant analysis, logistic regression
classifiers, naive Bayes classifiers, support vector machines,
nearest neighbor classifiers, and ensemble classifiers) were used
to train the model, and 10-fold cross-validation was used to estab-
lish the classification model by the classification learner app of
MATLAB. After training each model in the classification learner
app, we examined the overall accuracy, reported in percent, for each
model. The validation accuracy score provides an estimate of a
model's performance on new data compared with the training data.
The model with the best validation accuracy score was selected for
further clinical application.

Statistical Analysis
Descriptive statistics are presented as the count, percentage,

andmean ± standard deviation.Mann-WhitneyU tests and Fisher ex-
act tests were used for the intergroup comparisons of continuous or
categorical variables. The level of statistical significance was set
at P < 0.05. The IBM Statistical Package for the Social Sciences
(SPSS, version 26.0) was used for the data analysis.

Ethics
The study protocol was approved by the Institutional Review

Board of Taipei Veterans General Hospital. All clinical investiga-
tions were conducted according to the principles expressed in the
Declaration of Helsinki.
RESULTS

Patient Characteristics
Training/Validation Set

A total of 93 patients were enrolled in the training/validation
set: 45 with left MTLE and 48 with right MTLE. There were 35
290 www.nuclearmed.com
males and 58 females in the study cohort. The median seizure onset
age was 13 years old (range, 0.5–48 years old), and the median age
at surgery was 34 years old (range, 12–59 years old). After surgery,
2 patients were lost to follow-up within 2 years (one by 2 months
and the other by 5 months). In the 91 patients who completed the
postsurgical outcome evaluation, 77 patients achieved Engel classi-
fication I seizure outcomes (84.6%).

Test Set
There were 11 patients enrolled in the test set: 4 with left

MTLE and 7 with right MTLE. There were 4 males and 7 females
with a median seizure onset age of 18 years old (range, 0.5–40 years)
in the study cohort. After the surgery, the surgical outcomes at 2 years
were followed in 5 patients. There were no significant differences in
sex, lesion side, onset age, age at operation or sEEG evaluation, sei-
zure duration, or surgical outcome after surgery between the patients
in the training/validation set and those in the test set. The detailed
characteristics of the patients are shown in Table 1.

Lateralization of the MTLE Epileptogenic Side by
Visual Analysis

Among the 93 cases in the training/validation set, the hit rate
of lateralization by visual analysis was 75.3%. There were 23 pa-
tients for whom lateralization could not be performed by visual
analysis of their 18F-FDG PET images. There were 11 cases in the
test set. The hit rate of lateralization by visual analysis was 72.7%.
There were 3 patients for whom lateralization could not be per-
formed by visual analysis of their 18F-FDG PET images.

Performance of the Machine-Assisted Classifier
Based on Associated ROIs

Machine-assisted MTLE epileptogenic side interpretation
performance of different machine learning classifiers for the parcellated
AAL atlas using DARTEL was evaluated. The nearest neighbor classi-
fier model attained the best accuracy rate of 96.8% in these validation
folds. In the aparc + aseg atlas of FreeSurfer, the support vector machine
classifier model attained the best accuracy rate of 95.7% in these
validation folds. There were no significant differences in perfor-
mance between the 2 methods, as shown in Table 2.

Performance of the Machine-Assisted Classifier
Based on Only the Hippocampus

The best accuracy rate of classifiers when the ROI was lim-
ited to the hippocampus was 94.6% and 95.7% in the parcellated
AAL atlas and aparc + aseg, respectively, as shown in Table 3.
The support vector machine classifier model attained the best accu-
racy rate of 94.6% in these validation folds. In the aparc + aseg atlas
of FreeSurfer, the decision tree, support vector machine, and ensem-
ble classifier models attained the best accuracy rate of 95.7% in
these validation folds. Compared with a single ROI, there was
slightly better performance on the lateralizing the MTLE epilepto-
genic side by using MTLE-associated ROIs in this cohort.

Model Evaluation in the Test Set
Model evaluation in the nearest neighbor classifier model for

the parcellated AAL atlas using DARTEL attained an accuracy rate
of 100.00% in the test set. In the aparc + aseg atlas of FreeSurfer, the
support vector machine classifier model also attained an accuracy
rate of 100.00% in the test set.

Clinical Implementation
For the 23 patientswhose PETasymmetry could not be lateralized

by visual analysis, the analysis of MTLE-associated ROIs provided a
better lateralizing value comparedwith that obtained by analyzing the
© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.

www.nuclearmed.com


TABLE 1. The Seizure-Related Characteristics of the Patients With Mesial Temporal Lobe Epilepsy

Demographics Training/Validation Set (n = 93) Test Set (n = 11) Significance

Sex 1.0
Male 35 (37.6%) 4 (36.4%)
Female 58 (62.4%) 7 (63.6%)

Lesion side 0.53
Left 45 (48.4%) 4 (36.4%)
Right 48 (51.6%) 7 (63.6%)

Operation procedure n = 7 0.028*
Anterior temporal lobectomy 26 (28.0%) 5 (71.4%)
Selective amygdalohippocampectomy 67 (72.0%) 2 (28.6%)

Outcome n = 91 n = 5 0.963
Engel class I 77 (84.6%) 4 (80%)
Engel class II 12 (13.2%) 1 (20%)
Engel class III 1 (1.1%) 0 (0%)
Engel class IV 1 (1.1%) 0 (0%)

Demographics Mean ± SD, y
Age at seizure onset 15.69 ± 10.33 16.50 ± 12.97 0.95
Age at operation or sEEG 34.61 ± 11.17 32.09 ± 10.54 0.45
Seizure duration 18.92 ± 11.99 15.59 ± 9.19 0.44

*P < 0.05.

Clinical Nuclear Medicine • Volume 47, Number 4, April 2022 Machine Learning Quantitative Analysis of FDG PET
hippocampus alone. Among the 23 patients whose sides of MTLE
epileptogenesis were incorrectly determined or for whom no conclusion
was reached by visual analysis, the AAL and aparc + aseg parcellated
hippocampus models correctly lateralized the side of MTLE
epileptogenesis in the same 87.0%. When the MTLE-associated
ROI model was used, the side of MTLE epileptogenesis was cor-
rectly lateralized in 100.0% and 82.6% of the patients, respectively.

DISCUSSION

This study aimed to establish a reliable automatic method to lat-
eralize the lesion side of patients with MTLE using FDG PET. The
machine-assisted quantitative method of FDG PET in MTLE patients
showed a higher accuracy than the traditional method of visual analy-
sis. We used 2 different parcellation methods, the DARTEL method
and the aparc + aseg atlas of FreeSurfer, for machine-assisted MTLE
epileptogenic side interpretation. These 2methods had equally high ac-
curacy (96.8% and 95.7%, respectively) in the validation set. We fur-
ther used these 2 methods to analyze 23 patients whose lesion side
could not be lateralized through visual analysis. The DARTELmethod
had an advantage over the FreeSurfer method among these patients.
TABLE 2. Performance of the Machine-Assisted Classifier
Based on Associated ROIs

Classifiers

Accuracy (%)

Parcellated AAL Aparc + Aseg

Decision tree 93.5 90.3
Discriminant analysis 95.7 93.5
Logistic regression 88.2 89.2
Naive Bayes classifier 94.6 93.5
Support vector machine 95.7 95.7
Nearest neighbor classifier 96.8 95.7
Ensemble classifier 95.7 93.5

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
FDG PET is a powerful tool for epileptogenic focus laterali-
zation. Pustina et al18 investigated the asymmetries shown on
FDG PET images, cortical thickness demonstrated on MRI scans,
andWM anisotropy indicated by diffusion tensor imaging in 58 pa-
tients with TLE and found that PET asymmetries alone formed the
best predictive model. Both visual19 and SPM13 analysis studies
have shown that patients with MTLE typically have glucose
hypometabolism lesions on the ipsilateral side. Also, the traditional
visual analysis method has higher variability.20 Previous studies
showed that radiology reports and the epilepsy surgery conference
consensus differ 31% of the time in FDG PET studies.21 In this
study, the accuracy of visual analysis by 3 physicians was 75.3%.
Moreover, previous studies showed that the accuracy of FDG PET
by visual analysis in overall intractable epilepsy is 85% (86% in pa-
tients with good outcomes, 58% in patients who need invasive stud-
ies),22 and the accuracy inMTLE patients is 64%.14 The visual analysis
was frequently disturbed, whereas the asymmetry of glucose metab-
olism was not obvious in these patients. Bilateral temporal
hypometabolism in patients with MTLE might be associated with a
shorter duration from the last seizure to the PET scan.10 In unilateral
MTS patients, the surgical outcomes of patients with bilateral temporal
lobe hypometabolism were similar to those of patients with unilateral
TABLE 3. Performance of the Machine-Assisted Classifier
Based on Only the Hippocampus

Classifiers

Accuracy (%)

Parcellated AAL Aparc + Aseg

Decision tree 91.4 95.7
Discriminant analysis 92.5 92.5
Logistic regression 92.5 93.5
Naive Bayes classifier 92.5 92.5
Support vector machine 94.6 95.7
Nearest neighbor classifier 92.5 94.6
Ensemble classifier 93.5 95.7
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temporal hypometabolism.9,23 Furthermore, another scenario that might
mislead the visual analysis is hypermetabolism in MTLE patients. False
lateralization of TLE with FDG PET has been reported24,25 when pa-
tients experienced frequent subclinical seizures on the side of MTLE
epileptogenesis. To avoid false information prompted by the hyper-
metabolic hippocampus, we included MTLE-associated ROIs to im-
prove lateralization accuracy. Pertinently, glucose hypometabolism
has been demonstrated in regions of the ipsilateral temporal and
extratemporal regions, including the amygdalohippocampal com-
plex, parahippocampal gyrus, temporal pole, orbitofrontal cortex,
insula, posterior and anterior cingulate gyrus, and thalamus.21

Quantification of 18F-FDG brain PETmight be helpful in de-
fining the epileptogenic zone, especially when MRI findings are
negative. This method also complements conventional visual analy-
sis by improving the sensitivity for epileptogenic lesion detection.7

Several published studies have attempted to increase the accuracy of
lateralization using a quantitative method of FDG PET interpretation.
Kim et al13 used the SPMmethod to examine presurgical PET results
in patients with TLE by using PET scan of normal subjects as refer-
ence. The accuracy of hypometabolism of the epileptogenic side in
FDG PET scans was 76% (sensitivity of 89% and specificity of
91%).13 However, quantitative FDG brain PET of normal subjects
has the limitation of a lack of standardization of the brain state, age,
and sex among the subjects, which may result in large physiological
variability and less sensitivity in the detection of glucose metabolic
abnormalities.26 We compared the FDG PET of both sides of the
medial temporal lobe in the same individual to reduce interindividual
variability. In this study, we used high-resolution brain MRI for image
segmentation. Because of the relatively low resolution of FDG PET im-
ages, direct segmentation of PET imageswould result in a severe partial
volume effect. Also, brain MRI scans have higher resolution than brain
PET images and could minimize the partial volume effect. Moreover,
during parcellation of the high-resolution brain MRI scans, we created
FIGURE 3. Overview of the qPET tool, including LOAD, RUN, EX
MPRAGE and 18F-FDGPETDICOMdata. RUN initiates themachine-
side of MTLE patients. EXPORT outputs the analysis results, includ
lateralization side of MTLE patients. SNAPSHOT captures an imag
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a personalized atlas, which could providemore accurate anatomical la-
bels of individuals. The normalized PET SUVwas then applied to the
ROI, which could also increase the accuracy of PET quantitation.27

In the quantification of FDG PET, manual segmentation of
brainMRI scans is still the criterion standard. However, this method
requires repetitive tasks, is time-consuming, and is based on the
experience of physicians.28 Many methods of total automated
segmentation have been developed to solve these problems and
have achieved various levels of accuracy (Dice similarity coefficients,
0.68–0.94).29 Grimm et al30 compared automatic segmentation, in-
cluding that achieved byVBM8 and FreeSurfer version 5.0, with man-
ual segmentation in the volume of the amygdala and hippocampus in
92 patients enrolled in a posttraumatic stress disorder disease study.
The authors concluded that the correlation between automatic and
manual segmentation was high for the hippocampus and lower for
the amygdala (Pearson correlation coefficients, 0.58–0.76 and 0.45–
0.59, respectively). Compared with manual segmentation, VBM8
and FreeSurfer segmentation have comparable performance.

Hu et al31 also used automated quantitative analyses of hip-
pocampal volume and glucose uptake to lateralize the lesion side
in patients with MTLE. The authors used the MPRAGE sequence
in FreeSurfer software for automatic segmentation of brain images.
The study showed higher sensitivity in quantitative methods than
visual assessment methods (98.15% and 81.48%, respectively,
P = 0.008). The quantitative measurement of FDG PET uptake in
the hippocampus was more sensitive than hippocampal volumetry
by T1 sequencing in MRI scans, although there was no statistical
significance (98.15% and 92.59%, respectively, P = 0.343). How-
ever, this study only interpreted quantitative hippocampal images
and did not consider the epileptogenic network. Furthermore, the
study did not examine the performance of quantitative analysis on
data that could not be well lateralized by visual analysis. In our
study, we found that the quantification methods could detect 87%
PORT, and SNAPSHOT functions. LOAD initiates the input of
assisted quantitative procedure of FDGPET on the lateralizing
ing the bilateral amygdala and hippocampus SUV and
e of the processed 18F-FDG PET and qPET GUI results page.

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
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of the visual analysis failure cases. In addition to FreeSurfer segmen-
tation, we also used the DARTEL method. The lateralization index
obtained from these 2 methods could bewell analyzed using the clas-
sifiers. The performancewas similar in 2 methods. More specifically,
for clinical practice, the DARTELmethod has an advantage of a short
computing time (25 minutes for DARTEL vs 6 hours for FreeSurfer)
and could be performed on either Windows or MacOS systems. We
also developed a graphical user interface (GUI), so that this method
could be incorporated into clinical practice.

The study had some limitations. First, we used the surgical
side as a standard of determination of the epileptogenic side. Disparate
interpretations could arise in the evaluation of patients who were not
seizure-free after surgery. We examined postoperative EEG data in 2
patients who did not achieve favorable surgical outcomes (1 Engle
class III and 1Engle class IV). Also, the postoperative epileptiform dis-
charges were localized on the side of surgery, which suggested a more
widely distributed epileptogenic network. There was no evidence that
the recurring seizures were from the contralateral side. Second, this
was a single-center study with a relatively small sample size. A multi-
center study with larger sample sizes is needed to test the modelwe de-
veloped. We developed a GUI to facilitate the artificial intelligence
(AI) analysis of FDG PET (qPET) (Fig. 3, Video 1, http://links.lww.
com/CNM/A363), which could be conducted at different epilepsy cen-
ters. The performance of this algorithm could consequently be exam-
ined. Third, all the enrolled patients had drug-resistant MTLE.
Moreover, the usage of the proposed model for patients with other
epileptogenic foci might need further evaluation.

CONCLUSIONS
In this research, we developed a machine learning quantitative

method of evaluating 18F-FDG PET data to determine the lateralization
of the side of MTLE epileptogenesis. The machine learning classifier
was adopted to deliver anAI tool that is capable of extracting image fea-
tures from the 18F-FDG PET data and classifying normalized PETup-
take of the ROI of 18F-FDG PET images into lateralization epilepto-
genic foci. Image preprocessing on the patient data emphasized the crit-
ical information pertaining to successful lateralization epileptogenic foci
interpretation from 18F-FDGPETimages. Thevalidation folds achieved
approximately 96.0% accuracy in lateralization of epileptogenic foci
interpreted from the parcellatedAAL atlas usingDARTELdeformation
or the aparc + aseg atlas from FreeSurfer. The proposedAI-based lat-
eralization epileptogenic foci interpretation method could provide
assistance in the preoperative diagnosis of epilepsy surgery with
18F-FDG PET scans, which is highly accurate and readily available.
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