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� A viable optimization-simulation
strategy by coupling Aspen HYSYS
with MATLAB.

� The optimization strategy has been
applied to a complex complete
saturated-gas plant.

� Different stochastic algorithms have
been applied.

� The benefits and shortcoming of each
method have been investigated.

� The implemented strategy precisely
reached the optimum operating
conditions.
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An optimization-simulation strategy has been applied by coupling a commercial process simulator
(Aspen HYSYS�) with a programming tool (MATLAB�) to produce a precise steady state simulation-
based optimization of a whole green-field saturated gas plant as a real case study. The plant has more
than 100-components and comprises interacting three-phase fractionation towers, pumps, compressors
and exchangers. The literature predominantly uses this coupling to optimize individual units at small
scales, while paying more attention to optimizing discrete design decisions. However, bridging the gap
to scalable continuous design variables is indispensable for industry. The strategy adopted is a merge
between sensitivity analysis and constrained bounding of the variables along with stochastic optimiza-
tion algorithms from MATLAB� such as genetic algorithm (GA) and particle swarm optimization (PSO)
techniques. The benefits and shortcomings of each optimization technique have been investigated in
terms of defined inputs, performance, and finally the elapsed time for such highly complex case study.
Although, both GA and PSO were satisfactory for the optimization, the GA provided greater confidence
in optimization with wider ranges of constrained bounds. The implemented strategy precisely reached
the best operating conditions, within the range covered, by minimizing the total annual cost while main-
taining at least 92% butane recovery as a process guarantee for the whole plant. The optimization-
, Zewail

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jare.2019.11.011&domain=pdf
https://doi.org/10.1016/j.jare.2019.11.011
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Tamer.S.Ahmed@cu.edu.eg
https://doi.org/10.1016/j.jare.2019.11.011
http://www.sciencedirect.com/science/journal/20901232
http://www.elsevier.com/locate/jare


22 S.H. Bayoumy et al. / Journal of Advanced Research 22 (2020) 21–33
simulation strategy applied in the current work is recommended to be used in brownfields to optimize
the operating conditions since they are susceptible to continuous changes in feedstock conditions.
� 2020 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Traditionally, surplus gases in refinery plants have been dis-
posed of by flaring to the atmosphere. Currently, this type of dis-
posal is becoming an inferior solution for reducing emissions to
the atmosphere, while simultaneously conserving energy. There-
fore, the pressing demand for processes that can safely and eco-
nomically use these surplus gases is rapidly increasing. In this
context, the ‘‘light ends” process is the only process in modern
refinery plants that is designed to separate almost pure compo-
nents from crude oil [1]. Light end processing units have several
stages of separation and fractionation that are used to separate
light fractions from heavier fractions and purify contaminants,
mainly sulfur, from lighter fractions. Usually, at least two light
end processing units, a saturated gas plant (SGP) and an un-
saturated gas plant, exist in very large refinery plants. Both are
open art technologies and have some similarities in the arrange-
ment and sequence of the process. However, the main differences
between these units mostly relate to the location of each separa-
tion unit, type of feed and, subsequently, type of products. In prin-
ciple, un-saturated gas plants are usually adjacent to cracking units
for producing olefin streams, whereas SGPs are usually located
adjacent to isomerization, naphtha hydro-treating and atmo-
spheric crude distillation units (CDUs) for producing paraffinic
streams [2].

Optimization applications are frequently applied as prominent
tasks in all areas of process systems engineering from model and
process development to process synthesis and design, and finally
to process operations control, process safety analysis, planning
and scheduling [3–8]. In essence, energy conservation is the most
important rule of sustainable design optimization since it is con-
sidered a key part in saving money in the long term. Energy conser-
vation concepts should be implemented on an ongoing basis at all
stages of asset lifecycle development. In most chemical process
plants, an enormous amount of energy of up to approximately
40% of the total energy consumption is consumed in an intensive
way in separation and purification processes [9]. In many cases,
separation processes are commonly conducted by using distillation
towers that have a wide variety of uses throughout the industry
because of their ability to split feed streams into pure components
or mixtures of components with similar boiling points [10].
Undoubtedly, optimization of the operating conditions of distilla-
tion towers is the most crucial step to minimize energy consump-
tion and consequently reduce the total annual cost (TAC) of the
whole plant. This optimization is accentuated because it con-
tributes, in turn, to the determination of the number of pumps
and compressors stages, electricity consumption, and types/
amount of heating and cooling sources that are used in any plant.
Although the number of trays has the primary impact on the cap-
ital cost in terms of the total height of the tower, this number is
also optimized based on energy consumption regarding the total
duty.

Usually, a sophisticated simulation-based optimization is
required to optimize distillation towers. Since sensitivity analy-
sis provides good intuition about how various parameters affect
the objective function, and to rank the parameters [11], this anal-
ysis is usually used as a part of the optimization process to mini-
mize the calculation time of the optimization algorithm
employed. In this regard, much attention has been paid to mathe-
matical programming for optimization problems related to distilla-
tion columns. To reliably provide rigorous stage-by-stage
equilibrium optimization models for distillation towers for finding
the optimal feed locations and the optimum number of trays,
mixed integer nonlinear programming (MINLP) [12–15] or gener-
alized disjunctive programming (GDP) [16–18] is usually used.
The first reliable model used to obtain the optimum number of
stages and optimum feed locations for an individual distillation
tower was executed by using MINLP [19,20]. However, there were
some shortcomings and difficulties in these models that were
solved by using a GDP representation [21]. These shortcomings
were due to the enforcement of vapor-liquid equilibrium condi-
tions on all trays of the tower, and this enforcement could produce
numerical problems as a result of the convergence of the equilib-
rium equation. Many difficulties exist in using MINLP or GDP tech-
niques related to the need for expert persons in the areas of
programming, modelling and optimization to adapt to different
types of problems such as initialization of models, debugging,
and determining how to guarantee the accuracy of results and sim-
ilar aspects [21–23]. All problems related to the initialization and
convergence of distillation columns are nearly settled when a pro-
cess simulator is integrated with an external optimizer. As an
example, the first integrated model was developed by integrating
of HYSYS with both MATLAB and GAMS-CPLEX [24].

Commercial process software, e.g., Aspen HYSYS�, is considered
‘‘modular architecture”, which means that any process plant or any
complex systems can be built and divided into sub-components
(modules) without affecting the rest of the system [25]. Flow
sheets can be decomposed into blocks or modules (e.g., distillation
column, absorption column, . . ., etc.) that can be interpreted,
debugged, and coded by themselves [26]. Both debugging and ini-
tialization difficulties in the equation-based models are solved in
HYSYS. HYSYS-Optimizer can be used for sensitivity analysis
(what-if studies) or as a single-step optimization method to find
the operating conditions that locally minimize or maximize an
objective function. In addition, in the first integrated model, the
decision variables sent from the solver at each timemust converge;
otherwise, the whole algorithm will fail. Therefore, the indepen-
dent variables should be selected carefully to converge at any ini-
tial point [24]. In HYSYS-Optimizer, neither the embedded code
nor derivative information is accessible to users since all existing
processing units in commercial simulators are ‘‘black box” models
[19]. This concern should be taken into consideration since
gradient-based algorithms always depend on precise derivative
information from the process simulator. In this regard, many
attempts have been reported in the literature to couple a process
simulator with an external optimization tool to overcome the
simulator-optimizer limitations. In general, the literature predom-
inantly uses this coupling to optimize a few individual units at
small scales while paying more attention to optimizing discrete
design decisions. However, bridging the gap to scalable continuous
design variables is indispensable for industry. For example, to
overcome the limitations related to derivative-optimization tech-
niques, a genetic algorithm (GA) and particle swarm optimization
(PSO) algorithmwere used as stochastic algorithms [27–29]. Aspen
HYSYS was linked with a GA built-in MATLAB code to externally
optimize and control HYSYS in a successful way to minimize shaft
power requirements for an LNG refrigeration cycle [30,31]. The
optimization was performed to optimize the refrigerant composi-
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tion and the operating conditions for the whole loop based on the
selected composition. In addition, HYSYS was linked with PSO to
optimize a configuration of distillation towers in terms of the opti-
mum number of stages and the optimum feed location, based on
TAC, for three different distillation systems [32]. Moreover, Aspen
HYSYS and a stochastic optimization strategy for simulation and
optimization were linked to determine the design variables for a
crude oil separation process to maximize profits [33].

The purpose of this work is to apply a simulation-based opti-
mization strategy for optimizing operating conditions for a whole
plant in an effective and reliable way through coupling Aspen
HYSYS and MATLAB. The strategy adopted is a merge between sen-
sitivity analysis and constrained bounding of the variables along
with either GA or PSO stochastic optimization algorithms. As a real
case study, the procedure has been applied to an entire SGP that
will be established in Egypt to produce LPG and stabilized naphtha.
The plant represents a highly non-linear case with more than 100-
components and comprises interacting three-phase fractionation
towers, pumps, compressors, and exchangers. The remarkable
challenge is determining how to handle the large numbers of
equipment, continuous constraints, and variables in a corrective
way without deviation from the feasible solution. The performance
and results of both GA and PSO optimization algorithms have been
discussed.
Methodology

Simulation problem: the case study

The refinery plant that is studied in this work mainly consists
of two crude distillation units (CDU 1 and 2), including an exist-
ing SGP unit that recovers the gases produced from CDU (1). In
this refinery plant, a new SGP (green field) with a design capacity
of 400,000 ton/year is planned to be installed in parallel to the
existing one. This SGP will be flexible to serve one or both CDUs
Fig. 1. A-Simple schematic block flow diagram with boun
in addition to the naphtha complex effluent streams to finally
produce LPG and stabilized naphtha. The naphtha complex efflu-
ent streams are the sour off-gas from naphtha hydro-treating, off-
specification LPG from continuous catalytic regeneration, off-gas
from continuous catalytic regeneration, and off-gas from
isomerization.

The new SGP is required to handle both design and future
modes without any overdesign margin. In the design mode, two
vapor streams and two liquid light naphtha streams from two dif-
ferent CDUs are directed to the new SGP. The vapor streams are
combined and then compressed to the fractionation section and
the two liquid light naphtha streams are mixed and then pumped
to the same destination. In the future mode, the naphtha complex
effluent streams will be routed to the new SGP with the same
design capacity of 400,000 ton/year as the design mode without
any overdesign margin. Fig. 1A shows a simple schematic block
flow diagram with boundary limits for the process while Fig. 1B
shows the detailed process flow diagram showing both the base
and future modes.

Aspen HYSYS simulation package v. 8.6 was used in developing
the process model. The Peng-Robinson thermodynamic fluid prop-
erty package [34] was used throughout the simulation.
Pretreatment facilities
The process starts by saturation of the feeds with water before

entrance to the pretreatment facilities. In these facilities, further
free-water separation and adjustment of the operating conditions
are performed before sending these streams to the fractionation
sections. Pretreatment facilities are required to alleviate the load
of water-separation on the fractionation train, enhance the effi-
ciency of separation, and adjust the operating conditions needed
to meet the product specifications.
Compression station package. The pressure ratio across the two
compression stages (with polytrophic efficiency of 75%) in the
dary limits; B- Overall detailed process flow diagram.



Fig. 1 (continued)
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existing train is limited to 3.5. Thus, the maximum discharge pres-
sure for the collated vapors after saturation with water is 0.9 MPa.
The delivered pressure of the collated vapors from naphtha com-
plex effluent streams in the future mode is also limited to
0.85 MPa as a design basis.
Naphtha-receiving three-phase separator. The collated water
streams from the knock-out drums of compressors are sent to
three-phase separator with the incoming light naphtha streams.
The gas vapor stream is then recycled to the inlet vapor streams,
the light naphtha is routed to the deethanizer tower for further



Fig. 2. A-Configuration of the deethanizer tower; B-Configuration of the debu-
tanizer tower; C- Configuration of the sponge oil absorber.
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separation, and the separated free water is sent to an existing sour
water system.

Fractionation train
The fractionation train consists of two distillation towers (a

deethanizer and debutanizer). A depropanizer does not exist since
the LPG composition is fixed with a certain vapor pressure limit
to be used in the local market. Some common practices and
design criteria considered for the fractionation train are as
follows:

� The inlet feed temperature should match the tray temperature.
� The internal temperature profile should be normal without any
vertical or horizontal asymptote.

� ‘‘HYSIM Inside-Out” is used as a built-in solving method for the
three-phases (water, gas, and hydrocarbon liquid) distillation
for extracting water from the trays expected to have water by
having water withdrawal streams.

Deethanizer. The deethanizer is simulated using the abovemen-
tioned criteria to recover C1 and C2 from the overhead, while the
slipped C3 + is withdrawn from the bottom and then routed to
the debutanizer, as shown in Fig. 2A. The deethanizer tower is con-
sidered to be a combination between two sections, an absorber in
the top section and a conventional fractionation tower in the bot-
tom section, rather than separating them into two standalone tow-
ers. The absorber section is considered to be a tray tower, not a
packed tower, because higher flow rates of liquid and gases require
larger diameters [35]. Stabilized naphtha is used as lean oil in the
primary absorber due to the high absorption factor, which leads to
a lower flow rate. However, some naphtha is lost to the off-gas due
to equilibrium. An overhead full reflux condenser (shell and tube
heat exchanger) utilizing sea water for condensation is used with
a recommended minimum temperature approach of 10 �C as per
common practice. The recycled stabilized naphtha is preferred to
be routed to the overhead condenser to increase absorption
efficiency.

Debutanizer. The debutanizer is simulated to recover commercial
C3/C4 (LPG) from the overhead condensate, while the stabilized
naphtha is from the reboiler, as shown in Fig. 2B. An overhead full
reflux condenser (shell and tube heat exchanger), utilizing sea
water for condensation with a temperature approach of 10 �C,
was used.

Sponge absorber. To recover the lost stabilized naphtha escaping
with the off-gas (fuel gas) from the deethanizer, heavier absorption
oil (with a lower absorption factor than the stabilized naphtha) is
used in the second stage (sponge absorber) to absorb the stabilized
naphtha from the first stage of absorption (Fig. 2C). The sponge-oil
rate is conventionally adjusted to control the C5 + in the off-gas to
lower than 0.5% to reach an overall C5 + recovery of 99.8%. The
overhead gases from the sponge oil absorber are directed to an
existing fuel gas system, while the rich sponge oil is returned to
the existing CDU (2). The exact amount of sponge oil should be
determined by integrating the sponge absorber with CDU (2). In
common practice, the number of theoretical stages of a sponge
absorber ranges from approximately 3 to 5 theoretical stages with
a tray efficiency of 20% [36].

Heat integration
Medium pressure steam is available at the plant. However, to

minimize the amount of steam, it is used only for the reboiler of
the debutanizer. On the other hand, the bottom of the deethanizer
is reboiled by the hot outlet stream (stabilized naphtha) from the
debutanizer reboiler. The stabilized naphtha is then routed to heat
the light naphtha feed and, is finally cooled to 43 �C.
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Sensitivity analysis

Sensitivity analysis was first performed on the HYSYS model as
a single step optimization to identify the local optimum points
before applying the optimization techniques to determine the
influence of all parameters on the outcomes. Instead of using the
GAMS solver, the sensitivity analysis technique was conservatively
conducted on the fractionation section to provide the closest con-
figuration to the optimum design by determining the optimum
number of stages and the optimum feed locations.

Then, the HYSYS model was optimized by tuning the most influ-
ential design variables in the range of the constrained bounds for
each design variable to be an input for the optimization stage.
The optimization was implemented through a linkage between
HYSYS and MATLAB. Finally, after implementation of the optimiza-
tion techniques, sensitivity analysis was performed on the selected
algorithm to test the robustness of the objective function to small
changes in the values of the optimized parameters and/or small
changes in the initial values.
Implicit-constraints and assumptions

The implicit constraints are imposed on HYSYS model through a
large list of ‘‘column specification” that gives the possibility to
select from different operating conditions as degrees of freedom
for the tower. Thus, there was no need to add explicit constrains
for the objective function. The implicit constraints were done
based on surrounding environment conditions, process design
guarantee, specifications, and common standard practice in the
field. These implicit constraints are:

� Since cooling water maximum temperature in summer is 33 �C,
the overhead temperature of the deethanizer and debutanizer is
not lower than 43 �C to keep the minimum temperature
approach to 10 �C.

� The recovery of C5 + in the bottom of the deethanizer is not less
than 97% to decrease the amount of naphtha that may carry up
with ascending vapor.

� The overall recovery of n-C4 in each of the deethanizer and
debutanizer is not less than 92% as a process guarantee for
the whole plant.

� The recovery of C3 in the bottom of the deethanizer is not less
than 90% to avoid exceeding the maximum limit of LPG vapor
pressure per Egyptian specification.

� The maximum liquid volume percentage of C2 in LPG stream is
5% per Egyptian LPG specification.

� The maximum liquid volume percentage of C5 + in LPG stream,
equivalent to final boiling point test, is 5% per Egyptian LPG
specification.

� The available steam in the plant is medium pressure steam with
maximum temperature around 160 �C within range of pressure
of 7–8 bars.

� The maximum shipping envelope length for distillation towers
is 35 m. This is specified according to limit of feasible transport.

� The tray spacing has been taken to be 0.9 m as a conservative
space.

� Absorber efficiency has been taken about 20%, whereas the nor-
mal distillation tower efficiency has been taken about 60% per
common practice.

To develop a precise pressure profile across SGP, some realistic
assumptions and calculations are made to determine the discharge
pressure and the temperature required to flow the gas/liquid
streams through the equipment until the boundary limits. The fol-
lowing assumptions were considered in the simulation:
� Every heat transfer equipment has a pressure drop around
0.0345 MPa, except for deethanizer and debutanizer reboilers,
and deethanizer feed preheater, in which the pressure drop
has been around 0.0689 MPa.

� The minimum temperature approach in all water cooler/con-
densers is 10 �C, as per common practice for shell and tube heat
exchangers.

Finally, since feed gas compositions are available on a dry basis,
water saturation utility tool in HYSYS has been used to get gas
composition on a wet basis. It is important to note that HYSYS
model assumes theoretical trays with vapor and liquid phases
are in equilibrium on each tray. However, the economic costs have
been calculated based on the actual number of trays and actual
height.

Optimization-simulation methodology

Aspen HYSYS [37] is automated by MATLAB (R2015a) as the
external solver, which programmatically runs HYSYS as a front-
end. All simulation calculations, thermodynamic properties, and
physical properties calculations were done by HYSYS side. On the
other hand, MATLAB programmatically controlled black-box func-
tions inside HYSYS and took all relevant decisions to attain the
optimum design with the appropriately selected algorithm (GA
or PSO).

Objective function
Indeed, coupling HYSYS with external software for optimization

such as MATLAB requires the objective function to be well-defined
in terms of process design variables (input to HYSYS) and process
design parameters (output from HYSYS). The objective function
selected for the current work is the TAC, which comprises two
main terms for operating cost and capital cost (Equation (1)) [38]:

TAC ¼ F � CCap þ COp ð1Þ
where:

TAC: Total annual cost
F: Annualization factor
CCap: Capital cost
COp: Operating cost

The annualization factor (F) of the capital cost is calculated by
(Equation (2)) [39]:

F ¼ i � ð1þ iÞn
1þ ið Þn � 1

ð2Þ

where:

i: fractional interest rate per year. A typical value for (i) is 10%
per common practice.
n: years over which the capital is to be annualized. A typical
value for n is 5 years per common practice

For the current plant, distillation towers and heat exchangers
(condensers and reboilers) have the main impact on the capital
cost. Compressors and pumps are the only other equipment avail-
able in the plant. For compressors, per the current real case study,
an old compression station with two compression stages with their
accessories from the refinery plant was intended to be used.
Accordingly, their power consumption only has been included as
operating cost. For pumps, their capital cost change is trivial and
negligible compared to that of the towers and heat exchangers.
Accordingly, only their operating cost was included. In reality,
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pumps are usually designed based on the maximum flow rate with
multi-impellers.

The capital cost of heat exchangers depends on the calculated
areas of condensers and reboilers of towers. The area of exchangers
is a function of heat duties and the logarithmic mean temperature
difference. Similarly, the cost of a tower is a function of the diam-
eter, height, and operating pressure of the tower. The capital cost of
the towers was calculated based on the maximum diameter that is
produced from the maximum vapor rate in the future mode as the
worst-case scenario and the actual maximum height. After insert-
ing the values of the diameter and actual height in the capital cost
function of the towers, this function becomes a function of only the
operating pressure [40]. On the other hand, the operating cost was
estimated based on the cost of medium pressure steam, cooling
water and electricity that are consumed in each tower for 330 days
per year operation [38]. The details of the TAC calculations are in
the supporting information.

Using sensitivity analysis, there are five process design vari-
ables (input to HYSYS) that are required to completely specify
the simulated case study. To expedite the optimization process,
the number of generations/iterations needed to find an optimum
solution can be minimized by decreasing the number of design
variables to only three design variables as follows:

� Bottom pressure of the deethanizer (Peth).
� Bottom pressure of the debutanizer (Pbut).
� Split ratio (recycled flow rate of stabilized naphtha) (W).

The other two process design variables (top pressures of the
deethanizer and debutanizer) were taken as 0.05 MPa lower than
their corresponding tower bottom pressures. This helped in
decreasing the time from HYSYS to MATLAB and decreasing the
total computational time. Apart from the elapsed time as a result
of the executed algorithm, the optimization process can be expe-
dited by minimizing the maximum number of iterations that is
adjusted by the HYSYS solver itself to be only 150 iterations for
the distillation column.

The process design parameters (output from HYSYS) included in
the objective function are:

� Heat duty of deethanizer’s condenser (Qcond)
� Heat duties of the debutanizer’s condenser and reboiler (Qconb
and Qreb)

� Power of the first and second stages of the compressor (PWa
and PWb)

� Power of the light naphtha pump, booster pump and stabilized
naphtha pump (PWc, PWd, and PWe)
Fig. 3. Mechanism of getting derivative info
� Overhead temperatures of the deethanizer and debutanizer
(TOVa and TOVb)

� Bottom temperatures of the deethanizer and debutanizer
(TBOTa and TBOTb)

After accessing HYSYS through an ActiveX server and activating
a HYSYS case from MATLAB, almost all unit operations in HYSYS
become accessible as automated objects, which can be recalled
and controlled externally with a certain interfacing code. In
MATLAB, user can review the variables that are available for
automations or from COM server, where all variables and type of
each variable are listed. Moreover, user can reach the design vari-
able or parameter by more than one way to select the easiest way
to transfer the data directly from HYSYS to MATLAB and vice versa.
The framework directly links to key parameters and looks live and
interactive, in contrast to linking to a spreadsheet, as has been
done in most previous endeavors. It is important to note that if
information is sent to HYSYS from a client application, HYSYS does
not return control to the calling program until calculations are
complete [41]. All simulation runs and executed algorithms were
performed by using a computer with a 2.10 GHzi3-2310 M proces-
sor and 3 GB of RAM.
Optimization algorithms
The most important step in the optimization process is to select

a tailored algorithm that fits the problem to be optimized. In gen-
eral, optimization algorithms are classified into two broad cate-
gories: gradient-based algorithms and algorithms that employ
derivative-free optimization. When using the gradient-based algo-
rithms, the only way to obtain the derivative information from
HYSYS is to make a disturbance for the design variables. Fig. 3
shows a numerical experiment to clarify how the information is
transferred from HYSYS to MATLAB and vice versa. The accuracy
of the transferred data is of paramount importance for
optimization.

HYSYS-Optimizer only employs some gradient-based algo-
rithms that need convex models to ensure local optima. On the
other hand, MATLAB has both gradient-based and derivative-free
optimization approaches. In HYSYS, small numerical noise usually
arises when the initial values of the variables change and then
recover. This numerical noise is large enough to prevent the calcu-
lation of accurate derivatives. This effect results in gradient-based
optimization algorithms or finite difference methods that exist in
MATLAB or in HYSYS itself being unreliable [42]. To minimize this
numerical noise, the tolerance values should be less than 10-6.
However, these tolerance values make convergence of the flow
rmation from Aspen HYSYS ‘‘black box”
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sheet very difficult, especially when treating interrelated systems
such as recycle streams. On the other hand, algorithms that employ
stochastic optimization techniques provide an attractive option for
optimization since these methods are derived from heuristics that
depend on derivative-free optimization techniques. This means
that the information can be transferred from/to HYSYS through a
perturbation mechanism by making a disturbance to the design
variables instead of derivative information. Therefore, these
Fig. 4. A-Logical flowchart for the proposed algorithm using the GA;
algorithms avoid the difficulties of the high level of numerical
noise that is produced from deterministic techniques [43,44]. In
this work, Global Optimization Toolbox, a built-in MATLAB tool,
was used to provide methods of optimization. Both GA [45] and
PSO [46,47] were selected for comparison.

The GA uses the principle of ‘‘survival of the fittest” in its search
process to select and generate individuals (design solutions) that
are adapted to their (design objectives/constraints). The GA will
B- Logical flowchart for the proposed algorithm using the PSO.



Fig. 5. Sensitivity analysis for the debutanizer (theoretical stages are excluding the
reboiler and condenser stages). A- Number of stages; B- Feed location.
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then apply one of three stochastic operators to each point in the
population. It will either keep a point for the next generation (se-
lection), combine two points to obtain a new point (crossover),
or randomly perturb a candidate solution by changing the point
completely (mutation) [45]. On the other hand, the GA shows poor
performance.in highly constrained systems.

PSO is a relatively novel stochastic technique. This technique
mimics the way a swarm of birds (particles) locates a best landing
place applies the social interaction behavior of fish schooling or
bird flocking [46]. Each particle is treated as a particle in N-
dimensional space that adjusts its ‘‘flying” according to its own fly-
ing experience as well as the flying experience of other particles
[47].

The default number of generations in MATLAB for the GA is
(100 � number of variables) to guarantee the minimum objective
function value [48]. Therefore, there is no need to re-execute the
algorithm to guarantee the same solution. However, the GA needs
some kind of sensitivity analysis after implementation with differ-
ent initial values to guarantee the fittest solution. As shown in
Fig. 4A, the algorithm starts by the converged steady-state simula-
tion model, and then the objective function is evaluated for differ-
ent design variables and design parameters to determine the best
design variables. All newly populated design variables are reverted
to evaluate objective function again for the next generation. This
process is repeated until the stopping criterion is satisfied.

On the other hand, in PSO, the number of particles in the swarm
(swarm size) is the minimum of 100 or (10 � number of variables)
to guarantee the minimum objective function value [49]. Due to
the random population of design variables, convergence to the
same solution is not always guaranteed in the case of PSO. Thus,
the algorithm is executed a certain number of times to assess the
convergence of the proposed optimization approach and check to
what extent the values are close to each other. As shown in
Fig. 4B, the algorithm starts by the converged steady- state simula-
tion model, and then the objective function is evaluated for differ-
ent design variables and design parameters to determine the best
design variables. All newly populated particles are reverted into
the PSO as the next generation. This process is repeated until the
stopping criterion is satisfied.
Results and discussion

Sensitivity analysis

Debutanizer
Since the optimum operating conditions are absent in the

beginning of the design, the number of stages of the debutanizer
against the total duty has been explored at different split ratios
by changing the operating tower pressure (Fig. 5A). The lower
number of trays reflects a lower capital cost, but at the expense
of the operating cost.

In the old design of the debutanizer, the number of stages was
chosen closer to the focus point of the hyperbola (21 theoretical
stages excluding the reboiler and condenser). However, the price
of energy and its fluctuations greatly influence the optimum num-
ber of stages. Therefore, it is currently recommended to presume
higher energy cost during the design phase to accommodate the
fluctuations in the price of energy [39]. As shown in Fig. 5A, the
curve flattens at approximately 25 theoretical stages (excluding
the reboiler and condenser). Consequently, a smarter choice for
the optimum number of stages for the debutanizer would be
around this value to increase the flexibility of the operation.

The optimum feed location of the debutanizer should be
selected based on the lowest total duty for the selected number
of stages. In addition, the optimum feed location should be feeding
to a tray with a similar composition to minimize the composition
gradient between the feed and tray and consequently reduce the
total duty. Hence, evaluating the feed location is an essential step
for successful distillation unit optimization. Fig. 5B shows that
the optimum feed location is around the 11th stage for the selected
total number of stages.

Deethanizer
As mentioned before, the deethanizer tower consists of an

absorber rectifying section and a conventional distillation stripping
section. Since the duty of the reboiler is supplied by the hot stream
of stabilized naphtha, the operating cost is a function of only the
cooling duty of the condenser. A change in the number of stages
of the deethanizer has a minor effect on the cooling duty of the
condenser, although this effect decreases with increasing the num-
ber of stages (Fig. 6A). As per common practice, the absorber tray
efficiencies run notoriously low. Therefore, the number of stages
has to be selected carefully not to violate the maximum allowable
equipment shipping length (35 m), while maintaining moderate
duty and tuned temperature profile along the tower. As shown in
Fig. 6A, the optimum is approximately 10–11 theoretical stages,
which does not exceed the maximum length.

Lean oil
The amount of recycled lean oil has a great impact on the oper-

ating pressure of the towers and the total duties. Table 1 (A and B)
shows the effect of the split ratio for the base case and future
mode, respectively.

The operating pressure of the deethanizer in the future mode
increases notably more than that in the base case (Fig. 6B). The
feed mixture in the future mode is lighter than that in the baseline
scenario. Accordingly, the vapor pressure of the overhead stream is
higher. Therefore, to keep the constraint of the lowest overhead
temperature of 43 �C, the operating pressure of the tower was



Fig. 6. A-Sensitivity analysis for the number of stages of the deethanizer (theoret-
ical stages are excluding the reboiler and condenser stages); B-Impact of lean oil
recycle amount on the operating bottom pressure of the deethanizer in each of the
base case and future mode.

30 S.H. Bayoumy et al. / Journal of Advanced Research 22 (2020) 21–33
increased. Similarly, the bottom temperature of the deethanizer
tower notably increases with decreasing split ratio due to the
increased operating pressure of the tower.

As for the debutanizer, its pressure should be compromised. The
increase in the operating pressure of the debutanizer leads to vio-
lating the constraint of C4 specification. On the other hand,
decreasing the operating pressure of the debutanizer decreases
the bottom temperature of the debutanizer, and which this effect
leads to the absence of thermal integration between the deetha-
nizer and debutanizer reboilers.

Finally, at higher split ratios, the total duty and the area of con-
densers are higher. Thus, CAPEX and OPEX increase dramatically.
Consequently, very high split ratios are excluded from upper
bounds to reduce the execution time of the optimization algo-
rithm. Similarly, much lower split ratios are also excluded for
two reasons. First, an additional operating cost is needed due to
utilizing high-pressure steam in each reboiler of the deethanizer
Table 1
Effect of split ratio for the lean oil: A-base case; B-future mode. Deethanizer and debutan

A (base case) Split ratio

0.9 0.8

Recycle flow (ton/day) 6912 2851 1
Bottom pressure of deethanizer (MPa) 0.15 0.2
Bottom pressure of debutanizer (MPa) 0.45 0.45
Bottom temperature of (deethanizer/

debutanizer) (oC)
67/127 70/127 72

Total duty for deethanizer and debutanizer
(MMKcal/h)

18.75 10

CAPEX/OPEX Higher/
Higher

Higher/
Lower

H
L

B (future mode) Split Ratio

0.9 0

Recycle flow (ton/day) 4886 21
Bottom pressure of deethanizer (MPa) 0.3 0
Bottom pressure of debutanizer (MPa) 0.5 0
Bottom temperature of (deethanizer/debutanizer) (oC) 89/140 90/
Total duty for deethanizer and debutanizer (MMKcal/h) 14
CAPEX/OPEX Higher/Higher Highe
and debutanizer. Second, heat integration for the feed preheater
could not happen in the case of increasing the pressure of the
deethanizer above a certain value or decreasing the pressure of
the debutanizer under a certain value.

Constrained bounds for the base case and future mode
According to the implemented sensitivity analysis, constrained

bounds for each design variable are deduced to be used as inputs
for the optimization. Since the split ratio is the most effective
design variable that affects the recovery of LPG and the other
design parameters, a wider range was used. Table 2 shows the
bounds used for the base case and future mode, respectively.

Optimization

Outputs of the GA
The initial values affect the results of the GA to a great extent.

Therefore, these values should be selected based on a real under-
standing of the system and the objective function. If the selected
initial values are very far from the optimum point, the whole algo-
rithm will fail and produce infeasible solutions for the objective
function. These infeasible solutions arise because the flow sheet
does not converge at all points within the constraint bounds of
the design variables through the objective function correlation.
Nevertheless, the GA has the ability to move away from the infea-
sible regions and keep searching for the minimum real value as
long as the initial values produce a feasible value in the initializa-
tion step.

Table 3 represents the outputs from the GA optimization
including the optimum design values of the variables, the optimum
objective function and the CPU times for the base case and future
mode. Unlike the baseline scenario, the future mode suffered from
instability issues. Due to this instability, the deethanizer was reset-
tled at each generation of the design variables to guarantee conver-
gence for the whole flow sheet. However, the CPU time increased
tremendously.

Outputs of PSO
In some meta-heuristic algorithms such as PSO, there are two

methods to guarantee producing feasible solutions of the whole
algorithm and avoid any deviation from feasible regions. One of
these methods is accompanying the algorithm with penalty func-
tions, in which external constraints are placed into the objective
function via penalty parameters to penalize any violation, in
izer theoretical stages are 25 and 10, respectively.

0.7 0.6 0.5 0.4 0.3 0.25

840 1201 795 512 337 315
0.25 0.35 0.45 0.55 0.85 0.85
0.5 0.5 0.5 0.5 0.5 0.7
/127 82/127 89/127 95/127 116/128 114/130

7.7 6.3 5.4 4.67 4.4 5.6

igher/
ower

Higher/
Lower

Higher/
Lower

Higher/
Lower

Lower/
Lower

Lower/
Higher

.8 0.7 0.6 0.5 0.4

50 1531 1064 820 809
.43 0.7 0.85 0.9 0.99
.5 0.55 0.6 0.8 0.85
140 110/140 114/140 111/150 125/155
9 7.5 6.2 9.7 9.61
r/Lower Higher/Lower Higher/Lower Higher/Lower Higher/Higher



Table 3
Computational outputs from the GA for the base case and future mode.

Initial values

Base Case Future Mode

[Recycle amount (kg/s), Bottom operating pressure of deethanizer (MPaa), Bottom operating pressure of
debutanizer (MPaa)]

[20, 0.69, 0.45] [7, 0.9, 0.7] [3.9, 0.95, 0.6] [12,0.85,0.6] [17,0.7,0.55]

Optimum recycled flowrate (kg/s) 3.21 3.206 3.2 10.0011 10.0011
Optimum bottom operating pressure for

deethanizer (MPaa)
0.848922 0.849922 0.8489375 0.8697659 0.8697659

Optimum bottom operating pressure for
debutanizer (MPaa)

0.500124 0.50001 0.500 0.5500942 0.5500942

TAC (1000 USD/year) 826.300 826.300 825.760 1118.60 1118.80
CPU time (s) 25,610 25,609 10,000 35,503 40,951
Function evaluations 6650 6650 4900 1850 2600

Table 2
Constrained bounds for design variables for the base case and future mode.

Recycle naphtha flow (kg/s) Bottom operating pressure of deethanizer (MPaa) Bottom operating pressure of debutanizer (MPaa)

Base case
Upper bound 45 0.85 0.70
Lower bound 3.2 0.15 0.45

Future mode
Upper bound 25 0.9 0.85
Lower bound 10 0.43 0.5
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addition to broadening the ranges of the bound constraints for the
design variables. However, due to the large number of constraints
encountered in the optimization, it is advisable to avoid adding any
penalty terms in the objective function to facilitate the problem
and guarantee the robustness of the solution [50]. To remedy this
problem without the adoption of penalty strategies, the con-
strained bounds were divided here to more than one interval. Each
interval contained the constrained bounds that guaranteed the
convergence of the simulator in the whole interval without devia-
tion. The division of the intervals was determined by checking
whether the objective function is valid by using the option
‘‘FunValCheck” in the syntax to stop the algorithm and display an
error when the objective function returns a value that is infeasible
and then identify the new interval. Thus, this second method
depends on some intervention from the user to facilitate conver-
gence and guarantee the feasibility of the solution. Moreover, in
the PSO algorithm, the small variations that exist between the val-
ues of the objective function are usually a consequence of small
numerical noise from the process simulator. Therefore, five consec-
utive executions were produced to determine the optimum operat-
ing conditions and are considered enough, especially since the
design variables here are continuous, not discrete.

For the base case, the constrained bounds were divided into two
intervals as shown in Table 4. For each interval, the results of five
consecutive executions of the optimization algorithm coupled with
CPU time and the minimum TAC are included. The lowest TAC is
considered the best minimum for the whole range from PSO for
the base case and is similar in value to that obtained previously
from the GA optimization.

For the future mode, due to the instability, the intervals of con-
strained bounds were divided into three intervals as shown in
Table 5. For each interval, the results of 5 consecutive executions
of the optimization algorithm coupled with CPU time and the min-
imum TAC are included. The lowest TAC is considered the best
minimum for the whole range from PSO for the future mode and
is similar in value to that obtained previously from the GA
optimization.

From the above tables, both the GA and PSO reached nearly the
same best optimum for the base case and future case of 826,000
and 1,118,000 USD/year, respectively. In addition, the final pro-
duced optimum design variables from each algorithm are nearly
the same. For the base case, the optimum operating pressure of
the deethanizer, the optimum operating pressure of the debu-
tanizer and the recycled stabilized naphtha were 0.85 MPa,
0.50 MPa and 3.2 kg/s, respectively. For the future mode, the
optimum operating pressure of the deethanizer, the optimum
operating pressure of the debutanizer, and the recycled
stabilized naphtha were 0.87 MPa, 0.55 MPa and 10 kg/s, respec-
tively. For ease of tower operation, the internal temperature profile
along the distillation towers should be tuned according to the opti-
mum operating conditions to align with the normal temperature
profile.

The time taken by PSO in both of the base case and future mode
(1500 s and 9850 s, respectively) was less than that taken by the
GA in both the base case and future mode (25610 s and 40951 s,
respectively). However, PSO needs more understanding of the sys-
tem. This need is reflected in the intervals of the constrained
bounds chosen to avoid using any additive penalty function terms
in the objective function. On the other hand, the GA provides the
best optimum within a wider range of bound constraints, as long
as good intuition about the initial point is given to the algorithm.
Finally, it is clear from the above that both the GA and PSO can
be used as ‘‘fit-for-purpose” optimization algorithms according to
the nature of the optimization problem.

The implemented strategy adopted in the current work shows
how to optimize more complex systems and/or entire green- or
brown-field plants. These systems require more constraints, design
variables, and design parameters to couple the simulator with
MATLAB in a rational and seamless way. The strategy sheds light
on how to deal with alternative stochastic algorithms, i.e., the GA
and PSO, in such a wide range of conditions. Moreover, this
optimization-simulation strategy can be generalized to be used
in dynamic simulations to optimize control parameters. Finally,
the strategy can be very beneficial for brownfields to optimize
the operating conditions, particularly, for CDUs and vacuum distil-
lation units, which require periodic tuning to optimize operating
conditions due to the continuous changes in the feedstock
conditions.



Table 4
Computational outputs from the PSO for the base case (Two interval).

[Recycle amount (kg/s), Bottom operating pressure of deethanizer (MPaa), Bottom operating
pressure of debutanizer (MPaa)]

First Interval [12–45, 0.45–0.85, 0.5–0.7]

Execution number

1 2 3 4 5

Optimum recycled flowrate (kg/s) 12 12 12 12 12
Optimum bottom operating pressure for deethanizer(MPaa) 0.85 0.85 0.85 0.85 0.85
Optimum bottom operating pressure for debutanizer (MPaa) 0.50 0.50 0.50 0.50 0.50
TAC (1000 USD/year) 1132.90 1132.92 1132.95 1132.90 1132.98
CPU time (s) 973 978 1026 950 1000
Function evaluations 690 690 690 690 690

Second Interval [3.2–12, 0.8–0.85, 0.5–0.7]

Execution number

1 2 3 4 5

Optimum recycled flowrate (kg/s) 3.2 3.2 3.2 3.2 3.2
Optimum bottom operating pressure for deethanizer (MPaa) 0.85 0.85 0.85 0.85 0.85
Optimum bottom operating pressure for debutanizer (MPaa) 0.50 0.50 0.50 0.50 0.50
TAC (1000 USD/year) 821.420 821.465 821.452 821.420 821.420
CPU time (s) 493 480 490 490 490
Function evaluations 660 660 660 660 660

Table 5
Computational outputs from the PSO for the future mode (Three intervals).

[Recycle amount (kg/s), Bottom operating pressure of deethanizer (MPaa), Bottom operating
pressure of debutanizer (MPaa)]

First Interval [12.3–23, 0.43–0.85, 0.5–0.6]

Execution number

1 2 3 4 5

Optimum recycled flowrate (kg/s) 12.3 12.3 12.3 12.3 12.3
Optimum bottom operating pressure for deethanizer(MPaa) 0.85 0.85 0.85 0.85 0.85
Optimum bottom operating pressure for debutanizer (MPaa) 0.5 0.5 0.5 0.5 0.5
TAC (1000 USD/year) 1141.72 1141.65 1141.59 1141.70 1141.69
CPU time (s) 5489 5479 5480 5488 5488
Function evaluations 660 660 660 660 660

Second Interval [10.2–12.3, 0.62–0.87, 0.5–0.55]

Execution number

1 2 3 4 5

Optimum recycled flowrate (kg/s) 10.2 10.2 10.2 10.2 10.2
Optimum bottom operating pressure for deethanizer (MPaa) 0.864 0.864 0.864 0.864 0.864
Optimum bottom operating pressure for debutanizer (MPaa) 0.55 0.55 0.55 0.55 0.55
TAC (1000 USD/year) 1130.37 1130.40 1130.45 1130.36 1130.37
CPU time (s) 2089 2080 2081 2089 2089
Function evaluations 660 660 660 660 660

Third Interval [10–10.2, 0.86–0.87, 0.55–0.55]

Execution number

1 2 3 4 5

Optimum recycled flowrate (kg/s) 10 10 10 10 10
Optimum bottom operating pressure for deethanizer (MPaa) 0.866 0.866 0.866 0.866 0.866
Optimum bottom operating pressure for debutanizer (MPaa) 0.55 0.55 0.55 0.55 0.55
TAC (1000 USD/year) 1118.2 1118.2 1118.2 1118.2 1118.2
CPU time (s) 2268 2267 2268 2260 2268
Function evaluations 660 660 660 660 660
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Conclusions

A coupling between Aspen HYSYS and MATLAB to produce a
precise steady state simulation-based optimization strategy was
developed through a real case study. The coupling was demon-
strated in optimization of a complex SGP in a certain refinery plant
in Egypt to maximize the benefit from the produced off-gases. A
merge between sensitivity analysis and stochastic optimization
techniques such as GA and PSO was adopted in the optimization
strategy. The implemented strategy reached the best operating
conditions by minimizing the total annual cost while maintaining
at least 92% butane recovery as a process guarantee for the whole
plant.

The advantages and disadvantages of each method were dis-
cussed in detail. The elapsed time needed by PSO was less than that
needed by the GA, but PSO needed more understanding of the sys-
tem in terms of the well-defined bounds. This difference was
reflected in the constrained bounds chosen to avoid using any
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additive penalty function terms in the objective function. Despite
the large amount of time needed, the GA provides greater confi-
dence than PSO in optimization with wider ranges of constrained
bounds. In any case, both methods are fit-for-purpose algorithms.

The results show that the implemented strategy can provide
viable and reliable operating conditions. This finding is reflected
in obtaining essentially the same best conditions whether by using
the GA or PSO within the bounds implemented for both algorithms.
For ease of tower operation, the internal temperature profile along
the distillation towers should be finally tuned corresponding to the
best operating conditions to align with the normal temperature
profile. The optimization-simulation strategy can be used in
brownfields to optimize the operating conditions, which may be
susceptible to continuous changes in feedstock conditions.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal
subjects.

Declaration of Competing Interest

The authors have declared no conflict of interest.

Appendix A. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jare.2019.11.011.

References

[1] Jones D, Pujado P. Handbook of Petroleum Processing. Springer; 2006.
[2] Gas Plants. SET Lab Inc 2019. http://www.setlab.com/resources/refining/gas-

plants/(accessed February 24, 2019).
[3] Mukherjee A, Banerjee S, Halder G. Parametric optimization of delignification

of rice straw through central composite design approach towards application
in grafting. J Adv Res 2018;14:11–23.

[4] Kalikate SM, Patil SR, Sawant SM. Simulation-based estimation of an
automotive magnetorheological brake system performance. J Adv Res
2018;14:43–51.

[5] González-Reséndiz J, Arredondo-Soto KC, Realyvásquez-Vargas A, Híjar-Rivera
H, Carrillo-Gutiérrez T. Integrating simulation-based optimization for lean
logistics: a case study. Appl Sci 2018;8.

[6] Shaaban MF, Ahmed MH, Salama MMA, Rahimi-Kian A. Optimization unit for
real-time applications in unbalanced smart distribution networks. J Adv Res
2019;20:51–60.

[7] Biegler LT, Grossmann IE. Retrospective on optimization. Comput Chem Eng
2004;28:1169–92.

[8] Kummer A, Varga T. Process simulator assisted framework to support process
safety analysis. J Loss Prev Process Ind 2019;58:22–9.

[9] White DC. Optimize energy use in distillation. Chem Eng Prog
2012;108:37–42.

[10] Cussler EL. Diffusion: Mass Transfer in Fluid Systems. third ed. Cambridge
University Press; 2009.

[11] Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, et al. Global
Sensitivity Analysis. The Primer. Wiley; 2008.

[12] Gupta OK, Ravindran A. Branch and bound experiments in convex nonlinear
integer programming. Manage Sci 1985;31:1533–46.

[13] Leyffer S. Integrating SQP and branch-and-bound for mixed integer nonlinear
programming. Comput Optim Appl 2001;18:295–309.

[14] Geoffrion AM. Generalized benders decomposition. J Optim Theory Appl
1972;10:237–60.

[15] Fletcher R, Leyffer S. Solving mixed integer nonlinear programs by outer
approximation. Math Program 1994;66:327–49.

[16] Raman R, Grossmann IE. Modelling and computational techniques for logic
based integer programming. Comput Chem Eng 1994;18:563–78.
[17] Lee S, Grossmann IE. New algorithms for nonlinear generalized disjunctive
programming. Comput Chem Eng 2000;24:2125–41.

[18] Türkay M, Grossmann IE. Logic-based MINLP algorithms for the optimal
synthesis of process networks. Comput Chem Eng 1996;20:959–78.

[19] Viswanathan J, Grossmann IE. Optimal feed locations and number of trays for
distillation columns with multiple feeds. Ind Eng Chem Res 1993;32:2942–9.

[20] Barttfeld M, Aguirre PA, Grossmann IE. Alternative representations and
formulations for the economic optimization of multicomponent distillation
columns. Comput Chem Eng 2003;27:363–83.

[21] Yeomans H, Grossmann IE. Optimal Design of Complex Distillation Columns
Using Rigorous Tray-by-Tray Disjunctive Programming Models. Ind Eng Chem
Res 2000;39:4326–35.

[22] Pirhoushyaran T, Shafiei S. A new approach for the optimization of nonsharp
distillation superstructures. Asia-Pacific J Chem Eng 2018;13:1–15.

[23] Kong L, Maravelias CT. From graphical to model-based distillation column
design: A McCabe-Thiele-inspired mathematical programming approach.
AIChE J 2019; in press. http://doi.org/10.1002/aic.16731.

[24] Caballero JA, Milan-Yanez D, Grossmann IE. Rigorous design of distillation
columns: Integration of disjunctive programming and process simulators. Ind
Eng Chem Res 2005;44:6760–75.

[25] Braunschweig B, Gani R, editors. Software Architectures and Tools for
Computer Aided Process Engineering: Computer-Aided Chemical
Engineeirng. Elsevier; 2002.

[26] Edgar TF, Himmelblau D, Lasdon L. Optimization of Chemical Processes. second
ed. McGraw-Hill; 2001.

[27] Christopher CCE, Dutta A, Farooq S, Karimi IA. Process synthesis and
optimization of propylene/propane separation using Vapor recompression
and self-heat recuperation. Ind Eng Chem Res 2017;56:14557–64.

[28] Yang M, Feng X. Simulation-based optimization and design of refinery
hydrogen networks with hydrogen sulfide removal. Int J Hydrogen Energy
2019;44:23833–45.

[29] Rahman RK, Ibrahim S, Raj A. Multi-objective optimization of sulfur recovery
units using a detailed reaction mechanism to reduce energy consumption and
destruct feed contaminants. Comput Chem Eng 2019;128:21–34.

[30] Yoon S, Cho H, Lim DH, Kim JK. Process design and optimization of natural gas
liquefaction processes. Chem Eng Trans 2012;29:1585–90.

[31] Song R, Cui M, Liu J. Single and multiple objective optimization of a natural gas
liquefaction process. Energy 2017;124:19–28.

[32] Javaloyes-Antón J, Ruiz-Femenia R, Caballero Ja. Rigorous design of complex
distillation columns using process simulators and the particle swarm
optimization algorithm. Ind Eng Chem Res 2013;52:15621–34.

[33] Kim IH, Dan S, Kim H, Rim HR, Lee JM, Yoon ES. Simulation-based optimization
of multistage separation process in off shore oil and gas production facilities.
Ind Eng Chem Res 2014;53:8810–20.

[34] Peng DY, Robinson DB. A new two-constant equation of state. Ind Eng Chem
Fundam 1976;15:59–64.

[35] Sinnott RK. Coulson & Richardsons Chemical Engineering Design. Elsevier;
2005.

[36] L.Kaes G. Refinery Process Modeling to Steady State Modeling. 1st ed. Elliott &
Fitzpatrick; 2000.

[37] Aspen HYSYS V8.6 Manual. AspenTech; 2014.
[38] Bailie RC, Whiting WB. Analysis, Synthesis, and Design of Chemical Processes.

fourth ed. Prentice Hall; 2012.
[39] Smith RM. Chemical Process: Design and Integration. Wiley; 2005.
[40] Douglas JM. Conceptual Design of Chemical Processes. McGraw Hill; 1988.
[41] Aspen HYSYS Customization Guide. AspenTech; 2010.
[42] Caballero JA, Grossmann IE. An algorithm for the use of surrogate models in

modular flowsheet optimization. AIChE J 2008;54:2633–50.
[43] Luke S. Essentials of Metaheuristics. 2nd ed. lulu.com; 2013.
[44] Nature-Inspired Yang X. Metaheuristic Algorithms. second ed. Luniver Press;

2010.
[45] Goldberg DE. Genetic Algorithms in Search, Optimization, and Machine

Learning. first ed. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc.; 1989.

[46] Kennedy J, Eberhart R. Particle Swarm Optimization. IEEE Int. Conf. Neural
Networks 1995;4:1942–8.

[47] Clerc M, Kennedy J. The particle swarm: explosion, stability, and convergence
in a multi-dimensional complex space. IEEE Trans Evol Comput 2002;6:58–73.

[48] MATLAB. Genetic Algorithm 2019. http://www.mathworks.com/help/gads/ga.
html (accessed February 24, 2019).

[49] MATLAB. Particle Swarm Optimization 2019. http://www.mathworks.com/
help/gads/particleswarm.html (accessed February 24, 2019).

[50] Bazaraa MS, Sherali HD, Shetty CM. Nonlinear Programming: Theory and
Algorithms. third Ed. Wiley; 2006.

https://doi.org/10.1016/j.jare.2019.11.011
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0005
http://www.setlab.com/resources/refining/gas-plants/
http://www.setlab.com/resources/refining/gas-plants/
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0015
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0015
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0015
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0020
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0020
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0020
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0025
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0025
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0025
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0030
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0030
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0030
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0035
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0035
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0040
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0040
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0045
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0045
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0050
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0050
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0055
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0055
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0060
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0060
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0065
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0065
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0070
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0070
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0075
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0075
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0080
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0080
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0085
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0085
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0090
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0090
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0095
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0095
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0100
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0100
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0100
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0105
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0105
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0105
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0110
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0110
http://doi.org/10.1002/aic.16731
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0120
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0120
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0120
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0125
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0125
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0125
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0130
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0130
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0135
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0135
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0135
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0140
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0140
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0140
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0145
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0145
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0145
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0150
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0150
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0155
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0155
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0160
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0160
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0160
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0165
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0165
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0165
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0170
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0170
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0175
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0175
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0190
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0190
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0195
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0200
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0210
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0210
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0220
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0220
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0225
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0225
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0225
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0230
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0230
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0235
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0235
http://www.mathworks.com/help/gads/ga.html
http://www.mathworks.com/help/gads/ga.html
http://www.mathworks.com/help/gads/particleswarm.html
http://www.mathworks.com/help/gads/particleswarm.html
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0250
http://refhub.elsevier.com/S2090-1232(19)30189-4/h0250

	Optimization of a saturated gas plant: Meticulous simulation-based optimization – A case study
	Introduction
	Methodology
	Simulation problem: the case study
	Pretreatment facilities
	Compression station package
	Naphtha-receiving three-phase separator

	Fractionation train
	Deethanizer
	Debutanizer
	Sponge absorber

	Heat integration

	Sensitivity analysis
	Implicit-constraints and assumptions
	Optimization-simulation methodology
	Objective function
	Optimization algorithms


	Results and discussion
	Sensitivity analysis
	Debutanizer
	Deethanizer
	Lean oil
	Constrained bounds for the base case and future mode

	Optimization
	Outputs of the GA
	Outputs of PSO


	Conclusions
	Compliance with Ethics Requirements
	Declaration of Competing Interest
	Appendix A Supplementary material
	References


