
computer programs

J. Appl. Cryst. (2016). 49, 1035–1041 http://dx.doi.org/10.1107/S1600576716005720 1035

Received 18 December 2015

Accepted 6 April 2016

Edited by Thomas White, Center for Free-

Electron Laser Science, Hamburg, Germany

1This article will form part of a virtual special

issue of the journal on free-electron laser

software.

Keywords: serial femtosecond crystallography;

real-time processing; spot finding; paralleliza-

tion; SACLA.

Data processing pipeline for serial femtosecond
crystallography at SACLA1

Takanori Nakane,a Yasumasa Joti,b Kensuke Tono,b Makina Yabashi,b Eriko Nango,c

So Iwata,c,d Ryuichiro Ishitania and Osamu Nurekia*

aDepartment of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo

113-0032, Japan, bJapan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198,

Japan, cRIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan, and dDepartment of Cell

Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.

*Correspondence e-mail: nureki@bs.s.u-tokyo.ac.jp

A data processing pipeline for serial femtosecond crystallography at SACLA

was developed, based on Cheetah [Barty et al. (2014). J. Appl. Cryst. 47, 1118–

1131] and CrystFEL [White et al. (2016). J. Appl. Cryst. 49, 680–689]. The

original programs were adapted for data acquisition through the SACLA API,

thread and inter-node parallelization, and efficient image handling. The pipeline

consists of two stages: The first, online stage can analyse all images in real time,

with a latency of less than a few seconds, to provide feedback on hit rate and

detector saturation. The second, offline stage converts hit images into HDF5

files and runs CrystFEL for indexing and integration. The size of the filtered

compressed output is comparable to that of a synchrotron data set. The pipeline

enables real-time feedback and rapid structure solution during beamtime.

1. Introduction

Serial femtosecond crystallography (SFX) utilizes ultra-short

but intense X-ray pulses, generated by X-ray free-electron

laser (XFEL) facilities, to collect diffraction images from tens

of thousands of microcrystals (Kirian et al., 2010). It has been

applied to structure determinations of radiation-damage-

sensitive microcrystals (e.g. Redecke et al., 2013; Kang et al.,

2015) and time-resolved studies of light-triggered reactions

(Tenboer et al., 2014; Barends et al., 2015). Although recent

developments in sample injection methods (Sierra et al., 2012;

Weierstall et al., 2014; Sugahara et al., 2015) and data

processing algorithms (White, 2014; White et al., 2016; Sauter,

2015; Uervirojnangkoorn et al., 2015; Ginn et al., 2015) have

reduced the number of crystals, the amount of time and the

quantity of data necessary for structure solution, thousands to

tens of thousands of high-resolution diffraction patterns are

still required to obtain an accurate data set.

During SFX beamtime, which typically lasts for 12–48 h at

SACLA, millions of images are collected (see Example section

below for actual numbers). However, usually more than half

of the XFEL pulses miss the crystals, and some crystals are too

small or too disordered to give useful diffraction. Thus, most

of the recorded images do not contain high-resolution

diffraction patterns. Owing to the huge numbers of images, it is

impractical for humans to inspect all of them. Thus, an auto-

mated data processing system is essential for successful SFX

experiments.

An important aspect of such a system is to provide rapid

feedback to experimenters. Analyses of hit rates provide

valuable information to make strategic decisions. For example,

ISSN 1600-5767

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576716005720&domain=pdf&date_stamp=2016-04-18


if the crystal density or resolution of the current crystallization

batch is low, one might want to abandon the current sample

and look for a better one for optimal use of precious beam-

time. Real-time feedback is also essential for the alignment of

the X-ray beam and the sample stream, especially when the

stream is small, to minimize sample consumption and back-

ground scattering. Similarly, an analysis of detector saturation

is necessary to determine the optimal attenuator thickness.

Another goal of such a system is image filtering and data

conversion. Data sets should be filtered to separate the good

diffraction patterns from the many bad images, because bad

images make the data set large, leading to longer processing

time and increased storage costs. Filtered images and asso-

ciated metadata must be converted to a format suitable for

subsequent processing.

Finally, these processes should be performed with minimum

human intervention. Routine tasks common to all data sets

should be automated, so that users can focus on making

decisions and project-specific analyses. Automation also serves

to reduce human errors.

Toward these ends, several pre-processing programs have

been developed, including Cheetah (Barty et al., 2014), CASS

(Foucar et al., 2012), cctbx.xfel (Sauter et al., 2013) and psana

at LCLS (Damiani et al., 2016). We have adapted Cheetah and

CrystFEL (White et al., 2012, 2013, 2016) for the experimental

and computational environments at SACLA, and developed a

graphical user interface (GUI) to facilitate job submission and

real-time monitoring. In this article, we report these devel-

opments, which might be applicable to serial crystallography

experiments at other facilities.

2. Online and offline API

The computing environment and data acquisition (DAQ)

system at SACLA were described previously (Joti et al. 2015).

Here we summarize what is relevant to this paper (Fig. 1).

Raw data from eight multi-port charge coupled device

(MPCCD) sensor modules (Kameshima et al., 2014) are

captured by frame grabbers and transferred to data handling

servers. These servers temporarily buffer images and write all

of them to the cache storage. Online analysis servers can

intercept data from the data handling servers for real-time

analysis. As discussed below, low-level filtering and programs

using the SACLA online API can be executed only on these

servers. These servers constitute the online part of the SACLA

DAQ system. The offline analysis is performed on SACLA

HPC nodes. These nodes can access the cache storage, the

metadata database (DB) and the long-term archive storage,

but not the data handling servers. This separation ensures that

the online system can always achieve data collection at 60 Hz,

independently of the loads on the offline system.

Image data are accessible through the SACLA API.

Metadata, such as shot-by-shot spectra and photodiode

readouts in pump–probe experiments, are also available

through the API. Metadata are associated with an image by a

tag number, a unique 64 bit serial number associated with each

XFEL pulse. The API comes in two versions: online API and

offline API.

The online API is used to intercept data from memory on

the data handling servers. All detector frames can be extracted

at 60 Hz with a latency of a few tens of milliseconds. The

online API is available only at the online analysis servers,

which have direct connections to the data handling servers.

The online analysis server has limited output bandwidth

(<1 Gbps) to a network attached storage (NAS) device, which

is mounted from both the online analysis servers and the HPC

nodes. Thus, it cannot write processed images in real time, but

only processing logs.

The offline API targets images and metadata in the storage.

They can be in the cache storage or long-term archive storage,

depending on the time after data collection. Data access is

encapsulated by the API, so user programs (including this

pipeline) are unaware of the actual location. The offline API

has limited throughput (at most 10 Hz for eight sensors per

single thread) owing to IO bottlenecks. Since the offline API

can only read images from completed runs, a run must finish

before processing. This imposes a latency of about three

minutes (time to collect 5150 images in a run at 30 Hz).

3. Online and offline pipelines

Since the online and offline APIs have specific limitations, we

run data processing in two stages (Fig. 2). The first stage, the

online pipeline, is based on the online API. The purpose is to

run spot finding on all images by using Cheetah, which

provides real-time feedback on hit rates and detector satura-

tion. Owing to limited output bandwidth, only the spot finding

results, but not the images, are written to the NAS. The second

stage, the offline pipeline, which uses the offline API, runs the

spot finding again, converts the hit images into an HDF5 file

and runs CrystFEL. In time-resolved studies, it also classifies

excited and non-excited images, on the basis of photodiode

readouts. Details of these steps are described in the following

sections.

computer programs

1036 Takanori Nakane et al. � Data processing pipeline for SFX at SACLA J. Appl. Cryst. (2016). 49, 1035–1041

Figure 1
Architecture of the data processing environment at SACLA. The online
pipeline runs on the online analysis server. Eight image acquisition
threads retrieve image data from the corresponding data handling servers
and fill the frame buffer (shown by arrows). Once completed, a Cheetah
worker thread is dispatched for each frame. For simplicity, only two
worker threads are drawn. The offline pipeline runs on HPC nodes.



The GUI was developed using the wxPython (Talbot, 2000)

library. The monitor for the first, online stage provides a real-

time plot of numbers of spots and saturated spots and hit rates

(Fig. 3a). The GUI for the second, offline stage, called Cheetah

Dispatcher, allows users to start the pipeline for specified runs.

It also monitors the progress of data collection and auto-

matically submits pipeline jobs as soon as a run has been

completed. The results from jobs are displayed in a table

(Fig. 3b), in which the columns include numbers of frames, hits

and indexed lattices. These numbers are updated every few

seconds. By right-clicking rows, users can calculate the sums of

these numbers to check whether the planned numbers (e.g.

10 000) of indexable images have been collected, and launch

hdfsee or cell_explorer to examine the outputs.

To facilitate the examination of diffraction images, the

hdfsee viewer in the CrystFEL suite was enhanced (Fig. 4).

computer programs

J. Appl. Cryst. (2016). 49, 1035–1041 Takanori Nakane et al. � Data processing pipeline for SFX at SACLA 1037

Figure 3
(a) Screenshot of the monitor for the real-time pipeline. The number of
spots in each image is plotted in red, while the number of saturated spots
is plotted in blue. The hit rate is represented by the blue line. (b)
Screenshot of the GUI for the offline pipeline.

Figure 4
Screenshot of the extended hdfsee viewer. A table of images in a stream
file is displayed on the left. On the right, spots identified by CrystFEL are
circled in black, while predicted and integrated spots are circled in red.

Figure 2
Typical flow of data in the pipeline. The online pipeline finds spots on images and provides real-time feedback on hit rates and detector saturation. The
offline pipeline runs spot finding again and outputs hit images in the HDF5 format. The images are then processed by CrystFEL. In time-resolved
experiments, excited and non-excited images are classified by the photodiode status. Users optimize parameters based on the pipeline output and re-run
CrystFEL before final merging. If the refined parameters are known beforehand, then they can be used in the pipeline and the stream files from the
pipeline can be immediately merged (dotted line).



The enhanced version reads spot finding and integration

results from a CrystFEL stream file and shows them in a table,

which can be sorted by the number of spots or resolution

estimates. Strong spots detected by the spot finding routine

and integrated (predicted) spots are marked in different

colours. This helps users to adjust the spot finding parameters

and confirm the validity of the mosaicity model.

4. Image conversion

The SACLA online and offline APIs provide MPCCD image

data after static, dynamic and leakage calibrations (Kame-

shima et al., 2014). Our pipeline further applies several image

conversions.

In a typical SFX experiment at SACLA, the first 150 frames

of each run are dark images collected while the shutter is

closed, followed by 5000 exposed images. The average of the

dark images is subtracted from the exposed images. Next, pixel

values are rescaled so that ten units correspond to one photon.

This conversion is performed as

Iscaled ¼ 10�ADU� gain� 3:65=photon energy: ð1Þ

Here, Iscaled is the output value, ADU is the pixel value from

the API, gain is the number of electrons per detector unit, 3.65

is the energy (in eV) to create an electron–hole pair in the

detector silicon and photon_energy (in eV) is the energy of

incoming X-ray photons. The sensor-specific gain is measured

by the detector team [see the Calibration section in the paper

by Kameshima et al. (2014)] and is available from the SACLA

API. This normalization makes the spot finding parameters

less sensitive to the photon energy. Finally, pixel values are

converted from 32 bit floating point numbers to 16 bit inte-

gers.

The MPCCD used in SFX experiments consists of eight

sensor modules (512 � 1024 pixels each). In the memory,

images from the eight modules are stacked vertically into an

array with 512 � 8192 elements. This does not reflect the

physical arrangement (metrology) of the eight modules in

space. Thus, subsequent programs need the detector geometry

information as metadata, in addition to the pixel values. This is

obtained from the SACLA API, and geometry files for

Cheetah and CrystFEL are generated by the pipeline. We are

also developing a dxtbx (Parkhurst et al., 2014) module, which

enables data processing by DIALS (Waterman et al., 2013)

and cctbx.xfel (Sauter et al., 2013).

5. Hit finding

For hit finding in Cheetah, algorithm 6 is used. It first binarizes

the image by thresholding and generates spot candidates by

decomposing strong pixels into connected components.

Candidates are further filtered by the area and signal-to-noise

ratio. When the number of accepted spots is above a threshold

(typically 20), the image is retained as a hit. Images with fewer

spots are of low resolution and can be discarded without

affecting the data set quality.

Although the SACLA DAQ system has a low-level filtering

(LLF) function, its applicability to SFX turned out to be very

limited. As described by Joti et al. (2015), LLF calculates the

maximum or average pixel value within the region of interest

(ROI) of an image and stores it in the metadata DB. Since

images in SFX experiments often contain strong ring-shaped

scattering from the carrier medium, such as grease and lipidic

cubic phase, it is difficult to distinguish protein diffraction

patterns from others. The exclusion of such rings from the

ROI is essential but tricky. Since LLF calculations are

performed in parallel with data collection and cannot be

reprocessed, the ROI must be defined before the data

collection. Even with an adequate ROI, the LLF values do not

necessarily show a bimodal distribution and finding a good

threshold is difficult. Thus, we decided to use LLF only to

reject obvious blank frames, by setting the threshold to a very

low value (�50 photons), and to rely on Cheetah for hit

finding. We note that LLF may be useful for other experiments

at SACLA, such as single-particle imaging.

6. Image output

Each Cheetah job writes all hit images to a single file in the

HDF5 format (The HDF Group, 1997). As compared to

single-event (one file per image) HDF5 files produced by

earlier versions of Cheetah, this multi-event HDF5 file has a

smaller file system overhead. We designed and implemented a

SACLA-specific HDF5 structure instead of the CXIDB

format (Maia, 2012). In the CXIDB format, multiple images

are stored in a three-dimensional array. In contrast, we create

an HDF5 group named tag-N (N is the tag number) for each

image, which contains the image itself and associated meta-

data (e.g. the mean of the pulse spectrum). The rationale is

that the index of an image within the three-dimensional array

is variable when a user re-runs Cheetah, while an HDF5 group

name based on the image tag number is a unique constant.

Image data are compressed by the deflate algorithm

(Deutsch, 1996). The filter mechanism in the HDF5 library

allows transparent compression; manual decompression is

unnecessary and no temporary files are created during

decompression. Although the byte-offset filter in CBFlib (Ellis

& Bernstein, 2006) might be faster and more effective, the

deflate filter was chosen because the latter is distributed with

the HDF5 library. Since users might want to copy pipeline

outputs to their home institution for analysis by their own

programs, the use of a standard, widely adopted compression

algorithm is an advantage. Our benchmark tests showed that

compression at level 5 reduces the file size by more than 50%,

while the increase in the total run time is less than 5%.

7. Parallelization

To enable real-time processing, thread-level parallelization

was employed. The offline pipeline is parallelized over

multiple nodes as well.

computer programs

1038 Takanori Nakane et al. � Data processing pipeline for SFX at SACLA J. Appl. Cryst. (2016). 49, 1035–1041



In the online pipeline, three classes of threads are created:

one master thread, eight image acquisition threads and many

Cheetah worker threads. The master thread creates all other

threads. As soon as an image is completed by the image

acquisition threads, the master thread spawns a Cheetah

worker thread and initiates spot finding. Each of the eight

image acquisition threads is responsible for reading raw

images from a corresponding MPCCD module as soon as the

images become available. The first image acquisition thread is

also responsible for memory allocation.

To minimize the overheads of thread synchronization, an

efficient algorithm based on the ‘producer–consumer’ design

pattern was devised. An array with eight elements is shared

among all threads. Each element keeps track of the latest tag

number already acquired for the corresponding detector

module. An image acquisition thread (except for the first

thread) waits until the first element reaches the tag number it

next reads. This ensures that memory allocation has been

completed by the first thread. Then the thread reads the image

into the buffer and increments its field in the array. The master

thread can dispatch a spot finding thread for an image if and

only if all eight fields of the array exceed its tag number. Since

each field is atomically incremented by a thread and read by

others, no mutex lock is necessary. In the actual imple-

mentation, complications arose because images must be

skipped when the API fails or processing takes too long. To

simplify memory management, a single mutex lock was

introduced. Fortunately, it did not affect the performance.

For offline processing, the master node, which runs the

Cheetah Dispatcher GUI, submits three Cheetah jobs for a run.

Each job occupies a node (12 threads) and processes a subset

of images in a run. For time-resolved experiments, two jobs are

submitted: one job handles dark (non-excited) patterns and

the other processes light (excited) patterns. Each node works

independently. The master node monitors the progress of each

job by repeatedly reading the log files. Although direct

messaging through MPI (Gropp et al., 1996) might be more

effective, we chose file-based communication because of its

simplicity and flexibility. When a worker job or even the

master node crashes, the recovery is straightforward: resub-

mitting the affected job or re-launching the master program is

sufficient. Another benefit is that we can dynamically allocate

worker nodes on demand.

When reprocessing Cheetah outputs in batch, GNU parallel

(Tange, 2011) was useful. GNU parallel reads a list of target

HDF5 files and builds a command line for each target. By

specifying worker nodes allocated by the queue system in the

--sshloginfile option, each target can be processed on

different nodes. For CPU-bound tasks such as integration, this

scaled well with the number of nodes.

8. Parameter optimizations

Many parameters affect the processing. We used the fixed

parameters for hit finding in Cheetah for all data sets and did

not change them. In contrast, we optimized the CrystFEL

parameters for each dataset by a grid search.

There is a trade-off between false positives and false

negatives. For hit finding in Cheetah, we chose permissive

criteria because modest numbers of false positives are more

acceptable than discarding many diffraction patterns as false

negatives. After the image conversion described above, a

single set of Cheetah parameters could be used regardless of

the photon energy. Although different injection methods

produced various degrees of background scattering, the same

set of parameters worked well. For spot finding in CrystFEL,

however, false positives and false negatives are both harmful

for successful indexing. Thus, parameter optimization is

indispensable.

In the offline pipeline, we usually run indexamajig, Cryst-

FEL’s indexing and integration module, without providing

lattice constants. This keeps users aware of unexpected

changes in the crystal form. Otherwise, CrystFEL will reject

lattices that do not match the provided cell parameters. Then,

CrystFEL jobs are submitted again with the confirmed cell

parameters (Fig. 2, manual steps).

After the completion of the CrystFEL jobs, users are

encouraged to examine the distribution of cell parameters

using cell_explorer. Low index rates and broad skewed

distributions of cell parameters typically result from bad spot

finding parameters (--min-snr, --min-gradient and

--threshold) and errors in the beam centre and the camera

distance. In this case, users should test indexamajig on a subset

(several hundreds) of images with various parameters and

choose the parameters that lead to the highest index rate. The

beam centre can be optimized by the detector-shift script

distributed with CrystFEL. Finally, the detector metrology is

refined by running geoptimiser (Yefanov et al., 2015) on all

indexed images. Although these procedures are not auto-

mated, script templates are provided with the pipeline. These

optimizations typically increase the indexing rate by 5–10%

and improve the resolution at which CC1/2 falls to 0.5, by 0.1–

0.2 Å. For example, a 1% error (0.5 mm) in the detector

distance sometimes reduces the index rate by more than 5%.

The importance of geometry optimizations is also reported by

Nass et al. (2016). The best parameters are similar for data sets

collected during the same beamtime at the same wavelength.

Thus, we often optimize the parameters on a high-resolution

data set with sufficient images and then apply these para-

meters to lower-resolution smaller data sets.

When the user is confident about the best parameters, the

default parameters in the pipeline can be overridden using the

--crystfel-args option of the Cheetah Dispatcher GUI. This

feature is especially useful in time-resolved experiments, in

which data sets of a protein with known cell constants are

collected using a fixed geometry for a long time. Here, the best

parameters are determined from a few calibration runs at the

start of the beamtime and used in the offline pipeline

throughout subsequent data collection. The users do not have

to run CrystFEL again; instead, the stream files from the

pipeline can be merged (Fig. 2, dotted line) and difference

maps are generated every few runs. Thus one can examine

how the features develop in the map and decide when to move

to the next time point.

computer programs

J. Appl. Cryst. (2016). 49, 1035–1041 Takanori Nakane et al. � Data processing pipeline for SFX at SACLA 1039



9. Example
The offline and online pipelines were first introduced in

November 2014 and July 2015, respectively, and have been

continuously developed. Since then, about 90% of the SFX

experiments at SACLA have been conducted with our pipe-

lines. These experiments include time-resolved studies (Nango

et al., in preparation) and experimental phasing (Nakane et al.,

2015; Fukuda et al., 2016). The experimental setups were also

diverse; the chamber atmosphere was air or helium with or

without water vapour. The injection media were liquid, grease

or lipidic cubic phase. Our pipelines worked well with every

combination. Here we provide an example from our beamtime

in October 2015.

During a four-day beamtime, more than 5 100 000 images in

997 runs were collected at 30 Hz, for about 20 targets from

several research groups. This amounted to approximately

41 TB of raw data. Real-time analysis was performed

throughout the beamtime. The analysis results were displayed

on the beamline computer to guide experiments, with less than

a few seconds of latency. The CPU usage of the online analysis

server was about 800–1000%. Since this server has 32 logical

cores (two Intel Xeon E5-2667 v2 at 3.30 GHz with hyper-

threading), the maximum usage corresponds to 3200%. Thus,

the system can probably work at a 60 Hz repetition rate, which

is expected to be available in the near future at SACLA.

The offline pipeline was executed on 16 HPC nodes (two

Intel Xeon X5690 at 3.47 GHz, thus 12 threads each) in the

automatic mode. Depending on the hit rate and HPC loads,

the processing time from the end of a run to the completion of

the pipeline varied from 3 to 20 min. Images were written to a

temporary work area on a high-performance distributed file-

system, Lustre (http://lustre.org/), and subsequently moved to

the long-term storage. The output of hit images from the

pipeline was only 3.2 TB in total, which was less than 8% of

the raw data. The size of each data set ranged from tens to

hundreds of gigabytes, and was comparable to the amount

collected during a typical synchrotron beamtime. Thus, the

output was easily transferable by a portable disk drive or over

the internet.

After the completion of the pipeline, researchers manually

executed CrystFEL on hit images from Cheetah using opti-

mized parameters. Since the output contained only hit images,

the processing was efficient. In this way, most data sets were

reduced to an MTZ file, and initial molecular replacement or

experimental phasing solutions were obtained during the

beamtime.

We note that the feedback from the pipeline allowed effi-

cient and flexible data collection. At SACLA, we typically

take turns collecting data from several targets. While a sample

is being injected, the next sample is being prepared. When the

hit rate of the current sample falls, the injection is stopped and

the next sample is mounted on the injector. Once the number

of indexed frames reaches a planned number (e.g. 10 000),

data collection for another target is started while the data set

is merged and evaluated. If the quality is unsatisfactory, that is,

CC1/2 is bad, the difference map is noisy or phasing is unsuc-

cessful, then more images from the first target are collected

later in the beamtime. Without rapid feedback and automated

image processing by the pipeline, the decision making process

would be delayed and tedious.

10. Conclusion

In summary, our data processing pipeline at SACLA enables

real-time feedback on data collection and rapid structure

solution on site. Although the user responses have been

positive, there are two issues for future developments.

First, further automation is necessary, especially for para-

meter optimizations. Currently, at least one crystallographer

who is familiar with SFX data collection and analysis must

assist users during beamtime. We are planning to provide

detailed tutorials and automated scripts, so that new users can

quickly learn how to process their data by themselves.

Secondly, we are working to reduce the latency of analyses,

for example by indexing in parallel with data collection using

spot lists from the online version of Cheetah. We are also

testing the pipeline on the Mini-K, a massively parallel system

based on the SPARC architecture common to the K super-

computer (Yokokawa et al., 2011).

11. Program availability

Modified versions of Cheetah and CrystFEL (hdfsee) are

available in source code on the authors’ GitHub repository

(https://github.com/biochem-fan/). To interact with the

SACLA DAQ system, the programs must be linked with the

SACLA API, which is available on data analysis servers

(online) and SACLA HPC nodes (offline). The distributed

nature of the git version control system enables flexible

development, as SACLA-specific modifications are first made

on the forked version in the authors’ repository. After testing,

pull requests are sent to the official repository for merging.

Acknowledgements

We thank the original authors of CrystFEL and Cheetah,

especially Thomas White and Anton Barty, for discussions and

distributions of their programs under a free open-source

license. TN thanks Mizuki Takemoto for critical reading of the

manuscript. We are grateful to the SACLA users for allowing

us to use their data sets for testing and providing feedback. We

acknowledge computing support from the SACLA HPC and

the Mini-K computing system. The XFEL experiments were

performed at BL3 of SACLA, with the approval of the Japan

Synchrotron Radiation Research Institute (proposal Nos.

2015B8029, 2015B8042, 2015B8046 and 2015B8047). This

work was supported by the X-ray Free-Electron Laser Priority

Strategy Program (MEXT, Japan). SI was partially supported

by the Japan Science and Technology agency (JST).

References

Barends, T. R. M. et al. (2015). Science, 350, 445–450.
Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H.,

White, T. A. & Chapman, H. (2014). J. Appl. Cryst. 47, 1118–1131.

computer programs

1040 Takanori Nakane et al. � Data processing pipeline for SFX at SACLA J. Appl. Cryst. (2016). 49, 1035–1041

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB2


Damiani, D., Dubrovin, M., Gaponenko, I., Kroeger, W., Lane, T. J.,
Mitra, A., O’Grady, C. P., Salnikov, A. Sanchez-Gonzalez, A.,
Schneider, D. & Yoon C. H. (2016). J. Appl. Cryst. 49, 672–679.

Deutsch, L. P. (1996). DEFLATE Compressed Data Format
Specification Version 1.3. RFC1951. http://www.rfc-base.org/
rfc-1951.html.

Ellis, P. J. & Bernstein, H. J. (2006). International Tables for
Crystallography, Vol. G, Definition and Exchange of Crystal-
lographic Data, 1st online ed., ch. 5.6, p. 544. Chester: International
Union of Crystallography.

Foucar, L., Barty, A., Coppola, N., Hartmann, R., Holl, P., Hoppe, U.,
Kassemeyer, S., Kimmel, N., Küpper, J., Scholz, M., Techert, S.,
White, T. A., Strüder, L. & Ullrich, J. (2012). Comput. Phys.
Commun. 183, 2207–2213.

Fukuda, Y. et al. (2016). Proc. Natl Acad. Sci. USA, 113, 2928–
2933.

Ginn, H. M., Brewster, A. S., Hattne, J., Evans, G., Wagner, A.,
Grimes, J. M., Sauter, N. K., Sutton, G. & Stuart, D. I. (2015). Acta
Cryst. D71, 1400–1410.

Gropp, W., Lusk, E., Doss, N. & Skjellum, A. (1996). Parallel Comput.
22, 789–828.

Joti, Y., Kameshima, T., Yamaga, M., Sugimoto, T., Okada, K., Abe,
T., Furukawa, Y., Ohata, T., Tanaka, R., Hatsui, T. & Yabashi, M.
(2015). J. Synchrotron Rad. 22, 571–576.

Kameshima, T., Ono, S., Kudo, T., Ozaki, K., Kirihara, Y., Kobayashi,
K., Inubushi, Y., Yabashi, M., Horigome, T., Holland, A., Holland,
K., Burt, D., Murao, H. & Hatsui, T. (2014). Rev. Sci. Instrum. 85,
033110.

Kang, Y. et al. (2015). Nature, 523, 561–567.
Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., Spence, J. C. H.,

Hunter, M., Fromme, P., White, T., Chapman, H. N. & Holton, J.
(2010). Opt. Express, 18, 5713–5723.

Maia, F. R. (2012). Nat. Methods, 9, 854–855.
Nakane, T. et al. (2015). Acta Cryst. D71, 2519–2525.
Nass, K., Meinhart, A., Barends, T. R. M., Foucar, L., Gorel, A.,

Aquila, A., Botha, S., Doak, R. B., Koglin, J., Liang, M., Shoeman,

R. L., Williams, G., Boutet, S. & Schlichting, I. (2016). IUCrJ, 3 doi:
10.1107/S2052252516002980.

Parkhurst, J. M., Brewster, A. S., Fuentes-Montero, L., Waterman,
D. G., Hattne, J., Ashton, A. W., Echols, N., Evans, G., Sauter, N. K.
& Winter, G. (2014). J. Appl. Cryst. 47, 1459–1465.

Redecke, L. et al. (2013). Science, 339, 227–230.
Sauter, N. K. (2015). J. Synchrotron Rad. 22, 239–248.
Sauter, N. K., Hattne, J., Grosse-Kunstleve, R. W. & Echols, N. (2013).

Acta Cryst. D69, 1274–1282.
Sierra, R. G. et al. (2012). Acta Cryst. D68, 1584–1587.
Sugahara, M. et al. (2015). Nat. Methods, 12, 61–63.
Talbot, H. (2000). Linux J. 2000, 5.
Tange, O. (2011). USENIX Mag. 36, 42–47.
Tenboer, J. et al. (2014). Science, 346, 1242–1246.
The HDF Group (1997). Hierarchical Data Format, Version 5, http://

www.hdfgroup.org/HDF5/.
Uervirojnangkoorn, M. et al. (2015). Elife, 4, e05421.
Waterman, D. G. et al. (2013). CCP4 Newsl. Protein Crystallogr. 49,

16–19.
Weierstall, U. et al. (2014). Nat. Commun. 5, 3309.
White, T. A. (2014). Philos. Trans. R. Soc. London Ser. B, 369,

20130330.
White, T. A., Barty, A., Stellato, F., Holton, J. M., Kirian, R. A.,

Zatsepin, N. A. & Chapman, H. N. (2013). Acta Cryst. D69, 1231–
1240.

White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty,
A. & Chapman, H. N. (2012). J. Appl. Cryst. 45, 335–341.

White, T. A., Mariani, V., Brehm, W., Yefanov, O., Barty, A.,
Beyerlein, K. R., Chervinskii, F., Galli, L., Gati, C., Nakane, T.,
Tolstikova, A., Yamashita, K., Yoon, C. H., Diederichs, K. &
Chapman, H. N. (2016). J. Appl. Cryst. 49, 680–689.

Yefanov, O., Mariani, V., Gati, C., White, T. A., Chapman, H. N. &
Barty, A. (2015). Opt. Express, 23, 28459–28470.

Yokokawa, M. et al. (2011). Proceedings, 17th IEEE/ACM Interna-
tional Symposium on Low-Power Electronics and Design, pp. 371–
372. Piscataway: IEEE.

computer programs

J. Appl. Cryst. (2016). 49, 1035–1041 Takanori Nakane et al. � Data processing pipeline for SFX at SACLA 1041

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zw5001&bbid=BB35

