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ABSTRACT
Studies on patients with the coronavirus disease-2019 (COVID-19) have implicated that the gastrointestinal (GI) tract is a
major site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We established a human GI tract
cell line model highly permissive to SARS-CoV-2. These cells, C2BBe1 intestinal cells with a brush border having high
levels of transmembrane serine protease 2 (TMPRSS2), showed robust viral propagation, and could be persistently
infected with SARS-CoV-2, supporting the clinical observations of persistent GI infection in COVID-19 patients. Ectopic
expression of viral receptors revealed that the levels of angiotensin-converting enzyme 2 (ACE2) expression confer
permissiveness to SARS-CoV-2 infection, and TMPRSS2 greatly facilitates ACE2-mediated SARS-CoV-2 dissemination.
Interestingly, ACE2 but not TMPRSS2 expression was significantly promoted by enterocytic differentiation, suggesting
that the state of enterocytic differentiation may serve as a determining factor for viral propagation. Thus, our study
sheds light on the pathogenesis of SARS-CoV-2 in the GI tract.
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Introduction

A novel coronavirus, severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) emerged in
Wuhan, China, in December 2019, and since then it
has rapidly spread worldwide threatening global pub-
lic health [1,2]. Coronavirus Disease-19 (COVID-19)
caused by SARS-CoV-2, leads to fever, cough, myalgia,
fatigue, diarrhea, pneumonia, and even death in severe
cases [1]. To date (July, 2020), there have been over 16
million confirmed cases of SARS-CoV-2 infection, and
more than 650,000 deaths worldwide [3].

Coronaviruses are a large family of viruses that cause
respiratory diseases, gastroenteritis, hepatitis, and ence-
phalitis in animals and humans [4]. They consist of a
large, single-stranded, positive-sense RNA with a 5′

untranslated region (UTR), 6–10 open reading frames
(ORFs), and a 3′ UTR. ORF 1a and 1b encode two repli-
case polyproteins, polyprotein 1a (pp1a) and polypro-
tein 1ab (pp1ab), which are further processed by viral
proteases to produce various nonstructural proteins.
The other ORFs encode four major structural proteins,
spike (S), envelope (E), membrane (M), and nucleocap-
sid (N), and several other accessory proteins [4]. Among

these viral structural proteins, the S glycoprotein is
responsible for cellular receptor binding and membrane
fusion during viral entry into the host cell. Moreover, it
consists of two subunits, S1 and S2; the S1 subunit con-
tains a receptor-binding domain (RBD) that recognizes
and interacts with cellular receptors, and the S2 subunit
mediates membrane fusion [5–8].

The entry of SARS-CoV-2 into the host cell
depends mainly on two receptors, angiotensin-con-
verting enzyme 2 (ACE2) and type II transmembrane
serine protease (TMPRSS2) [9–12]. Several other
receptors and proteases such as DC-SIGN, L-SIGN,
Neuropilin-1, furin, TMPRSS4, and cathepsin B and
L, are also associated with the viral entry [11–16].
ACE2 serves as one of the major determinants of tis-
sue tropism by binding to SARS-CoV-2 via the RBD
of the S protein [11]. On the other hand, TMPRSS2
activates the S protein by proteolytic priming and
facilitates entry into the host cell. Furthermore, the
cleavage of S protein by host proteases at the S1/S2
multibasic and S2′ sites is essential for viral infectivity
[11,17,18]. In Middle East respiratory syndrome coro-
navirus (MERS-CoV) infection, the cleavage of the S2′
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site by TMPRSS2 and the S1/S2 sites by furin protease
is essential for efficient viral entry into the host cell,
depending on the cell type [19]. Further, ACE2 under-
goes a proteolytic process by TMPRSS2 that promotes
viral entry into the host cells during SARS-CoV infec-
tion [20]. DC-SIGN (CD209) and L-SIGN (CD209L),
immunoglobulin-like cell adhesion molecule super-
family receptors, and Neuropilin-1 can be alternative
receptors that SARS-CoV-2 binds to in the vascular
and nervous systems, respectively. L-SIGN serves as
a receptor and attachment factor for several viruses,
including SARS-CoV, HCoV-229E, HIV, Ebola, and
other enveloped viruses [13,21–23]. DC-SIGN and
L-SIGN can bind to the RBD of S proteins, facilitating
SARS-CoV-2 entry. However, the binding affinity of
ACE2 to RBD is higher than that of DC-SIGN and
L-SIGN [13]. SARS-CoV-2 can also utilize endosomal
protease cathepsin B and L during entry via endocyto-
sis [11,15].

The distribution of these receptors in human tis-
sues is highly correlated with the infection sites of
SARS-CoV-2, particularly in the epithelia of lung
and gastrointestinal tract [24,25]. Thus, it is important
to study the precise relationship between viral propa-
gation and receptor expression levels in those infec-
tion sites. In this study, we investigated the
permissiveness of various human epithelial cell lines
to SARS-CoV-2 infection and the virus growth kin-
etics in conjunction with receptor expression levels.
We further characterized receptor expression during
viral infection or cellular differentiation. Our findings,
including the association of ACE2 and dipeptidyl pep-
tidase 4 (DPP4) expression with enterocytic differen-
tiation, will be useful for understanding coronavirus
pathogenesis in the gastrointestinal tract.

Materials and methods

Cell culture and virus infection

Vero (ATCC CCL-81) and A549 (ATCC CCL-185)
cells were maintained in Dulbecco’s Modified Eagle
medium with high glucose (DMEM, HyClone,
Logan, UT, USA) with 10% fetal bovine serum (FBS;
Invitrogen, Grand Island, NY, USA) and 1% penicil-
lin/streptomycin (Invitrogen, Grand Island, NY,
USA). Calu-3 (ATCC HTB-55), Caco-2 (ATCC
HTB-37), C2BBe1 (ATCC CRL-2102), and RPMI
2650 (ATCC CCL-30) cells were maintained in
Modified Eagle medium (MEM) with Earle’s Balanced
Salt Solution (MEM/EBSS, HyClone) supplemented
with 10% FBS and 1% penicillin/streptomycin. PK-
15 (ATCC CCL-33), IPEC-J2, and NCI-H292
(ATCC CRL-1848) cells were grown in RPMI 1640
medium (Invitrogen, Grand Island, NY, USA) con-
taining 10% FBS and 1% penicillin/streptomycin.
The cells were maintained at 37 °C in a humidified

atmosphere containing 5% CO2. Cells were seeded
on 48-well or 6-well tissue culture plates and infected
with SARS-CoV-2. After 1 h incubation, cells were
washed with media to remove the remaining virus
and incubated with fresh media.

The pathogen resources (NCCP43326) and SARS-
CoV-2 (BetaCoV/Korea/KCDC03/2020) for this
study were provided by the National Culture Collec-
tion for Pathogens [26]. All the experiments with the
infectious virus were conducted in a biosafety level 3
(BSL-3) laboratory at the Korea Research Institute of
Chemical Technology (KRICT).

Ectopic expression of ACE2 and TMPRSS2

Human ACE2 and TMPRSS2 plasmids were purchased
from Sino Biological, Beijing, China. Cells grown on a
48-well plate were transiently transfected with hACE2
or hTMPRSS2 expressing plasmids. After 24 h, the
cells were infected with 1 MOI of SARS-CoV-2 and
incubated for 1 h. The cells were then washed with
media and incubated for 48 h. Viral RNAs were
extracted from the media collected at 48 dpi.

Differentiation of C2BBe1 cells

Differentiation of C2BBe1 was performed as previously
described by Huang et al. [27]. Briefly, the C2BBe1 cells
were seeded on trans-well inserts (0.4 µm pore size, 12-
mm membrane diameter; Corning, Kennebunk, ME,
USA) at a density of 5 × 105 cells/cm2 and cultured in
1:1 ratio of MEM/EBSS containing 10% FBS: enterocyte
differentiation medium (Corning, Kennebunk, ME,
USA). After 24 h, the medium was changed to entero-
cyte differentiation medium supplemented with 1%
ITS-A (Invitrogen, Grand Island, NY, USA) and main-
tained for at least 5 days.

Persistent infection in C2BBe1 cells

C2BBe1 cells seeded on a 6-well tissue culture plate
were infected with 1 MOI of SARS-CoV-2 and incu-
bated for 1 h. After washing with MEM/EBSS, the
cells were incubated with MEM/EBSS containing
10% FBS and 1% penicillin/streptomycin. After initial
infection for 3 days, the cells were serially passaged 4
times at 5-day intervals using 0.25% trypsin-EDTA
(Invitrogen, Grand Island, NY, USA). The culture
supernatants were collected at each passage for
quantification of viral RNA levels.

Quantitative real-time RT–PCR

Viral RNA was extracted from cell culture supernatants
using the QIAampViral RNAmini kit (Qiagen, Hilden,
Germany) according to the manufacturer’s protocol.
For the detection of SARS-CoV-2, the N gene target
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of the 2019-nCoV CDC RUO kit (IDT, Coralville, IA,
USA) was used. Quantitative real-time RT–PCR was
performed with the One Step PrimeScript III RT-
qPCR mix (Takara, Shiga, Japan) using the QuantStu-
dio 3 Real-Time PCR system (Life Technologies, Carls-
bad, CA, USA). Total cellular RNA was isolated using
the RNeasy Mini kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocols. cDNA was
synthesized using the Superscript IV first-strand syn-
thesis kit for RT–PCR (Invitrogen, Grand Island, NY,
USA) according to the manufacturer’s protocol. Quan-
titative real-time PCR was performed using LaboPass
SYBR Green Q master mix (Cosmogenetech, Seoul,
South Korea) on a QuantStudio 3 Real-Time PCR sys-
tem (Life Technologies). For real-time PCR, the follow-
ing primers were used: human ACE2 forward 5
´-TACAGTACTGGAAAAGTTTG-3´ and reverse 5
´-CCTCACATAGGCATGAAGATG-3´, human
TMPRSS2 forward 5´-TTCATCCTTCAGGTGTACT-
CATCT-3´ and reverse 5´-CTATACAGCGTAAA-
GAAACCACT-3´, human IFN-α1 forward 5
´-ATGGCCTCGCCCTTTGCTTTA-3´ and reverse 5
´-TTTCTGCTCTGACAACCTCCC, human IFN-α2 for-
ward GGCTGAAACCATCCCTGTCC-3´ and reverse
5 -́CTCCCAGGCACAAGGGCTG-3 ,́ human IFN-β 5
´-forward GATTCATCTAGCACTGGCTGG-3´ and
reverse 5´-CTTCAGGTAATGCAGAATCC-3´,
human IFN-γ forward 5´-TGACCAGAGCATCCAA-
AAGAGTG-3´ and reverse 5´-CAGCATCTGACTCC-
TTTTTCGC-3´, human IFN-λ1 forward 5´-TTG
CAGCTCTCCTGTCTTCC-3´ and reverse 5´-CCAG-
GACCTTCAGCGTCAG-3´, human IFN-λ3 forward
5´- CATAGCCCAGTTCAAGTCCC-3´ and reverse
5´-CACTTGCAGTCCTTCAGCAG-3´, intestinal
alkaline phosphatase (IAP) forward 5´-AGTTA-
TCCTGCTCCCCACCT-3´ and reverse 5´-TAGGA-
GGTGAAGGTCCAACG-3´, sucrose-isomaltase (SI)
forward 5´-GTGGCTGCTAACATCCCCTA-3´ and
reverse 5´-GAGGAAGGTCCTGGAATGCT-3´, human
DPP4 forward 5´-ATTCAATATCTCCTGATGGG-
CAGT-3´ and reverse 5´-CACTAAGCAGTTCCATCT
TCCAC-3´, and human GAPDH forward 5´-GGAGC-
GAGATCCCTCCAAAAT-3´ and reverse 5´-GGCTG
TTGTCATACTTCTCACGG-3´. The mRNA expression
levels were normalized to human GAPDH mRNA, and
the relative quantities were calculated by the 2-ΔΔCt

method.

Western blot analysis

The cells were harvested and lysed using lysis buffer
(20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 mM
EDTA, 50 mM NaF, 1 mM Na3VO4, 0.5% Triton X-
100, 10% SDS, and 1 mM β-glycerophosphate) sup-
plemented with 1% protease inhibitor cocktail
(Thermo Fisher Scientific). The following antibodies
were used for the detection of the cellular or viral

proteins: anti-ACE2 antibody (Abcam, Cambridge,
UK), anti-SARS-CoV-2 nucleocapsid (N) protein anti-
body (Sino Biological, Beijing, China), anti-DPP4
(Abcam), anti-GAPDH (Cell Signaling Technology,
Danvers, MA, USA), and anti-β-actin (Cell Signaling
Technology). The blots were incubated with the
appropriate HRP-conjugated secondary antibodies
(Cell Signaling Technology). The membranes were
developed with ECL solution (PerkinElmer, Waltham,
MA, USA) and imaged using ImageQuant Las 4000
(GE Healthcare, Freiburg, Germany). The intensities
of the protein bands were quantified using ImageJ
software (National Institutes of Health, Bethesda,
Maryland, USA) [28]. Data are presented as mean
values with error bars showing the standard deviations
from three independent experiments unless otherwise
specified.

Statistical analysis

Pearson’s correlation coefficients (Pearson’s r) were
calculated with a two-tailed Pearson test using Graph-
Pad Prism 8. P values of less than 0.05 were considered
statistically significant.

Results

TMPRSS2 exploits ACE2-mediated SARS-CoV-2
dissemination

Passaging SARS-CoV-2 in the Vero cells (African
green monkey kidney cells) multiple times may lead
to mutations in the S protein associated with selective
pressure in humans, hence, it is crucial to establish a
novel human cell culture system for SARS-CoV-2
[29]. First, we examined the growth of SARS-CoV-2
in various human epithelial cell lines derived from
major infection sites (nasal cavity, lungs, and intes-
tine), namely, A549 (alveolar epithelial cells), Calu-3
(lung/bronchial epithelial cells), NCI-H292 (airway
epithelial cells), RPMI 2650 (nasal epithelial cells),
Caco-2 (colorectal epithelial cells), and C2BBe1 (sub-
clone of Caco-2) (Figure 1A). Non-human epithelial
cells were also included; Vero CCL81 cells (African
green monkey kidney cells), PK-15 (porcine kidney
cells), and IPEC-J2 (porcine intestinal cells) (Fig.
S1). Vero CCL81 cells were used as the positive con-
trol. Among human cell lines, the Calu-3, Caco-2,
and C2BBe1 cell lines were highly permissive to
SARS-CoV-2 with the highest titer in the C2BBe1
cells (Figure 1B). Moreover, the PK-15 cells were
also highly permissive to SARS-CoV-2 (Fig. S1). In
contrast, SARS-CoV-2 did not propagate in the
A549, NCI-H292, and RPMI 2650 cells. Significant
cytopathic effects (CPEs) have been observed only in
Vero cells. Mild CPEs were observed in Calu-3 and
PK-15 as opposed to other human cell lines that did
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not show any CPEs (Fig. S2). The data obtained from
the various cell lines are summarized in Table 1.

Given the role of ACE2 and TMPRSS2 as SARS-
CoV-2 receptors, we investigated the relationship
between the receptor expression levels and viral
propagation in human epithelial cells. The viral titer
was compared with the basal mRNA levels of ACE2
and TMPRSS2 in each cell line. Since the A549 cells
had the lowest levels of both the receptors, the relative
gene expression levels of ACE2 and TMPRSS2 in the
other cell lines were compared to those of A549
cells. The levels of the ACE2 protein in each cell line
were well correlated with its mRNA levels
(Figure 2A and Fig. S3). ACE2 protein was not
detected by Western blot analysis in A549 cells (Fig.
S3). The viral titers were plotted against the mRNA
levels of ACE2 or TMPRSS2 (Figure 2A and 2B).
While the correlation of the ACE2 mRNA levels
with the viral RNA levels were not significant (Pear-
son’s correlation coefficient r =−0.1940, p = 0.7127)
(Figure 2A), the TMPRSS2 mRNA levels showed
strong correlation (Pearson’s correlation coefficient

r = 0.9385, p = 0.0055) in the human epithelial cell
lines (Figure 2B). These data suggest that although
ACE2 is necessary for SARS-CoV-2 infection, it
may not be the only factor affecting the viral propa-
gation. This also suggests the importance of the
coordination between ACE2 and TMPRSS2
expression levels in the process of viral propagation.

To determine the effects of ACE2 and TMPRSS2
levels on SARS-CoV-2 pathogenesis, we investigated
whether the ectopic expression of ACE2 and
TMPRSS2 can enhance viral dissemination. We ecto-
pically expressed the two receptors in RPMI 2650
cells expressing levels of ACE2 similar to the Caco-2
cells but not permissive to SARS-CoV-2. The ectopic
expression of ACE2 allowed the cells to be permissive
to SARS-CoV-2, showing viral RNA levels 4.9 times
higher than that in the empty vectors (Figure 2C). In
contrast, TMPRSS2 alone did not enhance viral infec-
tivity even in the presence of ACE2. It is thus highly
likely that TMPRSS2 alone does not increase permis-
siveness to SARS-CoV-2 when the ACE2 levels are
not sufficient for viral infection. However, the co-

Figure 1. The levels of SARS-CoV-2 titer in human epithelial cell lines corresponding to viral infection sites. (A) Schematic diagram
of human epithelial cell lines corresponding to major infection sites of SARS-CoV-2. (B) The indicated cells were grown on a 48-well
plate and infected with 5 MOI of SARS-CoV-2. Viral RNA levels were determined in the media collected at the indicated time points.
Data are presented as mean values with error bars showing the standard deviations from three independent experiments. ND, not
detected.

Table 1. Various cell lines tested for permissiveness to SARS-CoV-2 infection.
Cell line Cell type Susceptibility CPE Relative ACE2 level Relative TMPRSS2 level

Vero CCL81 Monkey kidney epithelial cell ++++ ++++ N/T* N/T
A549 Adenocarcinomic human alveolar basal epithelial cell − − − −
Calu-3 Nonciliated human lung/bronchial epithelial cell +++ ++ ++++ +++
Caco-2 Human epithelial colorectal adenocarcinoma cell +++ − + +++
C2BBe1 Caco-2 sub-clone ++++ − ++ ++++
RPMI 2650 Human nasal epithelial cell − − + +
NCI-H292 Human airway epithelial cell + − ++ +
PK-15 Porcine kidney epithelial cell +++ ++ N/T N/T
IPEC-J2 Porcine intestinal columnar epithelial cell ++ − N/T N/T

*N/T: Not tested.
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expression of ACE2 and TMPRSS2 significantly
enhanced viral dissemination by 56.7 times compared
to that of the empty vector. These results suggest that
ACE2 levels confer permissiveness to SARS-CoV-2
depending on the cell types and that TMPRSS2 greatly
accelerates ACE2-mediated viral propagation. This
may explain the robust viral propagation in the
Caco-2 and C2BBe1 cells having high levels of
TMPRSS2, despite the low levels of ACE2.

Expression of ACE2, but not TMPRSS2, is
dynamic and is associated with the intestinal
epithelial cell differentiation

Here, we noted that the levels of SARS-CoV-2 titers
were higher in the C2BBe1 cells compared to the par-
ental Caco-2 cells (Figure 1B). C2BBe1 cells, having
brush borders with microvilli resembling the brush
border of human intestinal epithelia, were selected
from the parental Caco-2 cell line [30]. The genetic
backgrounds of the C2BBe1 cells are very close to
that of the human intestinal epithelial cells [31]. More-
over, these cells have a more homogeneous brush bor-
der expression and contain more microvillar proteins
than the parental Caco-2 cells [30]. C2BBe1 cells can
be further differentiated by the growth of the trans-
well filters inducing structure of the microvilli
(Figure 3A) [27,30]. Thus, we examined whether cellu-
lar differentiation can regulate the expression of these

two receptors (ACE2 and TMPRSS2). C2BBe1 cells
were differentiated by growth on the trans-well
filters for at least 5 days. The undifferentiated
C2BBe1 cells were seeded on the trans-well filters a
day before the experiments. Gene expression of intes-
tinal alkaline phosphatase (IAP) and sucrose-isomal-
tase (SI) were used as cellular differentiation
markers. Previously, biochemical analysis revealed
that the enterocytic differentiation of Caco-2 cells cor-
relates well with the intestinal alkaline phosphatase
(IAP) and sucrose-isomaltase (SI) gene expression
[32–35]. IAP and SI mRNA levels in the differentiated
C2BBe1 cells significantly increased compared to the
undifferentiated cells, confirming the enterocytic
differentiation of C2BBe1 cells on the trans-well
filters (Figure 3B and 3C). Interestingly, the ACE2
mRNA levels greatly increased in the differentiated
C2BBe1 cells (Figure 3D). The induction of ACE2
protein was also confirmed by Western blot analysis
(Figure 3G). This suggests the possibility of SARS-
CoV-2 infection to the gastrointestinal (GI) tract
through enterocytes, where ACE2 expression is abun-
dant. Since MERS-CoV can infect the GI tract [36], we
also examined the levels of the human dipeptidyl pep-
tidase 4 (DPP4), a receptor for MERS-CoV, in the
differentiated C2BBe1 cells. Similar to the ACE2
receptor, both mRNA and protein levels of DPP4
increased drastically by cellular differentiation (Figure
3E and 3G). This is consistent with previous

Figure 2. TMPRSS2 exploits ACE2-mediated SARS-CoV-2 dissemination. (A, B) The levels of SARS-CoV-2 titer and viral receptor
expression were compared in various human epithelial cell lines. Viral RNA levels were plotted against relative mRNA levels of
ACE2 (A) or TMPRSS2 (B). Relative ACE2 or TMPRSS2 mRNA levels represent the fold changes in the indicated mRNA level of
each cell compared to A549 cells. Pearson coefficients (r) and p-values (p) were calculated as described in the materials and
methods section. (C) ACE2 and TMPRSS2 were ectopically expressed in RPMI 2650 cells by transient transfection of ACE2 or
TMPRSS2 expressing plasmids. After 24 h, the cells were infected with 1 MOI of SARS-CoV-2. Viral RNA levels in the media collected
at 48 dpi were determined. ND, not detected.
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Figure 3. Dramatic induction in ACE2 and DPP4 expression by cellular differentiation. (A) Schematic diagram of the structure of
enterocytes. (B-F) C2BBe1 cells were differentiated on trans-well filters. The undifferentiated cells were seeded on a day before
harvesting. The mRNA levels of the indicated genes normalized to GAPDH in the undifferentiated (Undiff) and differentiated
cells (Diff) were compared. SI, sucrose-isomaltase; IAP, intestinal alkaline phosphatase. (G) The protein expression levels of
ACE2 and DPP4 were detected in the cell lysates from the undifferentiated and differentiated C2BBe1 cells by Western blotting.
The ratio of ACE2 to β-actin was determined by densitometric analysis. (H) The undifferentiated and differentiated C2BBe1 cells
were infected with 0.2 MOI of SARS-CoV-2. The viral titer in the media was determined at 2 dpi. ND, not detected.

Figure 4. Increased expression of ACE2 receptor in C2BBe1 cells during SARS-CoV-2 infection. (A-C) C2BBe1 cells were infected
with 1 MOI of SARS-CoV-2. The mRNA levels of the indicated genes were measured from the cells harvested at 72 hpi. Each mRNA
level was normalized to that of GAPDH. (D) ACE2 and SARS-CoV-2 nucleocapsid (N) protein in the C2BBe1 cells with or without
viral infection were detected by Western blotting. The ratio of ACE2 to GAPDH was determined by densitometric analysis. (E) The
mRNA levels of the indicated interferon genes were measured. Each mRNA level was normalized to that of GAPDH.
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observations that the DPP4 protein levels correlate
with the stage of enterocytic differentiation [35]. In
contrast to ACE2 and DPP4, the TMPRSS2 mRNA
levels were comparable in the undifferentiated and
differentiated cells (Figure 3F). Next, we evaluated
whether the cellular differentiation-inducing ACE2
receptor can promote viral propagation. Cells were
infected with low MOI (0.2 MOI) of SARS-CoV-2 to
avoid saturation of SARS-CoV-2 titer. SARS-CoV-2
titer was 15.6 times higher in the differentiated cells
than in the undifferentiated cells (Figure 3H). Hence,
our data suggest that the state of enterocytic differen-
tiation may serve as a determinant factor of viral
propagation inducing dramatic ACE2 and DPP4
expression, but not TMPRSS2 (Figure 3A). In other
words, enterocytes expressing brush borders and
microvilli, prevalent with viral receptors, will provide
a favourable environment for recently emerging coro-
naviruses such as SARS-CoV, SARS-CoV-2, and
MERS-CoV.

Since the ACE2 receptor is known to be an inter-
feron-stimulated gene [37], we analyzed whether
these receptors can be affected by the viral infection.
The ACE2 levels were measured in the presence or
absence of SARS-CoV-2 infection. A significant
amount (1.6 × 109 copies/μg) of intracellular viral
RNA was detected only in the infected cells
(Figure 4A). The N protein of SARS-CoV-2 was
detected in the infected cells but not in the uninfected
cells (Figure 4D). The expression levels of the ACE2
gene were higher in the infected cells compared to
the uninfected cells (Figure 4B). The increase in the
ACE2 protein levels was further confirmed by Wes-
tern blotting and densitometric analysis (Figure 4D).
The ratio of ACE2 protein level to GAPDH was 1.37
times higher in the SARS-CoV-2 infected cells than
that in the uninfected cells (Figure 4D). In contrast,
the TMPRSS2 mRNA levels remained unchanged
(Figure 4C). IFN-α1, α2, β, γ, λ1, and λ3 levels were
also analyzed following viral infection (Figure 4E).
Overall, the IFN responses were enhanced in the
SARS-CoV-2 infected cells. However, given that the
basal level of ACE2 mRNA level are highly dynamic
depending on the cell lines or cellular differentiation
(Figure 2A and 3D), the increase in ACE2 level by
IFN responses during infection seems rather limited.

Persistent infection with SARS-CoV-2 in C2BBe1
cells

Since the viral growth increased continuously in the
C2BBe1 cells without any cytopathic effects
(Figure 1B and Fig. S2), we asked whether SARS-
CoV-2 can persistently infect these cells. Initially, the
C2BBe1 cells were infected with 1 MOI of SARS-
CoV-2 (P0). After 3 dpi, the infected C2BBe1 cells
were washed with media and passaged serially with

an additional 4 times (P1-P4) (Fig. S4A). At initial
infection (P0), viral RNA levels of the media collected
after 3 dpi significantly increased as compared to that
of media collected at the time of infection (Figure 5A).
Similarly, after first (P1) and second (P2) passaging,
increased viral RNA levels were observed in the
media collected before passaging, suggesting the
accumulation of progeny viruses generated from the
infected cells (Figure 5A). Further, we measured the
levels of the accumulated progeny viruses in the
media after each passaging. The progeny virus pro-
duction of SARS-CoV-2 from the infected cells was
maintained at a high level (>109 genome copies/ml)
for at least 23 days (Figure 5B). The levels of the
SARS-CoV-2 N protein in the infected cells were
also compared after each passaging. The levels of N
protein were similar in all the passaged cells (P1-P4)
(Figure 5C). In contrast, the N protein was not
detected in the uninfected cells. Moreover, we exam-
ined the infectivity of the progeny viruses after pro-
longed passaging. 100 microliters of the media after
the fourth passaging (P4) were used for the reinfection
of Vero CCL81 cells. Significant CPE was observed at 2
dpi, confirming the infectivity of the progeny viruses
(Fig. S4B). Therefore, our data strongly suggest that
SARS-CoV-2 is capable of establishing persistent
infection in C2BBe1 intestinal epithelial cells.

Discussion

In addition to a brush border protein pattern func-
tionally similar to that of human intestinal enterocytes
[30], the C2BBe1 cells dynamically express ACE2 and
DPP4 receptors depending on the state of enterocytic
differentiation. Hence, the C2BBe1 cells may serve as
an important in vitro model cell line to study the
pathogenesis of the SARS-CoV-2 in the gastrointesti-
nal (GI) tract. Although the primary infection sites
of SARS-CoV-2 are the airway and lung epithelia, sev-
eral studies have revealed that the GI tract is another
major infection site of SARS-CoV-2 [25,38]. Potential
SARS-CoV-2 infection in the GI tract has also been
shown in the human gut organoids developed from
primary intestinal epithelial stem cells [39].

During the MERS-CoV and SARS-CoV outbreaks,
20–25% of the infected cases showed symptoms of GI
infection [2]. Similarly, 25% of the COVID-19 patients
show symptoms of GI infection such as diarrhea, and
the fecal samples of 48–53% of the patients tested posi-
tive for viral RNA [40]. Moreover, prolonged shedding
of SARS-CoV-2 has been observed in the stools or rec-
tal swab samples. The stool samples of 23% of the
patients continued to be tested positive for the virus
even after obtaining negative results in the respiratory
samples [25]. A recent study showed that the rectal
swabs of 8 pediatric COVID-19 patients persistently
tested positive after nasopharyngeal testing was
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negative, suggesting that the viral shedding from the
GI tract might last longer than that from the respirat-
ory tract [41]. In other cases, 3 COVID-19 patients
with GI symptoms were re-admitted after pneumonia
had resolved due to the persistence of intestinal SARS-
CoV-2 infection [42]. Thus, our findings are in line
with these clinical observations supporting the persist-
ence of SARS-CoV-2 infection in the GI tract. The
prevalence of ACE2 and DPP4 expression in the
differentiated intestinal cells representing enterocytes
also suggests that GI infection is a common feature
of COVID-19.

Recent studies have revealed that ACE2 and
TMPRSS2 receptors are essential for the SARS-CoV-
2 entry into the host cells [11,14]. Despite the diverse
tissue distribution of these receptors, many studies
have shown their presence in the epithelia of the
lung and GI tract. RNA-seq profile analysis showed
that the ACE2 gene is highly expressed in the small
intestine and enriched in epithelial cells with 93.38%
ACE2-positivity [38,43]. Moreover, the ACE2 protein
expression on the surface of the lung alveolar epithelial
cells and enterocytes of the small intestine was
confirmed by immunohistochemistry [24]. Particu-
larly, the expression of ACE2 in the enterocytes is
confined to the brush border [24]. The increase in
the ACE2 levels by enterocytic differentiation in the
C2BBe1 cells may explain this expression pattern of
ACE2 in the enterocytes. Moreover, similar ACE2
induction by cellular differentiation has also been

observed in human airway epithelia, suggesting that
the strong expression of ACE2 in the brush border
may not be restricted to the enterocytes [44].

The presence of TMPRSS2 protein in the human GI
and respiratory tract tissues has been previously
confirmed by immunohistochemistry [45,46]. The
RNA-seq profile showed higher gene expression of
TMPRSS2 in the primary human ileum enteroids
compared to other cell lines (i.e. HEK293, Huh7.5,
Hela, and HT-29) [14]. Moreover, the co-expression
of ACE2 and TMPRSS2 in the GI tract has also been
observed previously [37]. Thus, in the context of
virus-receptor interactions, the brush border of enter-
ocytes in the GI tract may provide a favourable
environment for the SARS-CoV-2 infection. Persistent
GI tract infection is also linked to possible fecal-to-
oral transmission as an alternative route for viral
spread. However, Zang et al. have previously shown
that the infectivity of SARS-CoV-2 was reduced in
the human GI tract due to the low pH of the gastric
fluid, and they were unable to recover the virus from
the stool samples of a small group of COVID-19
patients even though SARS-CoV-2 RNAs were
detected in these samples [14]. Hence, the possibility
of fecal-oral transmission should be carefully
addressed in the future.

Because ACE2 expression can be induced by IFN or
inflammation, there is an increased possibility of
SARS-CoV-2 spread via immune responses [37].
Although we observed an enhanced ACE2 expression

Figure 5. Persistent infection of SARS-CoV-2 in C2BBe1 cells. Initially, 1 MOI of SARS-CoV-2 was infected into C2BBe1 cells (P0). The
cells were passaged 4 times (P1-P4) for a total of 23 days. (A) At each indicated passage, fresh media was added and the cells were
grown until 70–80% confluency. Media were collected before and after incubation. Viral titers in the collected media were quan-
tified. (B) Viral titers in the media collected at each passaging was determined. (C) SARS-CoV-2 nucleocapsid (N) protein was
detected by Western blotting using the total cell lysates from the indicated passage. Data are presented as mean values with
error bars showing the standard deviations from three independent experiments.
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in SARS-CoV-2 infection in the in vitromodel cell line
with increased interferon responses, the enhancement
was rather limited considering the strong induction
levels by enterocytic differentiation. Thus, further
studies are needed to dissect the precise effects of
IFN-induced ACE2 expression on viral propagation.
It would also be interesting to investigate how the
ACE2 expression levels are regulated by cytokines or
enterocytic differentiation. Upstream regulatory
elements and transcription factors for ACE2 have
been previously identified [47,48]. However, pro-
inflammatory cytokines (TGF-b1 or TNF-a) do not
significantly affect the transcriptional activation of
ACE2 [47].

Given that the GI symptoms are a major indication
of SARS-CoV-2 infection [49], the intestinal brush
border cells capable of robust and persistent infection
would be a useful tool for understanding the patho-
genesis of SARS-CoV-2 in the GI tract.
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