
Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 824569, 13 pages
doi:10.1155/2012/824569

Research Article

Simulations of Complex and Microscopic Models of Cardiac
Electrophysiology Powered by Multi-GPU Platforms

Bruno Gouvêa de Barros,1 Rafael Sachetto Oliveira,2, 3 Wagner Meira Jr.,3

Marcelo Lobosco,1 and Rodrigo Weber dos Santos1

1 Computational Modeling, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
2 Computer Science, Federal University of São João del-Rei, 36307-352 São João del-Rei, MG, Brazil
3 Computer Science, Federal University of Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil

Correspondence should be addressed to Rodrigo Weber dos Santos, rodrigo.weber@ufjf.edu.br

Received 3 August 2012; Revised 28 September 2012; Accepted 1 October 2012

Academic Editor: Ling Xia

Copyright © 2012 Bruno Gouvêa de Barros et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Key aspects of cardiac electrophysiology, such as slow conduction, conduction block, and saltatory effects have been the research
topic of many studies since they are strongly related to cardiac arrhythmia, reentry, fibrillation, or defibrillation. However, to
reproduce these phenomena the numerical models need to use subcellular discretization for the solution of the PDEs and
nonuniform, heterogeneous tissue electric conductivity. Due to the high computational costs of simulations that reproduce the fine
microstructure of cardiac tissue, previous studies have considered tissue experiments of small or moderate sizes and used simple
cardiac cell models. In this paper, we develop a cardiac electrophysiology model that captures the microstructure of cardiac tissue
by using a very fine spatial discretization (8 μm) and uses a very modern and complex cell model based on Markov chains for the
characterization of ion channel’s structure and dynamics. To cope with the computational challenges, the model was parallelized
using a hybrid approach: cluster computing and GPGPUs (general-purpose computing on graphics processing units). Our parallel
implementation of this model using a multi-GPU platform was able to reduce the execution times of the simulations from more
than 6 days (on a single processor) to 21 minutes (on a small 8-node cluster equipped with 16 GPUs, i.e., 2 GPUs per node).

1. Introduction

Heart diseases are responsible for one third of all deaths
worldwide [1]. Cardiac electrophysiology is the trigger to the
mechanical deformation of the heart. Therefore, the knowl-
edge of cardiac electrophysiology is essential to understand
many aspects of cardiac physiological and physiopathological
behavior [2]. Computer models of cardiac electrophysiology
[3, 4] have become valuable tools for the study and
comprehension of such complex phenomena, as they allow
different information acquired from different physical scales
and experiments to be combined to generate a better picture
of the whole system functionality. Not surprisingly, the
high complexity of the biophysical processes translates into
complex mathematical and computational models. Modern
cardiac models are described by nonlinear system of partial

differential equations (PDEs) that may result in a problem
with millions of unknowns.

Mathematical models for cell electrophysiology are a
key component of cardiac modeling. They serve both as
standalone research tools, to investigate the behavior of
single cardiac myocytes, and as an essential component of
tissue and organ simulation based on the so-called bidomain
or monodomain models [4]. The cell models can be written
as a general non-linear system of ordinary differential
equations (ODEs) and may vary in complexity from simple
phenomenological models [5] (based on two variables) to
complex models describing a large number of detailed phys-
iological processes [6] (based on 40 to 80 differential vari-
ables). Simple models focus on the genesis of action potential
(AP), that propagates from cell to cell and generates an
electric wave that propagates on the heart. Complex models

mailto:rodrigo.weber@ufjf.edu.br

2 Computational and Mathematical Methods in Medicine

account not only for the genesis of AP but also describe how
this phenomenon is related to cardiac homeostasis and to
different sub-cellular components, such as cell membrane’s
ion channels. Advances in genetics, molecular biology, and
electrophysiology experiments have provided new data and
information related to the structure and function of ion
channels. The Markov Chain (MC) model formalism has
been increasingly used to describe both function and struc-
ture of ion channels. MC-based models have enabled sim-
ulations of structural abnormalities due to genetic diseases
and drug-biding effects on ion channels [7–9]. Unfortu-
nately, these modern cardiac myocyte models pose different
challenges to both numerical methods, due to the stiffness
of the ODEs introduced by MCs, and to high performance
computing, due to the size of the problems, since the number
of differential variables rises from a couple to near a hundred
[10].

On the tissue level, the bidomain model [4] is considered
to be the most complete description of the electrical activity.
This nonlinear system of PDEs can be simplified to the
so-called monodomain model, which may be less accurate
but less computationally demanding than the bidomain
model. Unfortunately, large scale simulations, such as those
resulting from the discretization of an entire heart, remain a
computational challenge. In addition, key aspects of cardiac
electrophysiology, such as slow conduction, conduction
block, and saltatory or sawtooth effects, demand sub-cellular
discretization for the solution of the PDEs and nonuniform,
heterogeneous tissue electric conductivity. These aspects
of cardiac electrophysiology are strongly related to cardiac
arrhythmia, reentry, fibrillation or defibrillation, and have
been the research topic of many studies [11–20].

However, the demand of sub-cellular discretization for
the solution of the PDEs and nonuniform, heterogeneous
tissue electric conductivity have prevented the study of the
aforementioned phenomena on large-scale tissue simula-
tions. In addition, due to the high computational costs asso-
ciated with the simulations of these microscopic models of
cardiac tissue, previous works have adopted simple myocyte
models, instead of modern MC-based models [6, 10].

In this work, we present a solution for this problem based
on multi-GPU platforms (clusters equipped with graphics
processing units) that allows fast simulations of microscopic
tissue models combined with modern and complex myocyte
models. The solution is based on merging two different high-
performance techniques. We have previously investigated for
cardiac modeling: cluster computing based on message pass-
ing communications (MPI) [21–24] and GPGPU (General-
purpose computing on graphics processing units) [25–30].
We developed a two-dimensional model that is based on
the previous work of Spach and collaborators [11, 17]
that accounts for the microstructure of cardiac tissue, gap
junction heterogeneous distribution, and discretizations of
8 μm. This microscopic tissue model was combined with
the model of Bondarenko et al. [6] which is a modern
and complex myocyte model based on MCs. Our parallel
implementation of this model using a multi-GPU platform
was able to reduce the execution times of the simulations
from more than 6 days (on a single processor) to 21 minutes

(on a small 8-node cluster equipped with 16 GPUs, that is,
2 GPUs per node). As a result, using this very fast parallel
implementation we were able to simulate the formation
of spiral waves, a form of self-sustained reentrant activity
strongly associated with cardiac arrhythmia. To the best
of our knowledge, this is the first time spiral waves are
simulated using a cardiac model that accounts for both the
microstructure of cardiac tissue and a modern and complex
myocyte model.

2. Methods

2.1. Modeling Cardiac Microstructure. We developed a two-
dimensional model that is based on the previous work
of Spach and collaborators [11, 17] that accounts for the
microstructure of cardiac tissue, gap junction heterogeneous
distribution, and discretizations of 8 μm × 8 μm. A basic
template for myocyte connections was developed and is
presented in Figure 1. This basic unit accounts for the
connection of a total of 32 cardiac myocytes with different
shapes and numbers of neighboring cells. The mean and
SD (standard deviation) values for cell length and width
are 120.9 ± 27.8μm and 18.3 ± 3.5μm, respectively. These
values are close to those reported in the literature: [31]
(length = 140 μm and width = 19 μm), [32] (length =
134 μm and width = 18 μm), and [20] (length = 100 μm
and width = 17.32 μm). On average, each cell connects
to other 6 neighboring myocytes. Our two-dimensional
model considers a homogeneous depth d = 10μm
[11, 17].

This basic unit was created in such a way that it allows the
generation of larger tissue preparations via the connections
of multiple instances of it. Figure 2 presents how this can be
achieved.

Figure 3 presents an example of how the connections
between different myocytes can be arranged. The code was
developed in a flexible way, so that it allows the user to set
up for each discretized volume Voli, j (with area = h × h)
conductivity or conductance values for the north (σxi, j+1/2),
south (σxi, j−1/2), west (σxi−1/2, j), and east (σxi+1/2, j) volume faces.
These can be any nonnegative values. In this work, we
set the discretization h to 8 μm. In addition, based on
the work of Spach and collaborators [11, 17], we chose
only 5 possible types of connections between neighboring
volumes that are membrane (σm = 0.0), cytoplasm (σc =
0.4μS/μm), gap junction plicate (Gp = 0.5μS), interplicate
(Gi = 0.33μS), and combined plicate (Gc = 0.062μS),
where we use σ for conductivity and G for conductance. For
the simulations presented in this work, the distribution of
the different gap junctions within the 32 myocytes was not
randomly generated. Instead, the gap junction distribution
of the basic template unit was manually chosen to reproduce
the distribution presented before in [11, 17]. With this
setup and conductivity values we found that conduction
velocity along the fibers was around 410 μm/ms (LP) and was
130 μm/ms transversal to fiber direction (TP). This results in
a ratio LP/TP of 0.32, which is close to the conduction ratio
reported in [11].

Computational and Mathematical Methods in Medicine 3

144

77

0
0 324 648

x (µm)

y
(µ

m
)

Figure 1: Basic unit of cardiac myocyte distribution based on a total of 32 cells. Cells are displayed in different alternating colors along the
x-axis. The basic unit spans a total of 648 μm in the longitudinal direction versus 144 μm in the transversal direction.

Figure 2: Six basic units being combined to form a larger tissue.

2.2. The Heterogeneous Monodomain Model. Action poten-
tials propagate through the cardiac tissue because the
intracellular space of cardiac cells is electrically coupled by
gap junctions. In this work, we do not consider the effects
of the extracellular matrix. Therefore, the phenomenon
can be described mathematically by a reaction-diffusion
type partial differential equation (PDE) called monodomain
model, given by

βCm
∂V
(
x, y, t

)

∂t
+ βIion

(
V
(
x, y, t

)
,η
(
x, y, t

))

= ∇ · (σ(x, y
)∇V(x, y, t

))
+ Istim

(
x, y, t

)
,

∂η
(
x, y, t

)

∂t
= f
(
V
(
x, y, t

)
,η
(
x, y, t

))
,

(1)

where V is the variable of interest and represents the
transmembrane potential, that is, the difference between
intracellular to extracellular potential; η is a vector of state
variables that also influences the generation and propagation
of the electric wave and usually includes the intracellular
concentration of different ions (K+, Na+, Ca2+) and the
permeability of different membrane ion channels; β is the
surface-volume ratio of heart cells; Cm is the membrane
capacitance, Iion the total ionic current, which is a function
of V and a vector of state variables η; Istim is the current due
to an external stimulus, σ is the monodomain conductivity
tensor. We assume that the boundary of the tissue is isolated,
that is, no-flux boundary conditions (n · σ∇V = 0 on ∂Ω).

In this work, the modern and complex Bondarenko
et al. model [6] that describes the electrical activity of left

4 Computational and Mathematical Methods in Medicine

Plicate gap junction

Interplicate gap junction

Combined plicate gap junction

Figure 3: In this work, there are only 5 possible types of con-
nections between neighboring volumes that are membrane, which
indicated no-flux between neighboring volumes; cytoplasm, which
indicates that the neighboring volumes are within the same cell;
three possible types of gap junctions, plicate, interplicate, and com-
bined plicate. For the simulations presented in this work, the gap
junction distribution of the basic template unit was manually cho-
sen to reproduce the distribution presented before in [11, 17]. This
figure presents an example of how different gap junctions are dis-
tributed in three neighboring myocytes that belong to the basic unit.

ventricular cells of mice was considered to simulate the
kinetics of Iion in (1). The Bondarenko et al. model (BDK)
was the first model presented for mouse ventricular myocytes
[6]. The ionic current term Iion in this model consists of the
sum of 15 transmembrane currents. In short, Bondarenko’s
model is based on a ordinary differential equation (ODE)
with 41 differential variables that control ionic currents
and cellular homeostasis. In this model, most of the ionic
channels are represented by Markov chains (MCs).

2.3. Numerical Discretization in Space and Time. The finite
volume method (FVM) is a mathematical method used to
obtain a discrete version of partial differential equations. This
method is suitable for numerical simulations of various types
of conservation laws (elliptical, parabolic, or hyperbolic)
[33]. Like the finite element method (FEM), the FVM
can be used in several types of geometry, using structured
or unstructured meshes, and generates robust numerical
schemes. The development of the method is intrinsically
linked to the concept of flow between regions or adjacent
volumes, that is, it is based on the numerical calculation
of net fluxes into or out of a control volume. For some
isotropic problems discretized with regular spatial meshes,
the discretization obtained with the FVM is very similar to
the one obtained with the standard finite difference method
(FDM).

This section presents a brief description of the FVM
application to the time and spatial discretization of the het-
erogeneous monodomain equations. Detailed information
about the FVM applied to the solution of monodomain can
be found in [34, 35].

2.3.1. Time Discretization. The reaction and diffusion parts
of the monodomain equations were split by employing the
Godunov operator splitting [36]. Therefore, each time step

involves the solution of two different problems: a nonlinear
system of ODEs

∂V

∂t
= 1

Cm

[−Iion
(
V ,η

)
+ Istim

]
,

∂η

∂t
= f

(
V ,η

)
,

(2)

and a parabolic PDE

β
(
Cm

∂V

∂t

)
= ∇ · (σ∇V). (3)

Since the spatial discretization of our model, h, is
extremely small, the CFL [37] condition that assures numer-
ical stability is very restrictive. Therefore, for the PDE we
used the unconditionally stable implicit Euler scheme. The
time derivative presented in (3), which operates on V is
approximated by a first-order implicit Euler scheme as
follows:

∂V

∂t
= Vn+1 −Vn

Δtp
, (4)

where Vn represents the transmembrane potential at time tn
and Δtp is the time step used to advance in time the partial
differential equation.

For the discretization of the nonlinear system of ODEs,
we note that its stiffness demands very small time steps.
For simple models based on Hodgkin-Huxley formulation,
this problem is normally overcome by using the Rush-
Larsen (RL) method [38]. However, for the most modern
and complex models that are highly based on MCs, the RL
method seems to be ineffective in terms of allowing larger
time steps during the numerical integration. For the case
of the Bondarenko et al. model, we tested both methods,
Euler and RL, and both demanded the same time step,
Δto = 0.0001 ms for stability issues. Since the RL method
is more expensive per time step than the Euler method, in
this work, we used the simple explicit Euler method for the
discretization of the nonlinear ODEs.

However, as already indicated above, we use different
time steps for the solution of the two different uncoupled
problems, the PDE and the ODEs. Since we use an uncon-
ditionally stable method for the PDE, the time step Δtp
could be much larger than that used for the solution of the
nonlinear system of ODEs, Δto = 0.0001 ms. In this work,
we use Δtp = 0.01 ms, that is, a hundred times larger than
Δto. This has not introduced any significant numerical error.
We calculated the L2 relative error for the transmembrane
potential between a solution that uses the same time step for
both the ODE and the PDE, Δto = Δtp = 0.0001 ms, Vmref

and a solution that uses Δto = 0.0001 ms and Δtp = 0.01 ms,
V as follows:

error =
√∑nt

i=1

∑nv
j=1

(
V
(
i, j
)−Vmref

(
i, j
))2

√∑nt
i=1

∑nv
j=1 Vmref

(
i, j
)2

, (5)

where nt is the number of time steps and nv is the total
number of discretized volumes. For the simulation of a tissue
of size 0.5 × 0.5 cm during 20 ms (stimulus at the center of
the tissue), the error found was 0.01%.

Computational and Mathematical Methods in Medicine 5

2.3.2. Spatial Discretization. The diffusion term in (3) must
be discretized in space. For this we will consider the
following:

J = −σ∇V , (6)

where J (μA/cm2) expresses the density of intracellular
current flow and

∇ · J = −Iv. (7)

In this equation, Iv (μA/cm3) is a volumetric current and
corresponds to the left-hand side of (3), serving as the base
for this finite volume solution.

For the space discretization, we will consider a two-
dimensional uniform mesh, consisting of regular quadri-
laterals (called “volumes”). Located in the center of each
volume is a node. The quantity of interest V is associated
with each node of the mesh.

After defining the mesh geometry and dividing the
domain in control volumes, the specific equations of the
FVM can be presented. Equation (7) can be integrated
spatially over an individual volume Vi, j of size h2d, leading
to

∫

Ω
∇ · Jdv = −

∫

Ω
Iv dv. (8)

Applying the divergence theorem yields
∫

Ω
∇ · Jdv =

∫

∂Ω
J · �ξ ds, (9)

where �ξ is the unitary normal vector to the boundary ∂Ω.
Then, we have

∫

∂Ω
J · �ξ ds = −

∫

Ω
Iv dv. (10)

Finally, assuming that Iv represents an average value in
each particular quadrilateral, and substituting (3) in (10), we
have

β
(
Cm

∂V

∂t

)∣∣
∣∣

(i, j)
= − ∫∂Ω Ji, j · �ξ ds

h2d
. (11)

For this particular two-dimensional problem, consisting
of a uniform grid of quadrilaterals with side h, the calculation
of Ji, j can be subdivided as a sum of flows on the following
faces:

∫

∂Ω
Ji, j · �ξ ds =

(
Ixi+1/2, j − Ixi−1/2, j + Iyi, j+1/2 − Iyi, j−1/2

)
, (12)

where Ixm,n and Iym,n are calculated at faces ((m,n) = (i +
1/2, j), (i − 1/2, j), (i, j + 1/2), or (i, j − 1/2)) as follows.
For the case in which we have defined a conductivity value
at face (m,n), for instance the intracellular, or cytoplasm
conductivity, σc, as described in Section 2.1, we have

Ixm,n = −σc(m,n)
∂V

∂x

∣
∣
∣∣

(m,n)
hd,

Iym,n = −σc(m,n)
∂V

∂y

∣
∣
∣∣
∣

(m,n)

hd.

(13)

For the case in which we have defined a conductance
value at face (m,n), for instance a gap junction conduction
G, as describes in Section 2.1, we have:

Ixm,n = −G(m,n)Δx V |(m,n),

Iym,n = −G(m,n)Δy V |(m,n).
(14)

Using centered finite difference, we have for (13)

∂V

∂x

∣
∣∣
∣

(i+1/2, j)
= Vi+1, j −Vi, j

h
,

∂V

∂y

∣
∣
∣∣
∣

(i, j+1/2)

= Vi, j+1 −Vi, j

h
.

(15)

For (14), we have

Δx V |(i+1/2, j) = Vi+1, j −Vi, j ,

Δy V |(i, j+1/2) = Vi, j+1 −Vi, j .
(16)

Equations for ∂V/∂x|(i−1/2, j), ∂V/∂y|(i, j−1/2), ΔxV |(i−1/2, j)

and ΔyV |(i, j+1/2) can be obtained analogously.
Rearranging and substituting the discretizations of (4)

and (12) in (11) and decomposing the operators as described
by (2), and (3) yields
(
σi+1/2, j + σi−1/2, j + σi, j+1/2 + σi, j−1/2 + α

)
V∗
i, j − σi, j−1/2V

∗
i, j−1

− σi+1/2, jV
∗
i+1, j − σi, j+1/2V

∗
i, j+1 − σi−1/2, jV

∗
i−1, j = αVn

i, j ,
(17)

Cm

Vn+1
i, j −V∗

i, j

Δto
= −Iion

(
V∗
i, j ,η

n
)

,

ηn+1 − ηn

Δto
= f

(
ηn,V∗, t

)
,

(18)

where α = (βCmh2)/Δtp, n is the current step, ∗ is an
intermediate step, and n+ 1 is the next time step. In addition
σ can stand for any of the gap junction conductance (Gp, Gi,
Gc) divided by the depth d or for any conductivity value (σc,
σm) defined for each volume face as described in Section 2.1.
This defines the equations for each finite volume Voli, j . First
we solve the linear system associated with (17) to advance
time by Δtp and then we solve the nonlinear system of ODEs
associated with (18) No times until we have NoΔto = Δtp.

2.4. Parallel Numerical Implementations. Large scale simula-
tions, such as those resulting from fine spatial discretization
of a tissue, are computationally expensive. For example,
when an 8 μm discretization is used in a 1 cm× 1 cm tissue
and the Bondarenko et al. model (BDK), which has 41
differential variables, is used as cardiac cell model, a total of
1250× 1250× 41 = 64,062,500 unknowns must be computed
at each time step. In addition, to simulate 100 ms of cardiac
electrical activity, 64 millions of unknowns of the nonlinear
systems of ODEs must be computed one million times (with
Δto = 0.0001 ms) and the PDE with 1.5 million of unknowns
must be computed ten thousand times.

6 Computational and Mathematical Methods in Medicine

To deal with this high computational cost, two distinct
tools for parallel computing were used together: MPI and
GPGPU.

2.4.1. Cluster Implementation. The cluster implementation is
a parallel implementation tailored to cluster of CPUs. The
cluster implementation uses the PETSc [39] and MPI [40]
libraries. It uses a parallel conjugate gradient preconditioned
with ILU(0) (with block Jacobi in parallel) to solve the
linear system associated with the discretization of the PDE
of the monodomain model. More details about this parallel
implementation can be found in our previous works on this
topic [21–24].

To solve the non-linear systems of ODEs, the explicit
Euler method was used. This is an embarrassingly parallel
problem. No dependency exists between the solutions of
the different systems of ODEs of each finite volume Voli, j .
Therefore, it is quite simple to implement a parallel version
of the code: each MPI process is responsible for computing
a fraction Np of the total number of volumes of the
simulation, where Np is the number of processes involved
in the computation.

2.4.2. Multi-GPU Implementation. In our multi-GPU imple-
mentation, we have decided to keep the cluster approach
for the solution of the linear system associated with the
discretization of the PDE of the monodomain model.
Therefore, multi-GPU also solves the discretized PDE with
the parallel conjugate gradient preconditioned with ILU(0)
(with block Jacobi in parallel) available in the PETSc library.

However, we have accelerated the solution of the systems
of ODEs by using multiple GPUs. This is a different strategy
from those we have used before when the full Bidomain
equations (elliptic PDE, parabolic PDE, and systems of
ODEs) were completely implemented in a single GPU [30],
or the full Monodomain equations (parabolic PDE and
system of ODEs) were completely implemented in a single
GPU [25, 26, 29].

The motivation for choosing a different strategy is based
on several reasons. As presented in [29], the monodomain
model can be accelerated using a single GPU by 35-fold
when compared to a parallel OpenMP [41] implementation
running on a quad-core computer. However, this final
speedup obtained by the GPU comes from a near 10-fold
speedup for the solution of the PDE and a near 450-fold
speedup for the solution of the nonlinear systems of ODEs.
Nowadays, as manycore architecture evolves, one may easily
find in the market a single computer equipped with 64
processing cores. Therefore, we believe that solving the PDE
on these new machines with traditional MPI or OpenMP-
based parallel implementations may outperform a single
GPU implementation. On the other side, for the parallel
solution of the nonlinear systems of ODEs a single GPU still
easily outperforms these new manycore-based computers.
This bring, us to focus GPU implementations to the parallel
solutions of the millions of nonlinear systems of ODEs.
A second motivation is related to the preconditioners that
can be easily and efficiently implemented for the conjugate

gradient method in GPUs. For the bidomain equations,
efficient geometric multigrid preconditioners [30] were
implemented in a single GPU, and sophisticated algebraic
multigrid preconditioners [42] were implemented in a multi-
GPU platform. However, both implementations are only
viable for the solution of the linear system associated
with the elliptic PDE of the bidomain equations. Multigrid
preconditioners are too expensive and turns out to be an
inefficient option for the solution of the parabolic PDE,
which is the PDE type of the monodomain model. Until now,
the cheap but inefficient w-Jacobi preconditioner has been
the best choice for GPU implementations when it concerns
the solution of the parabolic PDE [29, 42]. However, it
is well known that incomplete LU (ILU) preconditioners
combined with block Jacobi or additive Schwarz domain
decomposition methods [23] greatly outperform Jacobi-
like preconditioners on cluster computing for the solution
of the PDE of the monodomain model. This argument
favors cluster-like implementations as the best choice for the
parallel solution of the parabolic PDE of the monodomain
model (see [43] and the references cited therein). Finally, a
third and last motivation is related to the particular problem
we propose to investigate in this work: models that reveal
the microstructure of cardiac tissue. Another recent work
presented an implementation for the bidomain model for
multi-GPU platforms [44]. Both PDEs and systems of ODEs
were implemented on GPUs using explicit methods, Jacobi
relaxation, and explicit Euler, respectively. We note that
for our particular microscopic tissue model with spatial
discretization of 8 μm, the approach of using an explicit and
cheap solver for the PDE would be very inefficient due to the
severe stability restrictions imposed by the CFL conditions
[37]. Therefore, once more, this argument also favors cluster-
like implementations based on implicit methods for the
parallel solution of the parabolic PDE of the monodomain
model.

Our multi-GPU implementation uses CUDA [45] to
implement the numerical solution of the BDK cardiac cell
model. The CUDA model extends the C programming
language with a set of abstractions to express parallelism,
that is, CUDA includes C software development tools
and libraries to hide the GPGPU hardware details from
programmers that can focus on important issues of the
parallelism of their code rather than dealing with unfamiliar
and complicated concepts from computer graphics in order
to explore the computational power of GPUs for general
purpose computation.

In order to run an application, the programmer must
create a parallel function called kernel. A kernel is a special
C function callable from the CPU but executed on the GPU
simultaneously by many threads. Each thread is run by a
GPU stream processor. They are grouped into blocks of
threads or just blocks. The blocks can be one-, two-, or three-
dimensional. A set of blocks of threads form a grid, that can
be one- or two-dimensional. When the CPU calls the kernel,
it must specify how many blocks and threads will be created
at the GPU to execute the kernel. The syntax that specifies the
number of threads that will be created to execute a kernel is
formally known as the execution configuration and is flexible

Computational and Mathematical Methods in Medicine 7

to support CUDA’s hierarchy of threads, blocks of threads,
and grids of blocks. Since all threads in a grid execute the
same code, a unique set of identification numbers is used
to distinguish threads and to define the appropriate portion
of the data they must process. These threads are organized
into a two-level hierarchy composed by blocks and grids
and two unique coordinates, called blockId and threadId, are
assigned to them by the CUDA runtime system. These two
built-in variables can be accessed within the kernel functions
and they return the appropriate values that identify a block
and thread, respectively. All the threads within a single block
are allowed to synchronize with each other via a special
barrier operator, called syncthread, and have access to a high-
speed, per-block shared memory which allows interthread
communication. Threads from different blocks in the same
grid can coordinate their execution only through the use of
atomic global memory operations. No assumptions are made
about the execution order of thread blocks, which means that
a kernel must execute correctly no matter the order in which
blocks are scheduled by the hardware to run.

Some additional steps must be followed to use the GPU:
(a) the device must be initialized; (b) memory must be
allocated in the GPU and data transferred to it; (c) the kernel
is then called. After the kernel have finished its execution,
results are transferred back to the CPU.

Two kernels have been developed to solve each of the
systems of ODEs related to BDK model. The first kernel is
responsible for setting the initial conditions of the systems
of ODEs, whereas the second one integrates the systems of
ODEs at each time step.

Both kernel implementations were optimized in many
different ways. The state variables of M cardiac cells were
stored in an array called SV, whose size is equal to MNeq,
where Neq is the number of differential equations of the
ionic model (in this work, Neq is equal to 41). The SV
array was organized in such a way that the first M entries
correspond to the first state variable, followed by M entries
of the next state variable, and so on. Moreover, for all ionic
models, the first M entries of the SV array correspond to
the transmembrane potential V . During the solution of the
systems of PDEs, after the integration of the ODEs systems,
the transmembrane potential of each node should be passed
to the PETSC solver. Due to the memory organization chosen
for the SV array, this is a straightforward task since, as stated
before, the M first entries of the array correspond to the
transmembrane potential V of each node. This organization
allows us to avoid extra memory transactions between CPU
and GPU, improving performance. Another implementation
choice that impact performance positively was the way the
SV array has been allocated. The SV array was allocated in
global GPU memory using the cudaMallocPitch routine from
the CUDA API. This routine may pad the allocation in order
to ensure that corresponding memory addresses of any given
row will continue to meet the alignment requirements for the
coalescing operations performed by the hardware. In short, a
strict coalescing requires that thread j out of n threads has to
access data u[j] if u[0] is accessed by thread 0, that is, each
thread should perform data access by stride n. Therefore,
in the first kernel, to set the initial conditions, each thread

sets the values of all its state variables. The kernel that solves
the system of ODEs operates similarly, that is, each thread
computes and updates its state variables writing to the right
position in memory that corresponds to their variables. In
addition, the second kernel was optimized to use as much as
local memory operations as possible.

Pure domain decomposition was used for parallelism.
The tissue domain was linearly decomposed on Np nonover-
lapping subdomains (or Np tasks, T1 to TNp, see Figure 4),
where Np is the number of MPI processes or processing
cores. The parallel solution of the PDE is implemented via
PETSc (see [21]), with each processing core p responsible for
updating the variables associated to subdomain Tp. In our
computational environment each machine or node has more
CPU cores (8) than GPUs (2). Therefore, for the solution of
the ODEs each GPU device will be responsible for processing
more than one task. The tasks assigned with one node
are distributed to the GPUs in a round-robin fashion. For
example, if Np = 16 and we have two machines (each with 8
cores and 2 GPU devices), Figure 4 presents how the tissue
domain will be partitioned. Four tasks would be assigned
to each GPU device. For instance, at node 0, GPU 0 would
process tasks T1, T3, T5, and T7, GPU 1 the tasks T2, T4, T6,
and T8.

For the solution of the ODEs, both sequential and parallel
(CUDA) codes used single precision. For the solution of
the PDE we have used double precision. For the case of
monodomain simulations, we have shown in [25] that the
use of single precision in CUDA does not affect the numerical
precision of the solver.

3. In Silico Experiments, Computational
Environment, and Metrics

The simulations were performed using the microscopic
model with spatial discretization of 8 μm and heterogeneous
conductivity values as described in Section 2.1. The values
used for β and Cm were set to 0.14 cm−1 and 1.0 μF/cm2,
respectively. The time step used to solve the linear system
associated with (17) was set to Δtp = 0.01 ms and to solve
the nonlinear system of ODEs associated to (18) was set with
Δto = 0.0001 ms.

Three different tissue setups were used to test our model
and parallel implementations: a cardiac tissue of 0.5 cm ×
0.5 cm size that was stimulated in the center and was executed
for 10 ms, a cardiac tissue of 1.0 cm × 1.0 cm size that was
stimulated in the center and was executed for 10 ms, and a
cardiac tissue of 1.0 cm × 1.0 cm that was stimulated using
the S1-S2 protocol to generate a spiral wave, a form of self-
sustained reentrant activity strongly associated with cardiac
arrhythmia.

Our experiments were performed on a cluster of 8 SMP
computers. Each computer contains two Intel E5620 Xeon
quad-core processors and 12 GB of RAM. All nodes run
Linux version 2.6.18 – 194.17.4.el5. The codes were compiled
with gcc 4.1.2 and CUDA 3.2. Each node contains two Tesla
C1060. The Tesla C1060 card has 240 CUDA cores and 4 GB
of global memory.

8 Computational and Mathematical Methods in Medicine

Linear parallel
partitioning

0 0.5 1
0

0.5

1

x (cm)

y
(c

m
)

T01

T02

T03

T04

T01 T02 T03 T04

T05 T06 T07 T08

T05

T06

T07

T08

T09

T10

T11

T12

T13

T14

T15

T16

Node 0

PDE

solve

solve

GPU 0 GPU 1

Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

T01 + T03 + T05 + T07 T02 + T04 +T06 + T08

ODE

T09 T10 T11

T13 T14 T15 T16

T12

Node 1

PDE

solve

solve

GPU 0 GPU 1

Core 1Core 0Core 0 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

T09 + T11 + T13 + T15 T10 + T12 + T14 + T16

ODE

Figure 4: Linear parallel decomposition of tissue. Example for the case of two nodes (each with 8 cores and 2 GPU devices, that is, a total of
16 CPU cores and 4 GPU devices). Each CPU core processes one task. Four tasks are assigned to each GPU device. For instance, at node 0,
GPU 0 processes tasks T1, T3, T5, and T7, and GPU 1 the tasks T2, T4, T6, and T8.

All tests were performed three times. The average
execution time, in seconds, is then used to calculate the
speedup, defined as the sequential execution time divided by
the parallel execution time.

4. Results

Figure 5 presents the propagation of a central stimulus on
the tissue of size 1 cm × 1 cm for different time instants.
As expected, macroscopically, the propagation looks very
smooth and continuous. However, when highlighting a
smaller region of size 1 mm × 1 mm, see Figure 6, we can
already observe the discrete nature of propagation, that is, the

influence of the cardiac microstructure on the propagation of
action potentials.

Table 1 presents the results obtained by the parallel
implementations for the experiment with a square tissue
of 0.5 cm × 0.5 cm. As one can observe, the time spent
solving the ODEs is responsible for near 90% of the execution
time. It can also be observed that although the obtained
speedups with the cluster are respectable and almost linear
(near 61 with 64 cores), the total execution time remains
high. With respect to the multi-GPU implementation, the
results are much better. It must be stressed that although 64
cores where used in this simulation, only 16 GPGPU devices
where available for executing the simulation, so 8 processes
share 2 GPGPU devices per machine. As one can observe,

Computational and Mathematical Methods in Medicine 9

0.96

0.96

0.8

0.8

0.64

0.64

0.48

0.48

0.32

0.32

0.16

0.16
0

0

y
(c

m
)

x (cm)

(a)

0.96

0.96

0.8

0.8

0.64

0.64

0.48

0.48

0.32

0.32

0.16

0.16
0

0

0

y
(c

m
)

x (cm)

(b)

−80

0.96

0.96

0.8

0.8

0.64

0.64

0.48

0.48

0.32

0.32

0.16

0.16
0

0

y
(c

m
)

x (cm)

(c)
0.96

0.96

0.8

0.8

0.64

0.64

0.48

0.48

0.32

0.32

0.16

0.16
0

0

y
(c

m
)

x (cm)

(d)

0

−80

Figure 5: Action potential propagation (transmembrane potential) after a central stimulus on a tissue of size 1 cm × 1 cm for different time
instants. (a) t = 1 ms, (b) t = 7 ms, (c) t = 13 ms, and (d) t = 20 ms.

the obtained speedup was huge, about 343 times faster than
a single core processor. The execution time drops from 1.6
days (using one processing core) to only 6.7 minutes (using
the 8-node multi-GPU platform).

Table 2 presents the results obtained by the parallel
implementations for the experiment with a square tissue of
1.0 cm × 1.0 cm. Once again, the speedups obtained with
the cluster implementation, were almost linear (61 with 64
cores). With respect to the multi-GPU implementation the
results are much better. The speedup was huge, about 420
times faster than a single core processor. The execution time
drops from more than 6 days (using one processing core)
to only 21 minutes (using the 8-node multi-GPU platform).
We can also observe that the multi-GPU implementation was
near 7 times faster than the cluster implementation when
running on the 8 computers.

As a result, using this very fast parallel implementation,
we were able to simulate the formation of spiral waves, a
form of self-sustained reentrant activity strongly associated
with cardiac arrhythmia, see Figure 7. To the best of our
knowledge, this is the first time spiral waves are simulated
using a cardiac model that accounts for both the microstruc-
ture of cardiac tissue and a modern and complex myocyte
model. After a couple of tries using the S1-S2 protocol to
find the correct vulnerable window, we managed to generate
a sustained spiral wave using this cardiac model that accounts
for both the microstructure of cardiac tissue and a modern
and complex myocyte model. The whole process took less
than one day (around 13 hours with each simulation taking
between 3 and 7 hours). Without our multi-GPU parallel
implementation, this process would have taken 227 days
using a single core computer or near 4 days using our

10 Computational and Mathematical Methods in Medicine

0.96

0.8

0.64

0.48

0.32

0.16

0

y
(c

m
)

0.960.80.640.480.320.160

x (cm)

10.750.50.250

x (mm)

1

0.75

0.5

0.25

0

y
(m

m
)

(a) (b)

Figure 6: (a) Transmembrane potential at t = 7 ms after a central stimulus on a tissue of size 1 cm × 1 cm. (b) Microscopic details revealing
the discrete nature of AP propagation, that is, the influence of cardiac microstructure on a large tissue size simulation.

Table 1: Average execution time and speedup of parallel implementations for a tissue of 0.5 cm × 0.5 cm. The execution times are presented
in seconds.

Parallel implementation Cores Total Time ODE time PDE time Speedup

Cluster 1 137,964 132,590 5,264 —

Cluster 8 18,492 17,210 1,262 7.5

Cluster 16 9,922 9,316 595 13.9

Cluster 32 4,198 3,884 311 32.9

Cluster 64 2,283 2,087 191 60.4

Multi-GPU 64 + 16 GPUs 401.84 209.4 187 343

Table 2: Average execution time and speedup of parallel implementations for a tissue of 1.0 cm × 1.0 cm. The execution times are presented
in seconds.

Parallel implementation Cores Total Time ODE time PDE time Speedup

Cluster 1 546,507 523,331 23,177 —

Cluster 64 8,934 8,313 607 61.2

Multi-GPU 64 + 16 GPUs 1,302 682 611 420

cluster implementation running with 64 cores but without
the GPUs.

5. Discussion and Future Works

Our results show that our multi-GPU parallel implemen-
tation described in Section 2.4.2 was able to significantly
accelerate the numerical solution of a cardiac electrophys-
iology model that captures the microstructure of cardiac
tissue (using a very fine spatial discretization) and is based
on a very modern and complex cell model (with Markov
chain formulation that has been extensively used for the
characterization of ion channels). Speedups around 420
times were obtained, reducing execution times from more

than 6 days (using one processing core) to only 21 minutes
(using the 8-node multi-GPU platform). The hybrid Multi-
GPU parallel implementation presented in this work is even
more attractive if one considers that the architectures of
GPUs and multicore processors continue to evolve on a fast
pace.

Nevertheless, we believe our parallel implementation
can be further improved. For instance, in the current
implementation, the CPU cores are idle while waiting for
the results of the nonlinear ODEs that are being computed
by the GPU devices. For future work, we intend to evaluate
different load balancing techniques to better distribute the
parallel tasks between GPU devices and CPU cores and
make a more efficient use of all the computational resources.
Another possible improvement is related to the multilevel

Computational and Mathematical Methods in Medicine 11

0.96

0.8

0.64

0.48

0.32

0.16

0

0
y

(c
m

)

0.960.80.640.480.320 0.16

x (cm)

0.96

0.8

0.64

0.48

0.32

0.16

0

y
(c

m
)

0.960.80.640.480.320 0.16

x (cm)

0.96

0.8

0.64

0.48

0.32

0.16

0

y
(c

m
)

0.960.80.640.480.320 0.16

x (cm)

0.96

0.8

0.64

0.48

0.32

0.16

0

y
(c

m
)

0.960.80.640.480.320 0.16

x (cm)

(b)

−80

0

−80

(a)

(d)(c)

Figure 7: Spiral wave formation after an S1-S2 stimulus protocol at different time instants: (a) t = 80 ms, (b) t = 100 ms, (c) t = 112 ms,
and (d) t = 120 ms.

parallelism introduced for the solution of the bidomain
equations [24] that combines task parallelism (via pipeline)
and data parallelism (via data decomposition). We believe
a similar combination of data and task parallelism could be
also exploited for the solution of the monodomain equations
to further enhance the parallel efficiency of our algorithms.

Recent studies that focus on the discrete or discontinuous
nature of AP propagation have avoided the computational
challenges that arise from microscopic models via the
development and use of discrete models, where each cardiac
myocyte is represented by a single point connected with
the neighboring myocytes by different conductivities [46,
47]. This description has allowed the study of the effects
of randomly distributed conductivities in the conduction
velocity and on the formation of reentry patterns on cardiac
tissue. Discrete models were introduced by Keener in [48]
to describe the electrical propagation in a 1D cable of nc

connected cells for the case of low gap-junctional coupling.
In this model, the cells are assumed to be isopotential.
Therefore, only gap junction conductances are considered for
the connection of neighboring myocytes, that is, cytoplasmic
resistance is considered to be insignificant. Recently, we have
compared discrete and microscopic models for a 1D cable
of connected cells [49]. We have shown that the numerical
results obtained by the discrete model are similar to those
obtained by the heterogeneous microscopic model for the
case of low gap-junctional coupling (1%–10% of normal
coupling). However, the discrete model failed for the case
of normal gap-junctional coupling or moderate reduced
gap-junctional coupling (50%–100% of normal coupling).
The two-dimensional microscopic model developed in this
work will allow us to further compare these two approaches
(detailed microscopic models versus discrete models) and to
better understand the benefits and limitations of each one of

12 Computational and Mathematical Methods in Medicine

them. In addition, we hope that our microscopic model may
also suggest ways to better develop discrete models, which are
computationally less expensive than the detailed microscopic
ones.

6. Conclusion

In this paper, we developed a cardiac electrophysiology
model that captures the microstructure of cardiac tissue by
using a very fine spatial discretization and uses a very modern
and complex cell model based on Markov chains for the
characterization of ion channel’s structure and dynamics.
To cope with the computational challenges, the model was
parallelized using a hybrid approach: cluster computing and
GPGPUs. Different in silico tissue preparations were used in
this work for the performance tests. We have shown that in
all cases, our parallel multi-GPU implementation was able to
significantly reduce the execution times of the simulations,
for instance, from more than 6 days (on a single processor)
to 21 minutes (on a small 8-node cluster equipped with 16
GPUs, that is, 2 GPUs per node). We believe that this new
parallel implementation paves the way for the investigation
of many open questions associated with the complex and
discrete propagation nature of action potentials on cardiac
tissue.

Authors’ Contribution

B. G. de Barros and R. S. Oliveira contributed equivalently
in this paper. “Therefore they can be both considered as first
authors appearing in alphabetical order”.

Acknowledgments

The authors would like to thank CAPES, CNPq, FAPEMIG,
FINEP, UFMG, UFSJ, and UFJF for supporting this work.

References

[1] WHO, World health organization, 2010, http://www.who.int/.
[2] F. B. Sachse, Computational Cardiology: Modeling of Anatomy,

Electrophysiology, and Mechanics, vol. 2966, Springer, 2004.
[3] A. L. Hodgkin and A. F. Huxley, “A quantitative description

of membrane current and its application to conduction and
excitation in nerve,” The Journal of physiology, vol. 117, no. 4,
pp. 500–544, 1952.

[4] R. Plonsey, “Bioelectric sources arising in excitable fibers (alza
lecture),” Annals of Biomedical Engineering, vol. 16, no. 6, pp.
519–546, 1988.

[5] R. R. Aliev and A. V. Panfilov, “A simple two-variable model of
cardiac excitation,” Chaos, Solitons and Fractals, vol. 7, no. 3,
pp. 293–301, 1996.

[6] V. E. Bondarenko, G. P. Szigeti, G. C. L. Bett, S. J. Kim, and
R. L. Rasmusson, “Computer model of action potential of
mouse ventricular myocytes,” American Journal of Physiology,
vol. 287, no. 3, pp. H1378–H1403, 2004.

[7] C. E. Clancy and Y. Rudy, “Linking a genetic defect to its
cellular phenotype in a cardiac arrhythmia,” Nature, vol. 400,
no. 6744, pp. 566–569, 1999.

[8] T. Brennan, M. Fink, and B. Rodriguez, “Multiscale modelling
of drug-induced effects on cardiac electrophysiological activ-
ity,” European Journal of Pharmaceutical Sciences, vol. 36, no.
1, pp. 62–77, 2009.

[9] C. E. Clancy, Z. I. Zhu, and Y. Rudy, “Pharmacogenetics
and anti-arrhythmic drug therapy: a theoretical investigation,”
American Journal of Physiology, vol. 292, no. 1, pp. H66–H75,
2007.

[10] V. Iyer, R. Mazhari, and R. L. Winslow, “A computational
model of the human left-ventricular epicardial myocyte,”
Biophysical Journal, vol. 87, no. 3, pp. 1507–1525, 2004.

[11] M. S. Spach and J. F. Heidlage, “The stochastic nature of car-
diac propagation at a microscopic level: electrical description
of myocardial architecture and its application to conduction,”
Circulation Research, vol. 76, no. 3, pp. 366–380, 1995.

[12] V. Jacquemet and C. S. Henriquez, “Loading effect of
fibroblast-myocyte coupling on resting potential, impulse
propagation, and repolarization: insights from a microstruc-
ture model,” American Journal of Physiology, vol. 294, no. 5,
pp. H2040–H2052, 2008.

[13] M. L. Hubbard, W. Ying, and C. S. Henriquez, “Effect of gap
junction distribution on impulse propagation in a monolayer
of myocytes: a model study,” Europace, vol. 9, supplement 6,
pp. vi20–vi28, 2007.

[14] A. G. Kléber and Y. Rudy, “Basic mechanisms of cardiac
impulse propagation and associated arrhythmias,” Physiolog-
ical Reviews, vol. 84, no. 2, pp. 431–488, 2004.

[15] H. J. Jongsma and R. Wilders, “Gap junctions in cardiovas-
cular disease,” Circulation Research, vol. 86, no. 12, pp. 1193–
1197, 2000.

[16] Y. Wang and Y. Rudy, “Action potential propagation in
inhomogeneous cardiac tissue: safety factor considerations
and ionic mechanism,” American Journal of Physiology, vol.
278, no. 4, pp. H1019–H1029, 2000.

[17] M. S. Spach and R. C. Barr, “Effects of cardiac microstructure
on propagating electrical waveforms,” Circulation Research,
vol. 86, no. 2, pp. e23–e28, 2000.

[18] R. M. Shaw and Y. Rudy, “Ionic mechanisms of propagation in
cardiac tissue: roles of the sodium and L-type calcium currents
during reduced excitability and decreased gap junction cou-
pling,” Circulation Research, vol. 81, no. 5, pp. 727–741, 1997.

[19] J. Stinstra, R. MacLeod, and C. Henriquez, “Incorporating his-
tology into a 3D microscopic computer model of myocardium
to study propagation at a cellular level,” Annals of Biomedical
Engineering, vol. 38, no. 4, pp. 1399–1414, 2010.

[20] S. F. Roberts, J. G. Stinstra, and C. S. Henriquez, “Effect of
nonuniform interstitial space properties on impulse propaga-
tion: a discrete multidomain model,” Biophysical Journal, vol.
95, no. 8, pp. 3724–3737, 2008.

[21] R. Weber Dos Santos, G. Plank, S. Bauer, and E. J. Vigmond,
“Parallel multigrid preconditioner for the cardiac bidomain
model,” IEEE Transactions on Biomedical Engineering, vol. 51,
no. 11, pp. 1960–1968, 2004.

[22] G. Plank, M. Liebmann, R. W. dos Santos, E. J. Vigmond,
and G. Haase, “Algebraic multigrid preconditioner for the
cardiac bidomain model,” IEEE Transactions on Biomedical
Engineering, vol. 54, pp. 585–596, 2007.

[23] R. W. dos Santos, G. Plank, S. Bauer, and E. J. Vigmond, “Pre-
conditioning techniques for the bidomain equations,” Lecture
Notes in Computational Science and Engineering, vol. 40, pp.
571–580, 2004.

[24] C. R. Xavier, R. S. Oliveira, V. Da Fonseca Vieira, R. W. Dos
Santos, and W. Meira, “Multi-level parallelism for the cardiac

http://www.who.int/

Computational and Mathematical Methods in Medicine 13

bidomain equations,” International Journal of Parallel Pro-
gramming, vol. 37, no. 6, pp. 572–592, 2009.

[25] B. M. Rocha, F. O. Campos, R. M. Amorim et al., “Accelerating
cardiac excitation spread simulations using graphics process-
ing units,” Concurrency Computation Practice and Experience,
vol. 23, no. 7, pp. 708–720, 2011.

[26] B. M. Rocha, F. O. Campos, G. Plank, R. W. dos Santos,
and M. Liebmann, “Simulations of the electrical activity in
the heart with graphic processing units,” in Parallel Processing
and Applied Mathematics, R. Wyrzykowski, J. Dongarra, K.
Karczewski, and J. Wasniewski, Eds., vol. 6067, pp. 439–448,
Lecture Notes in Computer ScienceSpringer, Berlin, Germany,
2010.

[27] R. M. Amorim, B. M. Rocha, F. O. Campos, and R. W. Dos
Santos, “Automatic code generation for solvers of cardiac
cellular membrane dynamics in GPUs,” in Proceedings of the
32nd Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC ’10), pp. 2666–2669,
September 2010.

[28] R. Amorim, G. Haase, M. Liebmann, and R. W. D. Santos,
“Comparing CUDA and OpenGL implementations for a
Jacobi iteration,” in Proceedings of the International Conference
on High Performance Computing and Simulation (HPCS ’09),
pp. 22–32, June 2009.

[29] R. S. Oliveira, B. M. Rocha, R. M. Amorim et al., “Comparing
cuda, opencl and opengl implementations of the cardiac
monodomain equations,” in Parallel Processing and Applied
Mathematics, R. Wyrzykowski, J. Dongarra, K. Karczewski,
and J. Wasniewski, Eds., vol. 7204 of Lecture Notes in Computer
Science, pp. 111–120, Springer, Berlin, Germany, 2012.

[30] R. M. Amorim and R. W. dos Santos, “Solving the cardiac
bidomain equations using graphics processing units,” Journal
of Computational Science. In press.

[31] A. M. Gerdes, S. E. Kellerman, J. A. Moore et al., “Structural
remodeling of cardiac myocytes in patients with ischemic
cardiomyopathy,” Circulation, vol. 86, no. 2, pp. 426–430,
1992.

[32] R. E. Tracy and G. E. Sander, “Histologically measured
cardiomyocyte hypertrophy correlates with body height as
strongly as with body mass index,” Cardiology Research and
Practice, vol. 2011, Article ID 658958, 2011.

[33] R. Eymard, T. Gallouët, and R. Herbin, “Finite volume
methods,” Handbook of Numerical Analysis, vol. 7, pp. 713–
1018, 2000.

[34] D. M. Harrild and C. S. Henriquez, “A finite volume model
of cardiac propagation,” Annals of Biomedical Engineering, vol.
25, no. 2, pp. 315–334, 1997.

[35] Y. Coudiere, C. Pierre, and R. Turpault, “A 2d/3d finite
volume method used to solve the bidomain equations of
electrocardiology,” in Proceedings of the Algoritmy, pp. 1–10,
2009.

[36] J. Sundnes, Computing the Electrical Activity in the Heart,
Springer, 2006.

[37] J. C. Strikwerda, Finite Difference Schemes and Partial Differen-
tial Equations, Society for Industrial Mathematics, 2004.

[38] S. Rush and H. Larsen, “A practical algorithm for solving
dynamic membrane equations,” IEEE Transactions on Biomed-
ical Engineering, vol. 25, no. 4, pp. 389–392, 1978.

[39] S. Balay, K. Buschelman, V. Eijkhout et al., “PETSc users
manual,” Tech. Rep., Citeseer, 2004.

[40] W. Groop and E. Lusk, “User’s guide for mpich, a portable
implementation of MPI,” Tech. Rep., Argonne National Lab-
oratory, 1994.

[41] L. Dagum and R. Menon, “Openmp: an industry standard
api for shared-memory programming,” IEEE Computational
Science and Engineering, vol. 5, no. 1, pp. 46–55, 1998.

[42] A. Neic, M. Liebmann, E. Hoetzl et al., “Accelerating cardiac
bidomain simulations using graphics processing units,” IEEE
Transactions on Biomedical Engineering, vol. 59, no. 8, pp.
2281–2290, 2012.

[43] E. J. Vigmond, R. Weber dos Santos, A. J. Prassl, M. Deo,
and G. Plank, “Solvers for the cardiac bidomain equations,”
Progress in Biophysics and Molecular Biology, vol. 96, no. 1–3,
pp. 3–18, 2008.

[44] V. K. Nimmagadda, A. Akoglu, S. Hariri, and T. Moukabary,
“Cardiac simulation on multi-GPU platform,” Journal of
Supercomputing, vol. 59, no. 3, pp. 1360–1378, 2012.

[45] D. B. Kirk and W. W. Hwu, Massively Parallel Processors: A
Hands-on Approach, Morgan Kaufmann, 2010.

[46] S. Alonso, M. Bär, and A. V. Panfilov, “Effects of reduced
discrete coupling on filament tension in excitable media,”
Chaos, vol. 21, no. 1, Article ID 013118, 2011.

[47] S. Alonso, M. Bar, and A. V. Panfilov, “Negative tension of
scroll wave filaments and turbulence in three-dimensional
excitable media and application in cardiac dynamics,” Bulletin
of Mathematical Biology. In press.

[48] J. P. Keener, “The effects of gap junctions on propagation in
myocardium: a modified cable theory,” Annals of the New York
Academy of Sciences, vol. 591, pp. 257–277, 1990.

[49] C. M. Costa and R. W. Dos Santos, “Limitations of the
homogenized cardiac Monodomain model for the case of low
gap junctional coupling,” in Proceedings of the 32nd Annual
International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC ’10), pp. 228–231, September 2010.

	Introduction
	Methods
	Modeling Cardiac Microstructure
	The Heterogeneous Monodomain Model
	Numerical Discretization in Space and Time
	Time Discretization
	Spatial Discretization

	Parallel Numerical Implementations
	Cluster Implementation
	Multi-GPU Implementation

	In Silico Experiments, Computational Environment, and Metrics
	Results
	Discussion and Future Works
	Conclusion
	Authors' Contribution
	Acknowledgments
	References

