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Abstract

Background: The invention of high throughput sequencing technologies has led to the discoveries of hundreds of
thousands of genetic variants associated with thousands of human diseases. Many of these genetic variants are
located outside the protein coding regions, and as such, it is challenging to interpret the function of these genetic
variants by traditional genetic approaches. Recent genome-wide functional genomics studies, such as FANTOM5
and ENCODE have uncovered a large number of regulatory elements across hundreds of different tissues or cell
lines in the human genome. These findings provide an opportunity to study the interaction between regulatory
elements and disease-associated genetic variants. Identifying these diseased-related regulatory elements will shed
light on understanding the mechanisms of how these variants regulate gene expression and ultimately result in
disease formation and progression.

Results: In this study, we curated and categorized 27,558 Mendelian disease variants, 20,964 complex disease
variants, 5,809 cancer predisposing germline variants, and 43,364 recurrent cancer somatic mutations. Compared
against nine different types of regulatory regions from FANTOMS5 and ENCODE projects, we found that different
types of disease variants show distinctive propensity for particular regulatory elements. Mendelian disease variants
and recurrent cancer somatic mutations are 22-fold and 10- fold significantly enriched in promoter regions
respectively (q<0.001), compared with allele-frequency-matched genomic background. Separate from these two
categories, cancer predisposing germline variants are 27-fold enriched in histone modification regions (gq<0.001),
10-fold enriched in chromatin physical interaction regions (q<0.001), and 6-fold enriched in transcription promoters
(9<0.001). Furthermore, Mendelian disease variants and recurrent cancer somatic mutations share very similar
distribution across types of functional effects.

We further found that regulatory regions are located within over 50% coding exon regions. Transcription
promoters, methylation regions, and transcription insulators have the highest density of disease variants, with 472,
239, and 72 disease variants per one million base pairs, respectively.

Conclusions: Disease-associated variants in different disease categories are preferentially located in particular
regulatory elements. These results will be useful for an overall understanding about the differences among the
pathogenic mechanisms of various disease-associated variants.
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Background

Along with the wide application of high throughput
technologies, hundreds of millions genetic variants have
been identified with a dramatic growth of dbSNP occur-
ring after 2007 [1]. From these resources/studies, it was
found that ~97% of all identified variants are noncoding
variants, consistent with the notion that 98% of human
genome sequences are noncoding [2]. The studies that
have resulted from the ENCODE project show that over
80% of human genome are functional [3], participating
in at least one biochemical RNA- or chromatin-
associated event in at least one cell type. Any variant
that is located within a functional genomic region
potentially has the ability to cause a dysregulation on
gene expression through modifying regulatory elements,
possibly resulting in diseases pathogenesis [4,5]. A lot of
well-annotated disease-variants have been collected in
the Human Gene Mutation Database (HGMD) [6]; these
variants are organized into three groups of significant
functional disease SNPs, namely coding SNPs (cSNPs),
splicing SNPs (sSNPs) and regulatory SNPs (rSNPs),
which account for ~86%, ~10% and ~3% of variants in
HGMD respectively [6-9]. There is plenty of information
about coding variants but limited knowledge about non-
coding variants. In recent years, genome-wide associa-
tion studies (GWAS) [10] identified over ten thousand
variants associated with various diseases/traits, ~90% of
which localize outside of known protein-coding regions.
This phenomenon highlights the substantial gap
between the plethora of disease- or trait-associated non-
coding variants and our understanding of how most of
these variants contribute to diseases/traits. (Figure S1).

Gene expression is a tightly regulated process, involving
various regulatory elements including promoters, enhan-
cers, insulators, and silencers. Moreover, the chemical
modifications (i.e. methylation and acetylation) on histone
proteins present in chromatin has been shown to change
the accessibility of the chromatin for transcription to
occur and thusly influence gene expression [11,12]. Some
projects, such as ENCODE [3] and FANTOMS5 [13,14],
adopted various experimental technologies including
ChIP- seq [15], DNase-seq [16], ChIA-PET [17], and
CAGE [18-21], and identified a lot of various regulatory
regions throughout the human genome across hundreds
of tissues and cell types [22]. These various experiments
validated regulatory regions datum provide an opportunity
to investigate the underlying pathogenic mechanism of
disease-associated variants.

A possible mechanism underlying the pathogenesis of
disease-associated variants is the disruption of the bind-
ing of transcription factors, local chromatin structure,
and/or co-factors recruitment, ultimately altering the
expression of the target genes. Some published studies
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support such a hypothesis through analyzing the distri-
bution of regulatory complex disease variants by GWAS
[3,23-30]. In the current study, we focus on the dissimi-
larity of underlying pathogenic regulatory mechanisms
of disease-associated variants in different disease cate-
gories, including Mendelian diseases, complex diseases,
cancer predisposing germline variants, and recurrent
cancer somatic mutations.

Results and discussion

Distinct densities of disease-associated variants within
different types of regulatory regions

Curation of disease-associated variants and regulatory regions
We curated disease-associated variants for Mendelian
diseases, germline cancers, somatic cancers, and complex
diseases (see details in supplementary materials, Addi-
tional File 1). Disease-associated variants are summarized
in Table 1. There were 27,558 Mendelian disease variants
collected from OMIM [31] and ClinVar [32], residing
within 2,229 genes and causing 5,317 diseases/pheno-
types. VarDi is a database of disease-associated variants
built through a combination of Hadoop-based text
mining tools and manual curation [33]. We collected
20,964 complex disease variants from VarDi and NHGRI
GWAS Catalog [10], located within 2,615 genes and asso-
ciated with 1,243 diseases/traits. Compared with 5,809
cancer predisposing germline variants from HGMD pro-
fessional database [6], 43,364 recurrent cancer somatic
mutations were extracted from COSMIC [34]. Cancer
predisposing germline variants were located across 294
genes, while recurrent cancer somatic mutations were
distributed throughout 14,649 genes.

A lot of regulatory regions, including transcription pro-
moters, enhancers and insulators, DNA methylation
regions, histone modification regions, chromatin physi-
cal interaction regions, DNA binding sites of protein
factors by ChIP-seq, and open chromatin regions by
DNase-seq and FAIRE-seq, were identified by the FAN-
TOMS5 and ENCODE projects, which are summarized
in Table 2. Transcription promoter, enhancer, and insu-
lator regions account for 0.12%, 0.38% and 3.52% of the
human genome respectively. Roughly 0.6% of the human
genome is DNA methylation regions, usually overlap-
ping with transcription promoter regions. Histone modi-
fication regions occupy over 87% of the human genome,
revealing the ubiquity of epigenetic marked regions.
About 40% of the human genome involves chromatin
physical interaction zones, hinting an abundant, long-
range regulation during gene expression process. Similar
percentages of human genome, 11.76%, 11.97% and
13.87%, comprise DNA binding sites of protein by
ChIP-seq and open chromatin regions by DNase-seq
and FAIRE-seq, respectively.
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Table 1. Summary of disease variants
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Variants Data sources #Variants #Genes #Diseases/Phenotypes/Traits
Mendelian disease variants OMIM, ClinVar 27,558 2,229 5317

Complex disease variants GWAS catalog, VarDi 20,964 2615 1,243

Cancer predisposing germline variants HGMD professional 5,809 294 260

Recurrent cancer somatic mutations COSMIC 43,364 14,649 296

Regulatory regions are widely located within coding and
noncoding regions

We extracted seven types of human genomic regions:
coding exons, 5’-UTR, 3’-UTR, introns, upstream and
downstream 2000bp of genes, and intergenic region; and
then counted the regulatory regions overlapping with
each type of the genomic regions (Table 3, S1). Regula-
tory regions are widely located within different human
genomic regions, and each type of human genomic
regions also can contain various regulatory regions. Tran-
scription promoters can occur within each type of geno-
mic region. ~45% of promoters can be within intergenic
regions, hinting a lot of potential protein or RNA genes
unknown in the intergenic regions. Intronic promoters
account for ~24%, consistent with the study that lots of
latent noncoding RNA genes within introns [35]; Intronic
promoters are associated with various disorders, includ-
ing cancer [36]. Dr. Ingolia found pervasive translation
outside of annotated protein-coding genes through ribo-
some profiling analysis, implying that a lot of transcription
promoters are located outside of protein-coding genes
[37]. Transcription enhancers and insulators mainly locate
within intergenic regions, introns, upstream and down-
stream of genes. Over 15% of methylation regions occurs
within coding exons, 5-UTR and upstream of genes. The

majority of regulatory regions are located within noncod-
ing regions including introns and intergenic regions, while
coding regions also contain various regulatory regions.
54.99% of coding exons are overlapped with regulatory
regions, implying the regulatory role of coding exons on
gene expression. ~15% of coding exon regions can be
DNA binding sites of proteins, which is in agreement with
the study that genetic code specifying amino acids and
regulatory code specifying transcription factor recognition
sequences has been proven to exist simultaneously within
human protein coding regions [38]. Regulatory activity on
gene expression can occur within any type of human
genomic regions.

[llumina SureSelect TruSeq and Nimblegen SeqCap EZ
are two popular exome DNA sequencing technologies
which can be used to identify Mendelian disease variants,
cancer predisposing germline mutations and cancer
somatic mutations. The target regions of these two
exome DNA sequencing platforms can be located within
various human genomic regions (Table S2, S3). More-
over, these target regions also are overlapped with
various regulatory regions (Table S4, S5), suggesting any
disease variants identified by such exome DNA sequen-
cing platform can likely be located within any type of
regulatory regions.

Table 2. Summary of regulatory regions from FANTOM5 and ENCODE

Regulatory Regions Source Technique Institute Length(bp) Percent of
human
genome (%)

Transcription promoter  FANTOMS5 CAGE RIKEN 3,833,500 0.12

Transcription enhancer  FANTOM5 CAGE RIKEN 12,385,403 0.38

Transcription insulator ENCODE  ChlIP-seq HudsonAlpha Institute for Biotechnology, Yale University, Harvard 81,713,060 352

University
Methylation region ENCODE  Methylation HudsonAlpha Institute for Biotechnology 19,517,834 0.60
450

Histone modification ENCODE  ChlIP-seq Broad institute, Massachusetts General Hospital, Harvard Medical ~ 2,816,878,674

region School

Chromatin physical ENCODE  CHIA-PET Genome Institute of Singapore, Stanford University 1,288430,643 39.83

interaction regions

DNA binding sites of ENCODE  ChlIP-seq HudsonAlpha Institute for Biotechnology, Yale University, Harvard 380,355,257  11.76

protein University

Open chromatin ENCODE DNase-seq  Washington University, Duke University 387,138495  11.97

regions (DNase |

hypersensitive sites)

Open chromatin ENCODE  FAIRE-seq Duke University, University of North Carolina at Chapel Hill, 448557442  13.87

regions by FAIRE-seq

University of Texas at Austin, European Bioinformatics Institute,
University of Cambridge
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Table 3. Percentage of each types of regulatory regions overlapped with different human genomic regions
Overlapping Overlapping Overlapping Overlapping Overlapping Overlapping Overlapping
Coding Exon Upstream (bp) 3’-UTR (bp) 5-UTR (bp) Introns (bp) Downstream Intergenic Regions
(bp) (bp) (bp)
Transcription 318,864 1,033,885 235,904 793,623 948,521 202,588 1,747,482
promoter (8.32%) (26.97%) (6.15%) (20.7%) (24.74%) (5.23%) (45.58%)
Transcription 275 443,003 12,826 8,301 4,351,818 326,034 7,628,892
enhancer (0.002%) (3.58%) (0.1%) (0.07%) (35.14%) (2.63%) (61.6%)
Transcription 1,678,883 6,568,355 1,642,952 2,007,230 25,080,619 3,312,161 49,525,266
insulator (2%) (8.04%) (2%) (2.45%) (30.7%) (4.05%) (60.6%)
Methylation 961,891 3,066,144 790,094 850,738 5,552,194 1,039,107 10,745,614
region (4.93%) (15.71%) (4.04%) (4.36%) (28.45%) (5.32%) (55%)
Histone 19,836,913 65,289,808 27,693,911 13,261,068 901,286,244 69,178,945 1,820,842,829
modification region (0.7%) (2.32%) (19%) (0.47%) (32%) (2.46%) (64.64%)
Chromatin 14,486,785 45,832,380 20,066,412 9,708,604 464,537,271 46,072,176 761,585,471
physical interaction (1.12%) (3.56%) (1.6%) (0.75%) (36.05%) (3.58%) (59.1%)
regions
DNA binding 5,252,509 22,329,204 6,553,411 5,567,759 130,492,231 14,945,226 224,621,692
sites of protein (1.38%) (5.87%) (1.7%) (1.46%) (34.3%) (3.93%) (59.06%)
Open 6,309,327 22,046,177 6,966,217 5,626,301 131,734,716 15,003,875 229,306,915
chromatin regions (1.63%) (5.69%) (1.8%) (1.45%) (34.02%) (3.88%) (59.23%)
(DNase
I hypersensitive sites)
Open 4,896,207 18,119,824 6,098,267 4,612,397 137,079,859 12,725,401 290,428,922
chromatin regions by (1.09%) (4.03%) (1.4%) (1.02%) (30.56%) (2.84%) (64.75%)

FAIRE-seq

Highest density of disease-associated variants within
transcription promoter

We counted the number of disease-associated variants
within each type of regulatory regions, and calculated the
average number of disease variants per one million base
pairs of regulatory regions (DVPM) (Table 4). The high-
est density of disease-associated variants was in transcrip-
tion promoter (472 DVPM), which is reasonable
considering the importance of transcription promoters in
initiating gene expression. Methylated regions had a
DVPM of 239, which usually overlap with transcription
promoter regions. Transcription insulator had the third
highest density of 72 DVPM, while transcription enhan-
cer region had the lowest DVPM 0f 18. Transcription
insulator regions are tightly associated with the 3D struc-
ture of DNA, mediated by CTCF protein. Accordingly,
variants in insulator regions can result in changes of the
3D structure of DNA [39]. The density of disease variants
in other types regulatory regions range from 33 to 68.
The disease-associated variants have quite different den-
sities in various regulatory regions.

Similar pattern of functional effects between Mendelian
disease variants and recurrent cancer somatic mutations
We applied Ensebml Variants Effect Predictor [40] to
annotate the functional effects of disease variants in four
disease categories (Figure 1A-D). Functional effects of

variants can be classified into 34 consequences in
Sequence Ontology [41], which were ranked in the order
of severity (more severe to less severe) by Ensembl analy-
sis group [40,42] (Figure 1E, Table S6). Mendelian dis-
ease variants and recurrent cancer somatic mutations
share the same top functional effects: missense_variant
(24% vs 28%), downstream_gene_variant (18% vs 13%),
upstream_gene_variant (11% vs 8%), nc_transcript_var-
iant (10% vs 11%), non_coding_exon_variant (8% vs 8%),
intron_variant (6% vs 7%), NMD_transcript_variant (4%
vs 5%) and stop_gained (5% vs 3%). Mendelian disease
variants and recurrent cancer somatic mutations show
similar pattern of functional effects.

The majority of complex disease variants are noncoding
variants. Intron_variant (46%), upstream_gene_variant
(10%), downstream_gene_variant (10%) and intergenic_-
variant (8%) sum up to ~75% of the overall complex dis-
ease variants. Considering that complex disease variants
identified via GWAS are not necessarily the causal var-
iants, and functional annotation of the GWAS SNPs may
not reflect the nature of complex disease causal variants,
we further recompiled the annotation on those complex
disease variants that were replicated in at least two differ-
ent ethnicities, and more likely to be causal than just mar-
kers. We produced a similar annotation result for complex
disease causal variants (Figure S2). Intron_variant (39%),
upstream_gene_variant (19%), downstream_gene_variant
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Table 4. Summary of disease variants residing within regulatory regions in seven types of human genomic regions

#Disease #Disease #Disease #Disease #Disease #Disease #Disease Total DVPM
Variants Variants Variants Variants Variants Variants Variants within (unique
within within within coding within within within intergenic variants)
upstream 5'UTR exons introns 3'UTR downstrea m region

Transcription 666 589 1,675 480 555 691 7 1,812 472

promoter

Methylation region 1,378 1,062 4,113 1,440 1,196 1317 48 4,671 239

Transcription 1,876 1472 4,637 1,976 1,393 1,790 279 5,886 72

insulator

Open chromatin 6,661 5776 20,306 9,580 7334 7336 1214 26,188 68

regions (DNase |

hypersensitiv e

sites)

DNA binding sites 6,360 5122 17,211 9,043 6,181 7,016 1143 22,915 60

of protein

Chromatin physical 13,775 13,040 49,007 26,125 19,005 17,952 3447 65,309 51

interaction regions

Open chromatin 5612 5013 16,922 8,779 6,434 6,261 1203 22,470 50

regions by FAIRE-

seq

Histone 16,862 16,783 69,303 35,889 24,566 22,090 6196 93,212 33

modification region

Transcription 30 1 0 129 1 12 71 219 18

enhancer

DVPM: the average number of disease variants per one million base pairs regulatory regions.

(19%), and intergenic_variant (4%), sum up to ~80% of the
overall complex disease causal variants, supporting com-
plex disease causal variants mainly are located within non-
coding region.

More deleterious functional effects are found for
Mendelian disease variants, cancer predisposing germline
variants, and recurrent cancer somatic mutations com-
pared to complex disease variants. Deleterious functional
effects, such as stop_gained and frameshift_variant make
up a substantial part of recurrent cancer somatic muta-
tions, cancer predisposing germline variants and Mende-
lian disease variants. We generated a histogram of
the functional effects of the four types of disease variants
(Figure 1E). Roughly 5% of cancer predisposing germline
variants change splice sites, suggesting abnormal splicing
isoforms caused by variants might lead to cancer forma-
tion. Stop_gained variants may result in a prematurely
ended protein product, which is notable among the conse-
quences of Mendelian disease variants, cancer predispos-
ing germline variants and recurrent cancer somatic
mutations. The top eleven serious consequences, specifi-
cally transcript_ablation, splice_donor_variant, splice_ac-
ceptor_variant, stop_gained, frameshift_variant, stop_lost,
initiator_codon_variant, transcript_amplication, infra-
me_insertion, inframe_deletion and missense_variant
(Figure 1E, Table S4), account for 32.39%, 31.95%, 30.55%
and 1.8% in cancer predisposing germline variants, recur-
rent cancer somatic mutations, Mendelian disease variants,
and complex disease variants respectively. The majority of
complex disease variants were annotated by the bottom

fifteen consequences categories, suggesting milder func-
tional effect of complex disease variants compared to
other three types of disease variants. Accordingly, cancer
predisposing germline variants, recurrent cancer somatic
mutations, and Mendelian disease variants tend to cause
more serious consequences compared to complex disease
variants.

A limitation of this analysis is that the SNPs, which are
linkage disequilibrium with complex disease variants,
were not considered for the functional effect annotation
analysis. Even so, we still accept that the complex disease
associated variants can reflect the main properties of the
disease-associated linkage disequilibrium genomic
regions where the complex disease causal variants may
locate. Therefore, this functional effect annotation analy-
sis here can be helpful to understand the dissimilarity
among the functional effects of the four types of disease-
associated variants.

Positive correlation between functionality of disease
variants and evolutionary constraints on the disease
variants
A series of bioinformatics tools have been developed to
predict whether variants are functional or deleterious. We
applied GWAVA [43], Mutation Assessor [44], CADD
[45], and GERP [46,47] to score and measure the function-
ality of the four types of disease variants.

The functionalities of cancer predisposing germline var-
iants, Mendelian disease variants, and recurrent cancer
somatic mutations are greater than that of complex
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Figure 1 Functional annotation of four types of disease associated variants. (A), (B), (C) and (D) are the annotation results for Complex
disease variants, Mendelian disease variants, Cancer predisposing germline mutations and Recurrent cancer somatic mutations using Ensembl
Variants Effect Predictor respectively. Majority of complex disease variants are noncoding variants. Mendelian disease variants and recurrent
cancer somatic mutations share similar pattern of functional effects. Compared with complex disease variants, more other three types of disease
variants locate within coding region. (E) The histogram for the distribution of consequences of the four types of disease variants. The
consequences by Mendelian disease variants, cancer predisposing germline variants and recurrent cancer somatic mutations are more serious
than that of complex disease variants.
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disease variants. GWAVA aims to predict functionality of
noncoding variants. There are three kinds GWAVA
scores: Region score, TSS score, and Unmatched score. A
high GWAVA score means more active functionality with
respect to a low GWAVA score. On the whole, the func-
tionality of noncoding disease variants degrades in the
order of germline cancer, Mendelian disease, somatic
cancer, and complex disease (Figure 2A,B,C). Mutation
Assessor predicts the functional impact of coding variants
on the protein level. Usually functional coding variants
have a higher Mutation Assessor score than non-func-
tional coding variants. Mutation Assessor score threshold
of 1.9 was used to discriminate disease-associated variants
with medium or high functionality [44]. Within all the
coding disease variants, we found that 55.31% of Mende-
lian disease variants, 44.65% of recurrent cancer somatic
mutations, 36.2% of cancer predisposing germline variants,
and 16.69% of complex disease variants are with medium
or high functionality (Figure 2D). In general, the associated
coding variants for germline cancer, Mendelian disease
and somatic cancer are more functional than the asso-
ciated coding variants for complex disease. CADD inte-
grates multiple annotations to score the deleteriousness of
coding or noncoding variants in the human genome.
A high CADD score typically suggests more sever deleter-
iousness compared to a low CADD score. Some recurrent
cancer somatic mutations have a very high CADD score,
implying exceptional deleteriousness. By and large, how-
ever, Mendelian disease variants are the most deleterious.
Complex disease variants in comparison are mild.
Some recurrent cancer somatic mutations have a low,
negative CADD score, and as such, are most likely
neutral (Figure 2E). Overall, the deleteriousness of dis-
ease variants gradually increases in the order: complex
disease variants, recurrent cancer somatic mutations,
cancer predisposing germline variants, and Mendelian
disease variants. The prediction score annotations for
the four types of disease variants by GWAVA, Muta-
tion Assessor, and CADD all suggest that cancer pre-
disposing germline variants, Mendelian disease variants
and recurrent cancer somatic mutations are more
functional than complex disease variants.

Functional disease-associated variant is prone to under
the evolutionary constraint. GERP [46,47] can produce
position-specific estimates of evolutionary constraint.
Negative GERP scores indicate that a site is most likely
evolutionary neutral. Positive scores suggest that a site
may be under evolutionary constraint. Positive scores
scale with the level of constraint, such that the greater
the score, the greater the level of evolutionary constraint
on that site. We found that 82.41% of cancer predispos-
ing germline variants, 86.06% of Mendelian disease var-
iants, 70.22% of recurrent cancer somatic mutations have
a positive GERP score, while ~60% of complex disease
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variants have a negative GERP score (Figure 2F), indicat-
ing that variants in the former group are under evolu-
tionary constraint, while the majority of complex disease
variants are evolutionary neutrally. Moreover, GWAVA,
Mutation Assessor and CADD annotations of the four
types of disease variants all suggest that the functionality
of cancer predisposing germline variants, Mendelian dis-
ease variants, and recurrent cancer somatic mutations is
greater than that of complex disease variants. By and
large, the GERP score of the disease variants gradually
decrease in the order of Mendelian disease variants,
cancer predisposing germline variants, recurrent cancer
somatic mutations, and complex disease variants. Thus,
the aforementioned observations rationally lead to
the conclusion that the greater the functionality of the
disease variant, the greater the level of evolutionary
constraint.

Disease-associated variants in different disease categories
are located within particular regulatory regions

There is a pressing need to understand the pathogenic
mechanism of disease-associated variants along with the
wide application of high throughput sequencing technolo-
gies. Disease-associated variants located within regulatory
regions, which cause dysregulation of the gene expression
process, and result in abnormal protein products, is an
important and efficient pathogenic mechanism. Therefore,
the disease variants should be enriched within regulatory
regions when compared to a control human genome var-
iant background. The human genome variant background
was generated as control group by subtracting four types
of disease-associated variant from all SNPs that appear in
the dbSNP database. We applied an odds ratio to measure
the enrichment of disease variants within regulatory
regions. We then plotted the natural logarithm of the odds
ratios of disease variants to the control genome variant
background within various regulatory regions (Figure 3A),
which were tested statistically using a Pearson chi-squared
test (Table S7).

Overall, the enrichments of different types of disease
variants within various regulatory regions are different
from each other. Enrichment of Mendelian disease var-
iants, recurrent cancer somatic mutations, and cancer pre-
disposing germline variants within transcription promoter
regions are 21 times (log value 3.04), 10.57 times (log
value 2.36) and 6.1 times (log value 1.8) higher than that
of the genome variant background respectively, in contrast
to only 1.9 times (log value 0.64) for complex disease var-
iants. This implies that transcription promoters might be
an efficient mechanism for Mendelian disease and cancer
(germline or somatic), but not for complex disease patho-
genesis. Additionally, the enrichment profile of the four
types of disease variants within methylation regions just
like that within transcription promoters. Mendelian
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greater the evolutionary constraints.

somatic mutations are with at least medium functionality compared to complex disease variants. () CADD annotation result suggests that
deleteriousness of disease variants essentially decrease in the order of Mendelian disease variants, cancer predisposing germline variants,
recurrent cancer somatic mutations and complex disease variants. (F) GERP annotation result indicates that the evolutionary constraints on
disease variants are positively correlated with the functionality of disease variants, namely, the greater the functionality of disease variants, the

disease variants, recurrent cancer somatic mutations, and
complex disease variants show higher enrichment within
transcription insulator regions than cancer predisposing
germline variants. Most disease variants are enriched
within methylation and histone modification regions, sug-
gesting a strong correlation between epigenetic marks and
diseases, a pattern that some recent studies support
[48-50]. In fact, cancer predisposing germline variants are
over ten times more enriched within histone modification
regions and chromatin physical interaction regions. There
are no prominently enriched regulatory regions for

complex disease variants, which present quite even enrich-
ment distribution throughout all types of regulatory
regions. Interestingly, complex disease variants show a
positive enrichment within transcription enhancer, while
other types of diseases variants have low negative enrich-
ment, suggesting transcription enhancers might play an
important role during complex disease development com-
pared to other types of diseases. All four types of disease
variants are enriched within DNA binding sites of protein
by ChIP-seq, DNase I hypersensitive sites by DNase-seq,
and open chromatin regions by FAIRE-seq. Disease-
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associated variants in different disease categories show
dissimilar enrichment patterns within diverse regulatory
elements, implying distinct priority of regulatory patho-
genic mechanisms for different type of disease variants.
Considering that the majority of regulatory regions are
located outside coding regions, and the distinct ratios of
coding and noncoding disease variants in four types of
disease categories may cause an acquisition bias on
enrichment analysis, we further recalculated the enrich-
ment analysis for only noncoding disease variants in four
types of disease categories to eliminate the potential
acquisition bias (Figure 3B, Table S8). By and large, the
enrichment profile of noncoding disease variants is simi-
lar to that of all disease variants. Noncoding disease

variants for Mendelian disease and cancer (germline or
somatic) shows high enrichments within transcription
promoter. Noncoding cancer germline variants are over
ten times enriched within chromatin physical interaction
regions. The highest enrichment within transcription
enhancer is from complex disease variants. The outstand-
ing enrichment difference between all disease variants
and noncoding disease variants, occurs within histone
modification regions, a dramatic decrease of enrichments,
which conversely implies a tight association between his-
tone modification epigenetic marks and disease variants
that are located within coding regions. A recent study
showed that histone modifications marks can be used to
predict coding exon inclusion levels [51], which supports
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the idea that if the histone modification regions are
altered by disease variants, then the change of target
exons expression can be expected, potentially leading to
disease formation. On the whole, noncoding disease var-
iants and all disease variants show similar enrichment
profiles within various regulatory regions.

Different types of disease-associated variants show dis-
tinctive propensity for particular regulatory elements. We
generated specific control groups for each type of disease
variants to identify particular regulatory regions where
disease-associated variants are enriched according to the
following steps. Firstly, we generated the distribution of
the allele frequencies for each type of disease variants
based on the third phase of the 1000 genome project
[52]. Secondly, for each type of disease variants, we ran-
domly selected 1000 equal size control groups which
share the same allele frequency distribution of disease
variants. Next, for each type of disease variants, we calcu-
lated the odds ratios of disease variants to 1000 equal
size specific control groups and statistically calculated
each odds ratio using Pearson chi-squared test under p
value threshold 0.05. Calculation of q value was based on
the p values of 1000 enrichment analyses for each type of
disease variant. The boxplot of the odds ratios for each
type of disease variants are displayed in Figure 4. The
Mendelian disease variants and recurrent cancer somatic
mutations are most enriched in transcription promoter
regions with median odds ratios of 22.1 and 10.87 respec-
tively (Figure 4A,C). Cancer predisposing germline
variants have a median odds ratio of 26.5 in histone mod-
ification regions, 10.1 in chromatin physical interaction
regions, and 6.46 in transcription promoter respectively
(Figure 4B). Complex disease variants have a quite even
enrichment distribution within the various regulatory
regions (Figure 4D). We further repeated such analysis
for only noncoding disease variants (Figure S3). Noncod-
ing disease variants for Mendelian disease and germline
cancer are most enriched within transcription promoter
with median odds ratios of 8.96 and 18.82 respectively
(Figure S3A, S3C). A dramatic drop in enrichment
occurs from all cancer predisposing germline variants
to noncoding cancer predisposing germline variants
(Figure 4B, S3B). Noncoding cancer predisposing germ-
line variants present median odds ratio 1.2 within histone
modification regions against 26.5 of all cancer predispos-
ing germline variants. Noncoding cancer predisposing
germline variants still show relatively high enrichments
within chromatin physical interaction regions and tran-
scription promoters with a median odds ratio of 3.04
and 2.34, respectively. Noncoding complex disease var-
iants still present quite even enrichment distribution
(Figure S3D). The analysis result for the complex dis-
ease variants replicated in at least two different ethnici-
ties, further confirms that no particular enriched
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regulatory region for complex disease variants (Figure
$4). The enrichment analysis for all disease variants or
noncoding disease variants based on allele-frequency-
matched genomic background, indicate the distinct par-
ticular enriched regulatory regions for different types of
disease variants.

The two types of enrichment analyses of disease var-
iants, based on dbSNP control group and 1000 equal
size specific control groups, both suggest that disease-
associated variants in different disease categories prefer-
entially locate within particular regulatory regions.

Conclusions

We curated 27,558 Mendelian disease variants, 20,964
complex disease variants, 5,809 cancer predisposing
germline variants, and 43,364 recurrent cancer somatic
mutations, and compared them against nine types of
regulatory regions. Mendelian disease variants and recur-
rent cancer somatic mutations are 22- and 10-fold signif-
icantly enriched in promoter regions with q<0.001
respectively, compared to allele-frequency-matched
genomic background. Different from these two cate-
gories, cancer predisposing germline variants are 27-fold
enriched in histone modification regions (q<0.001),
10-fold enriched in chromatin physical interaction
regions (q<0.001), and 6-fold enriched in transcription
promoter (q<0.001). However, we observed a dramatic
enrichment drop for noncoding cancer predisposing
germline variants, with only 3-fold and 2-fold enrichment
in chromatin physical interaction regions and transcrip-
tion promoter regions with q<0.001, respectively.
Furthermore, Mendelian disease variants and recurrent
cancer somatic mutations share very similar distributions
across types of functional impacts, suggesting the discov-
ery of Mendelian disease variants might be broad enough
to cover major pathways.

We also found that nine types of regulatory regions
are located within over 50% of coding exon regions, sug-
gesting the regulatory role of coding regions during gene
expression. Transcription promoters, methylation
regions, and transcription insulators have the highest
density of disease variants, with 472, 239, and 72 disease
variants per one million base pairs, respectively.

We recommend that different types of regulatory
regions should be investigated for different categories of
diseases, and the disease variants curated in this study
provide a valuable resource for researchers to investigate
the functional impact of disease variants.

Methods

This study applied computational analytical methods to
explore the pathogenic mechanism of disease-associated
variants in different disease categories primarily at the
regulatory level.
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Enrichment analysis

We compiled all disease-associated variants from multi-
ple data sources. We subtracted disease-associated var-
iants from all SNPs of dbSNP database and considered
the remaining SNPs the genome variant background or
control group. We then calculated the odds ratio of dis-
ease variants to human genome variant background
within various regulatory elements. One thousand equal
sized specific control groups were generated for each
type of disease variants as a further validation experi-
ment. Here we took Mendelian disease variants within
promoter regions, for example, to detail how we calcu-
lated odds ratio. The Mendelian disease variants were

collected from OMIM and ClinVar, and the promoter
elements from the FANTOMS5 project. The 2 x 2 contin-
gency table (Table 5) shows the number of variants that
locate within or outside promoter regions for Mendelian
variants or control group SNPs. As such, the relative
enrichment of Mendelian disease variants to the control
group was measured by the resulting odds ratio, which is
calculated by the following formula:

_ Duyw/Dumo
Dcw/Dco

We then calculate the natural logarithm of the odds
ratio and the corresponding standard error. The standard

OR
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Table 5. 2 x 2 contingency table containing the number of
Mendelian disease variants and control group SNPs located
within or outside promoters for odds ratio calculation

Within promoter
DMW
DCW

Outside promoter
DMO
DCO

Mendelian disease
Control group

error for the log odds ratio is calculated by the following
formula:

1 1 1 1

SE = + + +
Dyw  Dpmo  Dcw  Dco

Lastly, Pearson chi-squared test was performed on the
2 x 2 contingency table using a per]l module Statistics::
Chisqlndep from CPAN.

Additional material

Additional File 1: Disease-associated variants for Mendelian
diseases and complex diseases, and recurrent cancer somatic
mutations. Cancer predisposing germline variants can be downloaded
from HGMD Professional.
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