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Behavioural thermal regulation 
explains pedestrian path choices 
in hot urban environments
Valentin R. Melnikov1,2,6*, Georgios I. Christopoulos3, Valeria V. Krzhizhanovskaya4,5, 
Michael H. Lees4,6 & Peter M. A. Sloot1,5,6,7

Due to phenomena such as urban heat islands, outdoor thermal comfort of the cities’ residents 
emerges as a growing concern. A major challenge for mega-cities in changing climate is the design 
of urban spaces that ensure and promote pedestrian thermal comfort. Understanding pedestrian 
behavioural adaptation to urban thermal environments is critically important to attain this goal. 
Current research in pedestrian behaviour lacks controlled experimentation, which limits the 
quantitative modelling of such complex behaviour. Combining well-controlled experiments with 
human participants and computational methods inspired by behavioural ecology and decision 
theory, we examine the effect of sun exposure on route choice in a tropical city. We find that the 
distance walked in the shade is discounted by a factor of 0.86 compared to the distance walked in 
the sun, and that shadows cast by buildings have a stronger effect than trees. The discounting effect 
is mathematically formalised and thus allows quantification of the behaviour that can be used in 
understanding pedestrian behaviour in changing urban climates. The results highlight the importance 
of assessment of climate through human responses to it and point the way forward to explore 
scenarios to mitigate pedestrian heat stress.

The global process of climate change poses a significant threat to urban populations. The population growth, 
happening mostly in the cities1—the areas mainly contributing to the climate change2 and strongly affected by 
higher temperatures3—results into an increasing number of people being exposed to excessive heat. This in 
turn challenges many aspects of modern society: public health4,5, human-6 and economic development7, mental 
health8 and social relations9. It is therefore critically important to understand the ways to improve urban thermal 
environments and the human response to these improvements.

Modelling urban climate at the pedestrian level allows to predict the thermal environment10–13. Thermal per-
ception and acceptance studies conducted through surveys throughout the world14–17 connect the microclimate 
and comfort of the people in it. These developments allow to evaluate and introduce the design and planning 
measures to improve pedestrian thermal environments through green18–20 and built21,22 shading infrastructure, 
orientation of buildings23 as well as smart path planning24,25. Yet, to evaluate the implication of these design 
and planning solutions for urban residents, it is necessary to gain a quantitative understanding of pedestrian 
behavioural responses to varying urban microclimates.

Attendance of urban areas and occupation of sun and shade26,27, duration and intensity of activities in urban 
parks28 and preference for a sun-lit side of a street29 have all been found to have an association with climate. While 
these rather qualitative observations confirm the presence of a pronounced human behavioural response to ther-
mal environments, they do not provide insights into mechanisms underlying such behaviour, which are crucial 
for development of the quantitative model of pedestrian behavioural response to urban thermal environments.

Research on crowd dynamics30,31 and human navigation in urban environments32 provides mechanistic 
models of pedestrian motion, which are able to reproduce the aggregate dynamics or distribution of pedestrian 
flows in the environment. These proposed mechanisms, however, remain hypothetical, requiring formal testing 
of them through controlled experimentation and quantitative characterisation of pedestrian choices in natural 
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environments. Current literature lacks such studies, owing primarily to complexity of the problem of pedestrian 
decision making in complex urban environments.

Choice modelling has been successfully employed to uncover the decision processes in many domains—from 
finance and behavioural economics to transportation, marketing, food preferences and animal behaviour33–36. 
In such studies, participants make binary choices that force them to evaluate the effect of, usually antithetical, 
decision parameters. Critically, this so-called two-alternative forced choice (2AFC) methodology allows for the 
development and testing of increasingly precise models that parametrically study and predict behaviour at the 
individual and aggregate level. Requiring exact characterisation of the parameters of the choices such studies 
are usually constrained to controlled laboratory environments and have not yet been applied to study pedestrian 
behaviour in urban spaces.

In this study, we combine experimental methods and computational approaches, inspired by behavioural 
ecology and decision theory, to examine the hypothesis that pedestrians adapt their path choice in order to 
reduce their sun exposure in a tropical city (Singapore). We examine the interactive effects of two key path choice 
parameters: distance and shading. In our experiment, participants were asked to perform a series of binary path 
choices in a natural outdoor environment in Singapore. We use a computational model of the experimental 
area to precisely parameterise sun exposure in path choices faced by participants. We formulate a hierarchical 
probabilistic model of choices and infer the values for the perceived cost of walking under the sun, both at the 
individual and population level. The effect of sun avoidance is mathematically formalised, providing a quan-
tification of the behaviour that can be used in simulations and other forms of quantitative analysis. Our work 
demonstrates how traditionally in-lab behaviour research methods, being supported by computational tools, 
can be applied in dynamic settings to study human behaviour in naturalistic environments. We confirm that 
pedestrians actively avoid sun through path choice behavioural adaptation, which has direct implications for 
the urban design and policy in changing climate.

Results
In this study we formulated the model of pedestrian path choice behaviour driven by the length and sun expo-
sure parameters of the path options. To do so we designed the controlled experiment with human participants 
following the two-alternative forced choice methodology. The design of the experiment and the dataset resulting 
from it is reported in the following subsection. We then demonstrate how the parameters of path options and of 
participant preferences influence the interpretation of the choices they made. Finally, we provide the complete 
model of path choices and the results of estimation of its individual- and population-level parameters.

Human behaviour experiment and resulting dataset.  The experiments have been performed in the 
courtyard of the National Institute of Education, at the campus of Nanyang Technological University in Singa-
pore during the period from June to December 2019. The experimental area is characterized by two wide walk-
ing paths next to buildings which frame a triangular shaped lawn area. Multiple paths cross the lawn area, con-
necting the two wide paths. Depending on the time of the year, one of the paths is exposed to the sun, whereas 
the other is shaded by buildings. Based on this, two choice sets for participants were designed: choice set #1 for 
the period of June–October 2019, when the northern path was shaded by the building and the southern path was 
exposed to the sun (Fig. 1a). Choice set #2 was designed for the period November–December 2019, when the 
southern path was shaded by the building and the northern path was exposed to the sun (Fig. 1b). As Singapore 
is situated close to the equator and is characterized by a stable hot and humid climate, we assume that there was 
no significant impact of seasonal variation of climate (apart from the sun position) on the experimental proce-
dures and outcomes.

In each trial, participants were asked to move to a target in the area by taking one of the two paths specified on 
a schematic map (see Appendix A for the experimental booklets given to participants). Upon reaching the target, 
the participant proceeded to the next trial with a new target (for the full description of experimental procedure 
see “Methods”). Figure 1c,e show still captures obtained from video cameras (mounted on each participant—see 
“Methods”). The video data from each participant is used to identify the path chosen in each trial. A 3D virtual 
reconstruction of sun exposure was implemented to facilitate precise and reproducible parameterisation of the 
choices of participants (see Fig. 1d,f). Figure 1c shows video image from participant P02 at the origin of trial 12 
and Fig. 1d illustrate the same position in the 3D virtual reconstruction. Figure 1e,f show the same for trial 8 of 
participant P31. The detailed 3D reconstruction made it possible to estimate the exact composition (in terms of 
sun-lit [orange], tree-shaded [green] and building-shaded [blue] fractions) of each path option provided to each 
participant at the moment of decision (Fig. 1a–f). The details of the model-based estimation of these parameters 
can be found in the “Methods” section. Each participant completed 13 trials in total (Fig. 1g,h), of which one 
was a test trial: providing a choice between a significantly longer sunny path and a shorter, less sunny, alterna-
tive. Figure 1g,h includes information about the length of the path options for each trial. This length is further 
broken down into shaded (tree and building) and sun-exposed sections.

Path options are labeled A and B, where option B denotes the path with generally more building-shade. 
Depending on the season (i.e. location of building shade), path option going through either northern or southern 
side of the experimental area is labelled as B. Path options were not labelled with letters in experimental booklets 
given to participants, and shading patterns were not visualised in these booklets (see Appendix A).

In total 74 individuals from the university students, staff and visitors took part in the experiment. 18 partici-
pants were not included in the analysis for various methodological reasons (missing data, rainy weather, failed 
test trials, etc.). Of 56 participants considered eligible for the analysis in this study, 46 (15 female) participants 
had made at least one decision in the presence of sun (treatment decisions). In total 408 treatment decisions of 
these 46 participants are analysed in this study.
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This study was preregistered prior to the analysis of the data (available at https://​osf.​io/​q5hnk/). Details of 
the data processing are described in the "Methods" section.

Available path choice strategies are determined by the parameters of path options.  To model 
the choices of the participants and the decisions made by them we consider two parameters of the path options 
provided to participants in this study: exposure to the sun and walking distance. Following similar approaches 
from behavioural economics and ecology (where, for instance, a “smaller [in money] and sooner [delivered in 
time]” option vs. a “large [in money] and longer [in time]”), the choice sets (points of origin and destination, 
path options) were designed in a way to allow choices between sunnier and shorter vs. less sunny but longer 
path options (Fig. 2a). Choosing the former constitutes a distance-minimising strategy of the participant, while 
choosing the latter corresponds to a sun-minimising strategy. The choices between these two alternatives allow 
us to quantify the trade-off between sun exposure and walking distance in pedestrian path choice behaviour. We 
model this trade-off by a participant-specific parameter of perceived cost of walking under the sun βj > 0 . The 
cost of walking along a particular path option is defined as the length of this path, sun-exposed portion of which 
is weighted by the parameter βj . For values of βj > 1 the cost is inflated reflecting depreciation of sun exposure. 
This leads to possibility of higher cost of walking associated with shorter but more sun-exposed path option. The 
primary goal of this study is to estimate this parameter on individual and population level to quantify people’s 
preferences and path choice behaviour in hot urban environments.

As the experiment is carried out in a semi-naturalistic environment—in order to increase the ecological valid-
ity while maintaining experimental control—the position of the sun in combination with the space configuration 
allowed the emergence of another type of choice. In such cases, participants were facing a choice between less 

Figure 1.   Description of the path choice behaviour experiment and resulting dataset. (a,b) At each trial 
participants of experiment were tasked to reach the destination indicated by cross by walking on one of two 
paths specified on schematic map of the experimental area given to them. Depending on the time of the year 
the sun was positioned in either the northern (a) or southern (b) part of the sky. To maximise the number of 
choices with a trade-off between sun exposure and distance, two different choice sets for two times of the year 
were designed. (c,e) Participants wore action cameras to record their actions and decisions, which were later 
used to reconstruct the decisions and to calibrate the 3D model. (d,f) A calibrated computational model of the 
experimental area was used to calculate the sun-shade composition of the path options. (g,h) Each participant 
completed a series of 13 trials, each being a choice between two path options characterised by sun-lit (yellow), 
tree-shaded (light grey) and building-shaded (dark grey) length. The figure is generated with use of package 
matplotlib v3.2.2 (https://​matpl​otlib.​org/) for Python v3.7.7 and Unity 3D (https://​unity.​com/) v2019.2.19f1.

https://osf.io/q5hnk/
https://matplotlib.org/
https://unity.com/
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sunny and shorter vs. sunnier and longer path options (Fig. 2b). Choosing the former constitutes an “optimal” 
strategy by the participant (minimising both exposure to the sun and walking distance), while choosing the latter 
corresponds to a “non-optimal” strategy, contradicting our assumption of the rational pedestrian, who minimises 
either sun exposure, or walking distance, or both.

Tree shade is perceived differently from building shade.  While classifying the choices in Fig. 2, we 
only consider the length of the path exposed to sun and the total length of the path, thereby assuming that tree 
shade is identical to building shade. While this is necessary to explain the classification of the decisions, this 
assumption is rather simplistic as tree shade might be perceived differently as compared to the shade of a build-
ing. We define perceived tree shade intensity as the amount of shading relief participants associate with tree 
shade as compared to building shade. A 100% tree shade intensity would correspond to tree shade being per-
ceived as identical to building shade, whereas 0% would mean that participants consider tree shade as identical 
to full sun exposure. In terms of discounting and path choice we assume that a given length of partial (tree) shade 
can be decomposed into equivalent full sun and full (building) shade lengths. For example, a 50% tree shade 
intensity over 100 m is equivalent to 50 m of full sun with 50 m of full (building) shade. To numerically represent 
the concept of perceived tree shade intensity, we integrate the parameter ρ ∈ [0, 1] into the path choice model. 
In Appendix C we demonstrate how various values of this parameter affect the classification of participants’ 
choices. As perceived tree shade intensity parameter decreases, the choices previously classified as non-optimal 
get classified as sun-minimising, suggesting that this parameter plays a critical role in correct interpretation of 
participant decisions. Estimation of the perceived tree shade intensity parameter of human path choice behav-
iour has important implications for the planning of urban areas.

Modelling path choices reveals perceived cost of walking under the sun.  We formulate proba-
bilistic model of path choices in our experiment. In this model probability of choosing one of two path options 
is driven by the difference between costs of walking associated with each option. The cost of walking in turn 
depends on the sun-shade composition of the path option, which is obtained from the validated 3D model of 
experimental area (see “Methods”), and two model parameters: participant-specific distance-inflating coefficient 
(cost factor) of walking under the sun βj and perceived tree shade intensity ρ (see “Methods” for the exhaustive 
model formulation).

We estimate model parameters using 408 precisely characterised (in terms of sun-shade composition of path 
options) path choices made by participants of our experiment. We assume that the decisions are made indepen-
dently of each other, based on the sun-shade composition of the currently presented decision options. While 
this assumption neglects the possible effect of order, fatigue or accumulated heat stress on decisions, it appears 
reasonable for the duration of experiment (20–30 min). This translates into an assumption of static parameters 
of the participant decision model ( βj ). The number of data points (maximum 13 per participant) limits the 
complexity of the model we can apply.

We estimate the parameters in a Bayesian framework. We define a hierarchical model: we set the hyperprior 
distribution for the parameters of the prior distribution of βj . This allows the distance-inflating coefficient of 
the sun to be estimated for each individual participant, while still being constrained by the overall distribution 
observed at the population level37. We use the PyMC338 implementation of Markov Chain Monte Carlo for 

Figure 2.   Parameters of path options define possible path choice strategies. Depending on the environmental 
conditions and the spatial configuration of path options in a particular trial, participants faced a choice either 
between less sunny but longer (sun-minimising) vs. sunnier but shorter (distance-minimising) options (a); 
a second type of choice was between less sunny and shorter (optimal) vs. sunnier and longer (non-optimal) 
options (b). The choices between sun-minimising and distance-minimising options (a) allow us to quantify the 
trade-off between sun exposure and walking distance in the process of pedestrian path choice behaviour. The 
figure is generated with use of package matplotlib v3.2.2 (https://​matpl​otlib.​org/) for Python v3.7.7.

https://matplotlib.org/


5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2441  | https://doi.org/10.1038/s41598-022-06383-5

www.nature.com/scientificreports/

parameter estimation. The full specification of the Bayesian model and estimation procedure are described in 
the “Methods” section.

The results of estimating βj , the participant-specific coefficients for the cost of walking under the sun, are 
presented in Fig. 3a. We observe that most participants have an expected value E[βj] > 1 , indicating deprecia-
tion of the sun. Some participants, such as those with codes 31 and 42, have expected values of βj close to 1.8, 
indicating they perceive walking under the sun as demanding 80% more effort. Figure 3b provides an inter-
pretation of the values of parameter βj through indifference curves. A value of βj = 1 corresponds to complete 
indifference between sun exposure and shade, thus walking 100 m under shade is identical to walking 100 m 
under the sun. As an extreme example, participant 31 had the largest value ( β31 = 1.84 ), which implies that 
this participant perceived 54 m walked under the sun as demanding as 100 m walked under full shade, or 77 m 
of mixed exposure (50 m under full shade and 27 m under the sun). The average value of β̄j = 1.16 (shown in 
red), indicates that, generally, 100 m walked under full shade is perceived as equal to 86 m under the sun or a 
combination of 43 m under the sun and 50 under the shade. Indifference curves of individual participants are 
shown in grey. In Fig. 3a we also observe that the 95% credible intervals are wide, containing values of βj < 1 . 
This can be explained by the relatively low number of choices per participant, which do not allow for a more 
certain estimation of this parameter.

When building the posterior distribution for βj for treatment decisions of all participants (Fig. 3b) we obtain 
an expected value of β̄j = 1.16 at the population level. With this we can conclude that, according to the observed 
path choices of participants and the proposed model, there is evidence of an additional perceived effort (or cost) 

Figure 3.   Estimated parameters of the hierarchical model of path choices. (a) The expected value and 95% 
credible interval of participant-specific distance-inflating coefficient of the sun βj . βj > 1 means preference 
towards shade in the process of path choice. (b) The distance inflating coefficient of the sun regulates the slope 
of the curve of indifference between distance walked in sun and distance walked in shade. Indifference curves 
of individual participants are shown in grey. βj = 1 corresponds to complete indifference, whereas β̄j = 1.16 
corresponds to the average value of the coefficient estimated from the path choices of all participants. On 
average participants were indifferent between walking 100 m in full shade, 93 m of mixed exposure (50 m in full 
shade + 43 m in the sun) and 86 m in the sun. (c) The posterior distribution of the distance-inflating coefficient 
of the sun for path choices pooled for all participants, participants with choice set #1 (d) and choice set #2 (e). 
95% credible intervals are depicted as filled regions. Hatched regions correspond to the mass of the posterior 
distribution over βj > 1 . (f) The posterior distribution of the perceived tree shade intensity ρ ; the expected value 
of 0.50 implies that, on average, tree shade is perceived as 50% as intense as the building shade. (g) Posterior 
distributions of cost-difference scaling parameters τk . The disjoint 95% intervals of the two distributions can be 
explained by a different overall length of path options in the two choice sets. The figure is generated with use of 
package matplotlib v3.2.2 (https://​matpl​otlib.​org/) for Python v3.7.7.

https://matplotlib.org/
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of walking under the sun, which is on average equal to 16%. These numbers are different if we pool the decisions 
per choice set, (Fig. 3d,e) giving a higher expected value of βj = 1.23 for the choices made under choice set #2. 
This can be explained by the more stable building shade in choice set #2. This indicates that under certain condi-
tions (i.e. environment facilitating behavioural adaptation) we can expect an even higher estimated perceived 
cost of walking under the sun. In Fig. 3c–e the credible intervals for βj are wide and span from as low as 0.37 to 
as high as 2.20. This can be explained by the high variability in the decisions, which cannot always be explained 
by the sun-shade composition of the path options. In the discussion section we elaborate on the support for 
βj < 1 suggested by the posterior distribution.

The expected value of the perceived tree shade intensity parameter is E[ρ] = 0.50 (Fig. 3f). This indicates that 
tree shade is not considered as intense as building shade. The 95% credible intervals of cost-difference-scaling 
parameter τk (see “Models” for the full model specification) are disjoint for decisions from the two different 
choice sets (Fig. 3g), which confirms that our decision to estimate it separately per choice set was necessary.

Discussion
Heat stress in urban outdoor environments is severely threatened by the changing climate and behavioural adap-
tation is the only way to thermally regulate in a longer run. Here we applied decision theory and computational 
modelling to study pedestrian behavioural thermal regulation in semi-controlled natural environments, and in 
particular, how the participants incorporate sun exposure to reach path decisions. Results confirm the presence 
of sun avoidance behaviour through path choices. The estimated parameters of the hierarchical probabilistic 
model of path choices reveal the individual preference of pedestrians towards longer, but shadier paths. Tree 
shade intensity is considered significantly less intense than building shade, which is reflected in the observed 
path choices and the estimated parameter of the path choice model.

We find the expected value of the parameter βj , reflecting the sun-shade preference of participants, to be 
E[βj] = 1.16 . This indicates that walking in the sun is considered by pedestrians on average 16% longer as 
compared to walking the same distance in the shade. Individual participants have exhibited path choices which 
indicate E[βj] as high as 1.84, an 84% increase in the perceived effort of walking under the sun. This finding con-
firms that pedestrians actively incorporate the shading of outdoor environments into path choices, demonstrating 
pronounced thermoregulatory behaviour through sun avoidance. It is important to provide, through smart urban 
planning and design (e.g. by choosing optimal building height and orientation or by placing dedicated shading 
infrastructure), the opportunity for such behavioural adaptation to minimize heat stress of pedestrians. Urban 
spaces designed to accommodate pedestrians and provide more comfortable walking spaces can help promote 
walking, which in turn can have direct health, economic and environmental benefits39,40. For example, our study 
suggests that, the Walk2Ride programme of Singapore, which provides sheltered pathways in 400 meters radius 
around main public transportation hubs, makes them on average 14% “closer” perceptually, encouraging more 
people to walk to subway or bus interchange instead of taking a bus. Our study provides quantitative understand-
ing of the benefits provided by shading in urban context. Quantitatively characterised preferences of people can 
be integrated into processes of urban planning allowing to estimate the distribution of path and route choices 
of pedestrians in different scenarios and to perform cost-benefit analyses of potential interventions, such as the 
one mentioned above.

Our results demonstrate that in the process of path choice, participants differentiate the type of shading. 
Modelling of the data indicates that tree shade is perceived as less intense than building shade. Incorporating a 
parameter for this in the model of decisions, we find an expected perceived tree shade intensity ρ = 0.5 , or only 
half of that associated with building shade. This parameter can vary depending on the type of trees and climate 
and it may be interesting to compare the objective physical property of tree shade density (e.g. measured by leaf 
area index41 or mean radiant temperature reduction42) to the one perceived by pedestrians. Our finding has an 
important implication for urban planners, suggesting that, while trees are able to provide shading relief, it is not 
considered as intense as that provided by the built infrastructure and thus has a lower impact on outdoor thermal 
comfort and a smaller reduction of the associated cost of walking.

An interesting question that arises is whether the strategy adopted by the participants actually translates to 
minimal accumulation of heat, in which case it would mean that the decision mechanism is another example of a 
“heuristic”—i.e. simple decision strategies that allow quick, but not necessarily optimal, judgments and decisions. 
Our study finds that pedestrians often minimise their exposure to the sun by choosing the longer and less sunny 
path option—yet this could be sub-optimal as it might end up in more heat being accumulated in the body and 
more thermal discomfort than walking in a hotter but shorter path. Incorporating thermal regulation models43–45 
into the analysis would allow us to calculate the amount of heat accumulated in the human body when walking 
on both path options and to determine, what strategy, sun-avoidance or distance-minimisation, results in a lower 
amount of heat accumulated. Such analyses could also then disclose whether the implied decision mechanisms 
used are efficient or, on the contrary a heuristic that allows a quick decision which albeit sub-optimal is “good 
enough” (Herbert Simon’s satisficing criterion46). Future research should aim to understand to what extent 
pedestrian choices reflect decision biases and heuristics as opposed to optimised behaviours.

While every effort was made to control the conditions of the natural outdoor environment, it is inevitable 
that other personal and environmental factors, such as aesthetic preferences and personal thermoregulatory 
characteristics, were present during the experiment—and this could explain the “non-optimal” decisions. How-
ever, these decisions were incorporated in the final estimates of the parameters of the choice model, making 
it more robust. In more moderate climates, different, or even opposite, behaviours (i.e. sun preference) can be 
expected. Conducting similar experiments in other climates with different environmental factors (i.e. aesthetics, 
visibility or lighting) would provide an opportunity to refine the findings of our study and to contribute further 
to a comprehensive model of the pedestrian decision process in outdoor environments.
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Methods
Experimental procedure.  The research procedures reported in this paper were carried out in accordance 
with Swiss Federal Act on Research involving Human Beings and Nanyang Technological University’s policy on 
Research Involving Human Subjects and were approved by ETH Zurich Ethics Commission (approval no. EK 
2018-N-94, 18 January 2019) and by the Institutional Review Board of Nanyang Technological University (refer-
ence no. IRB-2019-04-025, 23 May 2019).

This study has been pre-registered prior to data analysis (https://​osf.​io/​q5hnk/).
The experiment was conducted during the period from June to December 2019 in the courtyard of National 

Institute of Education on the campus of the Nanyang Technological University, Singapore. Students, staff and 
visitors of the University constitute the sampling population. Participants were recruited through posters, placed 
on campus, advertising the study. Eligibility requirements listed ages of 21 to 55 years, an overall physical fitness 
level necessary for walking in outdoor environments and an absence of medical conditions preventing prolonged 
walking in outdoor spaces.

For each experimental session a 1.5 h time slot was reserved. Participants arrived at a predefined instruction 
spot located in the outdoor environment, protected from direct sunlight. After studying the information sheet 
and providing their informed consent, the participant was asked to fill the pre-experiment survey (can be found 
in pre-registration) containing questions on socio-demographic characteristics of the participant, his/her atti-
tude towards Singapore’s environment and his/her lifestyle. Upon finishing the survey, a physiological wearable 
sensor (wristband) Empatica E4 was attached to each participant for the purpose of physiological monitoring 
(data not reported in this paper). The participant was asked to read a short story (for the purpose of recording 
their baseline physiological signals measured by Empatica E4), after which instructions for the experiment fol-
lowed. After the participant confirmed his/her readiness, an action camera was put onto her/his chest, to serve 
the purpose of registering the decisions and the environmental events during the experiment, e.g. start and end 
of each trial or appearance of the sun.

The participant was directed to the start of the experiment and informed once again about the procedure of 
the experiment. The participant had to make choices which were given in a choice set booklet (see Appendix A for 
the choice set booklets given to participants). Trial 0 served the purpose of exploring the environment, in it the 
participant was asked to walk around the lawn and reach the target. Subsequent trials (trials 1 to 13) were asking 
participants to reach the target with the paths specified by arrows in the booklet. The target of the previous trial 
served as the origin of the current one. The participant was asked to visually identify the target and path options 
in the environment at each decision point. Next, the participant was asked to make decisions based on his/her 
own preferences, as there was no correct or incorrect choice. The participant was informed, that he/she was not 
tested for the speed of trial completion. Participants were provided a water bottle to avoid dehydration and were 
explicitly asked to make use of it at their own discretion. The experimenter has left the participant to complete 
the trials and was observing the participant from a distance without giving additional instructions. Participants 
were asked to indicate their need for any help by standing still and raising their hand. Participants, who required 
intervention of experimenter in their walking trials due to environmental conditions (rain), confusion of paths 
or other reasons, were dismissed from the analysis reported in this paper. Upon finishing the last trial, the par-
ticipant was met by the researcher and led back to the instruction location, where sensors were detached. The 
participant was then asked to fill in a post-participation survey, containing questions on the overall state of the 
participant, as well as on their motivation for each of the chosen paths, evaluation of climate sensation, perception 
and acceptance during the trials. After completing the experimental procedures, the participants were debriefed 
and compensated for their participation with 20 Singapore dollars in cash. Neither recruitment, nor instruction 
materials included an explicit formulation of the research question of this behavioural study to minimize the bias 
in their behaviour. Instead, the goal of the study was formulated as follows: ’The goal is to investigate navigational 
attributes, or features, of outdoor ambulation in a variety of environments within Singapore. In addition we plan 
to focus on the environment’s influential factors’.

In total 74 participants took part in the experiment. Of them 4 had missing data or could not complete the 
experiment due to rain, 3 were dismissed due to failing the dummy trial, 9 took unspecified paths or had other 
navigational problems, which required intervention by the experimenter, 2 participants managed to self-correct 
their incorrect paths without the experimenter’s intervention, but were still dismissed from the analysis in this 
study.

Data processing.  The raw datasets resulting from the experiments consist of the video shot on the cam-
era mounted on the participant’s chest, physiological signals originating from the Empatica E4, responses to 
pre- and post-experimental survey, microclimate data recorded by two Kestrel 5400 portable weather stations 
installed in the sun and in the shade. In the current paper the data extracted from video recordings was used.

The video-recording of each participant was processed by student research assistants according to a protocol 
by entering all events from the video into a spreadsheet of a predefined structure. Times on the video, wristband 
and experimenter’s smartphone were synchronized by matching the synchronization events on the video with 
camera’s time. The following events were coded by participants: 

1.	 Decision event: start by participant of a particular trial.
2.	 End of trial event: participant stepping on the target of the current trial.
3.	 Sun presence event: alteration of sun from one state to another. States are: 

(a)	 full sun (sharp shadows are visible on the ground);
(b)	 cloudy sun (soft shadows are visible on the ground);

https://osf.io/q5hnk/
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(c)	 no sun (sun is behind the clouds and no shadows are visible on the ground).

4.	 Sun exposure event: alteration of exposure to sun from one state to another. States are: 

(a)	 No shade (participant walks on the surface exposed to the sun).
(b)	 Tree shade (participant walks on the surface covered by the shadow cast by the tree).
(c)	 Building shade (participant walks on the surface covered by the shadow cast by the building).

5.	 Water intake event: it appears at recording that participant is drinking water.

For each of the event the following attributes are recorded: 

1.	 Event code;
2.	 Time of event;
3.	 XY-coordinates of approximate location of event probed with the mouse click in the realistic model of the 

space and sun position (described in the next section);
4.	 For decision events only: indicator of whether option A path was chosen by participant.

All the decisions and end of trial events were cross-coded by two student research assistants and checked for 
agreement of decision label, sun presence and timing. Data coding disagreements (events disagreeing in deci-
sion label, in sun presence or in start or end time by more than 5 seconds) were resolved by a third person 
(experimenter).

Events data was used in the current study and provided information on decisions made by participants and 
on the presence of the sun at the moment of decision (determining whether decision is considered as treatment 
one). Timing information of decision events was used for calculation of the sun-shade composition of the path 
options by adjusting the sun position in the model described in the following section.

Events diverging from the standard experimental procedure (e.g. intervention of experimenter or partici-
pant making a shortcut), or potentially ambiguous events (e.g. uncertainty regarding presence of the sun) were 
recorded by data coders in the notes file, which was then reviewed by the experimenter and which informed the 
consequent treatment of the participant’s data (e.g. dismissal from the analysis).

Calculation of the sun‑shade composition of the path options.  The 3D model of experimental area 
was created and imported into a Unity 3D game engine and visually validated for the realistic reproduction of 
the shading of the walking paths (see Appendix B for a comparison of video shots and reproduction of them in 
the model).

All the path options were incorporated into the 3D model as the polygons covering the walking surface. As 
the paths along the building are 6 m wide, they were divided in 5 strips (each 1.2 meters wide). Thus, each path 
option had 5 polygons (path strips) assigned to it. When calculating the sun-shade composition of the path 
options at particular trial, the time information from the event files was used to adjust the sun position in the 
model. Then the rays covering each polygon of a path option (on a grid of 0.1 × 0.1 m) were shot in a direction 
towards the sun. The intersection of each ray with tree or building was detected and then the fractions of rays 
not hitting anything, hitting a tree and hitting a building were considered as the fractions of the sun, tree shade 
and building shade on a particular path option polygon. The intersection of the rays with the tree were detected 
as their intersection with the convex hull around the tree crone, thus the tree shades rendered by Unity 3D and 
those considered in calculation of sun-shade composition of path options may differ slightly. For each path 
option, the polygon (strip) with the lowest fraction of the sun was considered as representative of the overall 
sun-shade composition of the path option. Building shade that covered less than 15% (i.e. less than 0.9 m) of the 
wide paths along the buildings was denoted as insufficient to be considered by the participants and path options 
with such shading pattern were parameterised as having no building shade.

The length of the path options was calculated as the sum of the lengths of their segments. These were meas-
ured with the use of a laser distance meter by two researchers one operating the meter and another holding a 
mark at which laser was shot. An average of three repeated measurements was taken as a length of path segment. 
Additionally, the distance from each tree to selected anchor point in the area was measured and 3D tropical trees 
were placed in corresponding locations in the 3D model. The dimensions of each tree were adjusted to closely 
match the shading recorded by the chest-mounted action camera during the experiment in two different seasons. 
See Supplementary materials for comparison of the 3D model with the camera shots.

The length of the sun-lit stretch, tree shade and building shade along the option was calculated as the length of 
the path multiplied by the fraction of each component (calculation of which is described in the paragraph above).

Hierarchical model of the choices.  We define the following cost function of the path option:

where asunji  , atreeji  and ashadeji  are the metric distances in the sun, in the tree shade, and in the building shade respec-
tively, of path option A of trial i presented to participant j. βj > 0 is the participant specific distance-inflating 
coefficient (cost factor) of walking under the sun, ρ ∈ [0, 1] is the parameter of shade intensity (relief) associated 

(1)c
(A)
ji = βj[a

sun
ji + (1− ρ)atreeji ] + ashadeji + ρatreeji ,
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with tree shade, common to all the participants. Assuming an equivalent definition for the cost of option B ( c(B)ji  ), 
the difference in the option costs is:

The probability of choosing path option A p(yji = 1) is modelled by logistic function widely used in dichoto-
mous choice models37:

where τk is the cost-difference-scaling coefficient specific to a choice set k ∈ {1, 2}.
The hierarchical model of the participant choices described in the Eqs. (1, 2 and 3) has the following prior 

belief distributions of the model parameters:

Here the chosen way of parameterisation of distribution of βj helps to avoid high correlation in parameters 
of Gamma distribution, allowing the NUTS Hamiltonian Monte Carlo sampler to explore the parameter space 
more efficiently, to prevent divergence and help faster convergence.

The prior for τk is chosen such that E[τk] = 0.2 – an approximate average down-scaled (by factor of 0.01) 
length difference between the path options.

The full diagram of the model is provided in Fig. 4.

Markov chain Monte Carlo estimation of the model parameters.  We have used the PyMC338 
probabilistic programming framework for Python to estimate the parameters of the model. We have used the 
standard No-U-Turn Sampler47, which is based on the principles of Hamiltonian Monte Carlo sampling. The 
number of chains used is 4, the number of tuning steps is 2000, the number of samples is 10,000 per chain. These 
parameters achieved a rank-normalized R̂ = 1.0 and effective sample size > 2500 for all parameters. Thus, there 
is no indication of lack of convergence of the MCMC sampler.

Data availability
The dataset used in the analysis reported in this paper can be found on study’s public OSF page at https://​osf.​
io/​aj4vk/.

(2)�cji = c
(A)
ji − c

(B)
ji .

(3)p(yji = 1|�cji;βj , ρ, τk) =
1

1+ exp(�cji/τk)

(4)

d, e ∼ Normal(0, 1)
βj ∼ Gamma(exp[d + e], exp[d − e])

τk ∼ Gamma(12.5, 50)
ρ ∼ Beta(1, 1)

Trial i = 1 : Dj

Participant j = 1 : Nk

Choice set k = 1 : 2

d, e ∼ Normal(0, 1)

f = exp(d+ e)

g = exp(d− e)

βj ∼ Gamma(f, g)

ρ ∼ Beta(1, 1)

τk ∼ Beta(12.5, 50)

Aji = {asunji , atreeji , ashadeji } – lengths of components of path option A

Bji = {bsunji , btreeji , bshadeji } – lengths of components of path option B

c
(A)
ji = βj[asunji + (1− ρ)atreeji ] + ashadeji + ρatreeji

c
(B)
ji = βj[bsunji + (1− ρ)btreeji ] + bshadeji + ρbtreeji

∆cji = c
(A)
ji − c

(B)
ji

yji ∼ Bernoulli(1/(1 + exp[∆cji/τk]))

N1 = 26, N2 = 20

Dj – number of treatment decisions of participant j.

d e

f g

τk

ρ

∆cji

Aji Bji

c
(A)
ji

c
(B)
ji

βj

yji

Figure 4.   Graphical representation of the hierarchical model of path choices. All variables are continuous 
except binary yji . Observed variables are shaded, unobserved are not shaded. Of unobserved variables, 
stochastic ones are single-bordered, deterministic are double-bordered. The figure is generated with use of 
package daft v0.1.0 (https://​docs.​daft-​pgm.​org/​en/​latest/) for Python v3.7.7.

https://osf.io/aj4vk/
https://osf.io/aj4vk/
https://docs.daft-pgm.org/en/latest/
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Code availability
The Jupyter notebook containing the computer code of analysis reported in this paper can be found on study’s 
public OSF page at https://​osf.​io/​aj4vk/.
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