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A B S T R A C T   

Salmonella enterica serovar Enteritidis (S. Enteritidis, SE) is a foodborne zoonotic pathogen, causing economic 
losses in animal husbandry and large numbers of human deaths and critically threatening economic development 
and public health. Human infection with SE has complex transmission routes, involving the environment, animal 
reservoirs, and water in a One-Health context. Food-producing animals, particularly poultry and livestock, are 
regarded as the most common sources of SE infection in humans. However, there is little known about the 
vertical transmission of SE in a One-Health context. In this review, we analyze the ecological significance of SE in 
a One-Health context. Importantly, we focus on the difference in vertical transmission of SE in poultry, livestock, 
and humans. We introduce the transmission pathway, describe the immune mechanisms, and discuss the models 
that could be used for studying the vertical transmission of SE and the strategy that prevention and control for 
vertical transmission of SE into the future from a One-Health perspective. Together, considering the vertical 
transmission of SE, it is helpful to provide important insights into the control and decontamination pathways of 
SE in animal husbandry and enhance knowledge about the prevention of fetal infection in human pregnancy.   

1. Introduction 

Salmonella is a major zoonotic food-borne pathogen of worldwide 
importance [1]. It is estimated that Salmonella causes 93 million enteric 
infections and 155,000 deaths each year globally [2]. According to the 
human isolates of Salmonella collected from the laboratories of 37 
countries between 2001 and 2007, Salmonella enterica serovar Enter-
itidis (SE) ranked as the first serotype of all Salmonella isolates [3]. SE 
can cause human gastrointestinal tract infection, leading to diarrhea and 
death [4]. Between 2016 and 2020, SE affected 18 countries in Europe 
causing a child and an elderly person to die due to the infection [5]. 
Human infection with SE has complex transmission routes, involving the 
environment, animal reservoirs, and water in a One-Health context. 
Food-producing animals, particularly poultry and livestock, are regar-
ded as the most common sources of SE infection in humans [6,7]. 
However, there is little known about the vertical transmission of SE in a 
One-Health context. In this review, we focus on the difference in vertical 
transmission of SE in poultry, livestock, and humans. Together, 

considering the vertical transmission of SE in a One-Health context, it is 
helpful to provide important insights into the control and decontami-
nation pathways of SE in animal husbandry and enhance knowledge 
about the prevention of fetal infection in human pregnancy. 

2. Ecological significance of SE transmission from a One-Health 
context 

The transmission of SE in a One-Health context involves many 
ecological routes, including foodborne, waterborne, cross-species, and 
vertical transmission (Fig. 1). The foodborne transmission of SE may 
occur through the fecal-oral route, which is related to the environment 
polluted by SE excreted by animals or humans through their feces [8,9]. 
SE is transmitted to humans through contaminated eggs or meat prod-
ucts [10–12]. Rodents and insects are the main carriers of SE contami-
nation and foodborne transmission [13,14]. Another transmission route 
of SE is caused by polluted waterborne, mainly due to human activities, 
such as poor management of farm manure and waste, which leads to 

* Corresponding author at: College of Veterinary Medicine (Institute of comparative medicine), Yangzhou University, Yangzhou 225009, China. 
E-mail address: yzgqzhu@yzu.edu.cn (G. Zhu).  

Contents lists available at ScienceDirect 

One Health 

journal homepage: www.elsevier.com/locate/onehlt 

https://doi.org/10.1016/j.onehlt.2022.100469 
Received 5 September 2022; Received in revised form 1 December 2022; Accepted 1 December 2022   

mailto:yzgqzhu@yzu.edu.cn
www.sciencedirect.com/science/journal/23527714
https://www.elsevier.com/locate/onehlt
https://doi.org/10.1016/j.onehlt.2022.100469
https://doi.org/10.1016/j.onehlt.2022.100469
https://doi.org/10.1016/j.onehlt.2022.100469
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


One Health 16 (2023) 100469

2

polluted runoff entering many aquatic environments such as oceans, 
rivers, streams, and lakes [15,16]. The cross-species transmission is 
frequently raised as an important driver of SE transmission in animal 
husbandry. SE can be transmitted between chickens and pigs through 
contaminated feed or the environment in a free-range environment [17]. 
At the same time, studies have shown that SE in contaminated pastures 
can be transmitted between buffalo and pigs [18]. Importantly, the 
vertical transmission of SE cannot be ignored in poultry, livestock, and 
human beings. Inside the poultry, SE colonizes the ovarian tissue of hens 
and contaminates eggs through vertical transmission, which causes 
massive economic losses to the poultry industry and infects humans 
[19,20]. In livestock, studies suggested that SE was isolated from preg-
nant sow and gilt, and recovered from various tissues of viable newborn 
calves immediately after parturition, demonstrating that vertical trans-
mission can occur in livestock [9]. In humans, early studies reported that 
SE infections in pregnant women caused preterm birth with the baby 
died 4 h after birth from septic shock and were cultured from blood 
cultures and swabs of the premature infant and from the placenta and 
uterus [21]. The complexity of transmission routes in animal husbandry 
and human from a One-Health perspective increases the risk of SE 
infection and vertical transmission. 

3. The pathways for vertical transmission of SE 

SE can colonize mammalian uterus and poultry ovary. More 
concretely, SE colonizes the intestinal tract and then invades the den-
dritic cells in the intestinal epithelial cells after entering the host [22]. It 
invaded the macrophages to survive through the phagocytosis of mac-
rophages reaching the submucosa [23,24]. The bacteria type III secre-
tion system (T3SS), adhesion, and pili play important roles in this 
process [25]. SE can form vacuoles containing SE after entering mac-
rophages [26,27]. After entering the microfold cells, SE is transported to 
the intestinal lymphatic follicles and mesenteric lymph nodes, and part 
of it is transported to the reticuloendothelial cells of the liver and spleen 
[28,29]. Some of SE go into the mother’s uterus and colonize mammals. 
The reproductive and excretory tracts are shared, and SE has the po-
tential to occupy the reproductive tract and ascend to the ovary in 
poultry. 

3.1. Vertical mechanism of SE contamination of eggs 

Eggs and egg products are not only the main way for humans to 
obtain protein but also the most common food vehicles for human 
infection with SE [30]. SE can colonize chicken ovaries for a long time to 
form persistent asymptomatic infection, which will not only lead to a 
decline in egg production and egg quality but also lead to egg pollution 

Fig. 1. Ecological significance of SE transmission from a One-Health context. Rodents and insects are the main vectors of SE contamination and cross-species 
transmission and can transmit the bacteria through feces. In a free-range environment, SE can be transmitted between chickens, cattle, and pigs through contam-
inated feed or the environment. At the same time, SE in contaminated pastures can be transmitted between cattle and pigs. SE is transmitted to humans through 
contaminated eggs or meat products. 
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[31,32]. There are two possible ways for SE to contaminate eggs. Eggs 
can be contaminated by penetrating the eggshell from colonized in-
testines or contaminated feces during or after spawning (horizontal 
transmission) [33]. The second possible way is to directly contaminate 
the albumen, yolk, shell membranes, or eggshell before spawning, 
resulting from genital infection with SE (vertical transmission) [34,35]. 
The albumen is most often contaminated, indicating that the fallopian 
tube is the site of colonization [36]. However, protein restricts the 
growth of SE because it contains a variety of antibacterial components 
that can induce cell wall and DNA damage [37]. Others pointed out that 
the yolk was the most common site of contamination [38,39]. 

Egg yolk contamination may occur due to the colonization of SE in 
the ovaries [40,41]. During ovarian colonization, SE can lead to 
contamination of mature developing eggs throughout the reproductive 
cycle by attaching to developing and mature follicular granulosa cells 
[42,43], which leads to the decline of developing egg production and 
developing egg quality pollution [31]. SE is more likely to deposit on the 
outside of the yolk membrane during ovarian colonization. The number 
of bacteria in the theca was higher than that in the yolk itself before 
ovulation, indicating that SE was still attached to the yolk membrane 
during transmission through the ovary [40]. When the yolk membrane 
was inoculated, SE was detected in the yolk, indicating that it migrated 
from the egg white to the yolk [44,45]. The yolk membrane in fresh eggs 
inhibits the invasion of SE into the egg yolk. As the yolk membrane loses 
its integrity during storage and gradually deteriorates, causing nutrients 
to leak into the protein, it is possible to attract bacteria that can pene-
trate the yolk membrane and multiply in the nutrient-rich yolk [46]. 
Therefore, SE infects the ovaries, attaching to the vitelline membrane, 
migrating and colonizing the yolk after laying eggs, which is the 
pathway of vertical transmission in poultry (Fig. 2(a)). 

3.2. The entry of vertical transmission of SE in mammals 

Livestock and their products are the primary sources of human meat 
and the primary route by which SE contaminates and infects humans 
through foodborne sources. Foodborne illnesses with average annual 
increases for SE are increasing the risk in pregnancy [47]. 

In humans, SE infection can cause complications such as sepsis, 
chorioamnionitis, fetal infection, neonatal sepsis, and miscarriage 
[48,49]. Recently a case reported that the vertical transmission of SE 
leads to septic abortion and acute respiratory distress syndrome (ARDS) 
during pregnancy [50]. The placental culture was positive for SE. In the 
human placenta, syncytiotrophoblast (SYN) cells provide effective pro-
tection against pathogens [51,52]. Human SYN is resistant to a variety of 
pathogens, but its precise molecular mechanism is not fully understood. 
However, there is evidence that SYN exploits a variety of pathogen- 
dependent mechanisms. The SYN acts as a biophysical barrier to the 
bacteria. Pathogens that ascend through the genitals to the decidua of 
the uterus infect invasive extravillous trophoblast (EVT) cells. The main 
way of transmission of pathogens through the placenta is through the 
initial infection of decidua and then to EVT. Human SYN can be used as a 
barrier against Salmonella Typhimurium infection. Overall, it has been 
speculated that the most likely mechanism of vertical transmission of SE 
may be through infection of fetal invasive SYN cells in mammals (Fig. 2 
(b)). 

In livestock (pig, sheep, cattle), Salmonella causes abortion [53–55]. 
However, only a few cases of SE with vertical transmission are found in 
the literature. SE was identified in maternal blood cultures and placenta, 
consistent with SE being a pathogen that crosses maternal blood through 
the placenta. 

SE infections are common and usually not serious. However, they can 
lead to life-threatening infections and fetal loss during pregnancy [56]. 
While salmonellosis can be controlled with antibiotic treatment, our 
study highlights the risk to pregnant women given the increased 

Fig. 2. Vertical transmission mechanism and immune response of SE. (a): Vertical transmission mechanism and immune response of SE in poultry. (b): Vertical 
transmission mechanism and immune response of SE in mammals. 
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incidence of this foodborne infection. Therefore, pregnant women are 
advised to be more vigilant against foodborne infections. 

4. The immune responses for vertical transmission of SE 

The immune response to SE infection during egg production and 
early pregnancy may facilitate its vertical transmission. In poultry, SE 
infection-induced innate and adaptive immune responses may support 
its vertical transmission (Fig. 2(a)). In the maternal, the immune re-
sponses and tolerance to SE during pregnancy may adversely affect the 
fetus in mammals and increase facilitate vertical transmission (Fig. 2 
(b)). 

4.1. SE infection-induced immune responses may support its vertical 
transmission in poultry 

Innate immunity could affect the probability of pathogen trans-
mission to their offspring in birds [57]. SE-induced innate immunity 
may be associated with vertical transmission. Innate immunity cells 
including natural killer (NK), macrophages, and dendritic cells (DCs) 
were activated within one week of SE infection, which promotes host 
inflammatory responses. NK cells are activated directly via Toll-like 
receptors (TLRs) after SE infection [58]. The NK cell-mediated IFN-γ 
genes were upregulated within the one-week response to SE infection, 
which may lead to more systemic infection and colonization of the 
reproductive tract [59]. Macrophages, as the carrier of systemic trans-
mission, are not only the major effecter cells eliciting innate immunity, 
but also play an important role in SE-contaminated eggs in chicken [60]. 
Recently, infection with SE has been shown to inhibit NO production in 
macrophage HD11 cells [61], which contributes to survival within HD11 
cells, and increases systemic transmission and reproductive organ 
colonization resulting in internal egg contamination [62]. Besides 
macrophages, DCs came into focus as important cells mediating immune 
responses against SE in recent years [63]. DCs produce IL-12, IL-23, and 
IL-27 after LPS/TLR4-dependent induction by SE, which are used to 
coordinate cell-mediated immune responses [63]. Overall, SE-induced 
innate immunity may contribute to increased reproductive tract colo-
nization and internal egg contamination. 

In addition to innate immunity, T cell-mediated adaptive immunity 
also has implications for SE infection and transmission to eggs. From one 
side, the T cell activation of the host after SE infection results in the 
production of IFN-γ, which in turn activates macrophages, leading to a 
reduction in the initial acute systemic infection and the formation of a 
carrier state macrophages [64]. The carrier state is maintained by the 
production of IFN-γ through T cells. The onset of egg laying results in 
marked immunosuppression, loss of T cell activity, and disruption of 
carrier state leading to reproductive tract infection and egg trans-
mission. On the other side, activated CD4 T lymphocytes after SE 
infection secrete various cytokines to mediate immune responses. Th1 
and/or Th17 involvement in IL-12, IL-18 IFN-γ, and IL-17-related 
cytokine expression in CD4 T cells enhances host clearance of SE 
[65,66]. Th2 and Treg cytokines including IL-10, TGF-β4, and CTLA-4 in 
CD4 T cells limit the inflammatory response, which may promote 
immune-evasive clearance of SE leading to persistent infection and in-
crease the likelihood of vertical infection [67]. When chickens start 
laying eggs, SE proliferates intracellularly and spreads into the repro-
ductive tract, and the ovary uses a similar strategy to directly inhibit T 
cell proliferation to promote vertical transmission. 

4.2. Maternal immune responses to SE during pregnancy may adversely 
affect the fetus in mammals 

Mammals with Salmonella infection lead to spontaneous abortions, 
and fatal outcomes for fetuses, which is related to the immune response 
during pregnancy [68]. The immune response to SE infection during 
early mammal pregnancy relies on an innate phagocytic system 

including fetal macrophage-like phagocytes (FM), neutrophils, and DCs 
[69]. Innate FM can sequester endocytic antigens, differentiate into DCs, 
and present antigens to T cells later in life to trigger adaptive immunity 
[70]. The adaptive immune response following SE infection in mice and 
humans is a Th1-biased phenotype, which is achieved by macrophage 
activation of cytokines such as IFN-γ and TNF-α [70,71]. The expression 
of IFN-γ, TNF-α, IL-17, and IL-10 is upregulated in response to SE in the 
placenta, amniotic fluid, and maternal serum [72]. Increased IFN-γ in 
the placenta was associated with placental damage and increased levels 
of markers of infiltration and hypoxia (Cyclooxygenase-1 and 
Cyclooxygenase-2 expression, respectively) that may contribute to pre-
term birth [73,74]. Elevated IL-17 may be detrimental to pregnancy 
maintenance and may promote inflammation at the fetal-maternal 
interface. 

Immunological adaptations in mammals during pregnancy allow 
maternal tolerance of the semi-allogeneic fetus, which may increase and 
facilitate the vertical transmission of SE. Fetal immune tolerance is 
essential to the maintenance of pregnancy, achieved in large part by the 
ability of Th2 and Treg cells [75]. Fetal exposure to SE flagellin induces 
Th2-skewed immune responses with enhanced IL-4 and IL-5 but not 
heightened IFN-γ production, which is a simplistic explanation for 
promoting tolerance during pregnancy [76]. However, the Treg cell’s 
responses that express the forkhead box p3 (Foxp3) transcription factor, 
and secrete anti-inflammatory cytokines such as IL-10 and transforming 
growth factor-beta (TGF-β) during pregnancy may contribute to the 
exacerbation of Salmonella infection in pregnant mice [77]. Overall, 
maternal Th2 and Treg cells suppress the maternal immune system to 
maintain pregnancy, which makes it easier for SE to pass through the 
host-placental barrier to the fetus. 

5. The current models in studying the vertical transmission of SE 

Vertical transmission of SE causes severe harm to poultry and live-
stock, increasing the risk in humans during pregnancy. However, there is 
currently a lack of appropriate model systems for research. We discuss 
and compare models that can be used to study the vertical transmission 
of SE to explore SE methods that can help improve the understanding of 
fetal infection prevention during pregnancy in humans (Table 1). 

5.1. Mouse model 

The mouse is the most powerful mammal model used to explore the 
virulence and immune response of pathogenic microbes infection 
[78,79]. Immunization with SE through the intranasal or intraperitoneal 
route in the mouse model can induce significant humoral and mucosal 
immune responses [80]. Mouse models were used to analyze the viru-
lence and immune responses of pathogens to placental infection and to 
perform genetic manipulation [81]. Like the human placenta, the mouse 
placenta is a blood chorionic membrane, the trophoblast invades the 
maternal decidua, and they have a similar composition of decidual im-
mune cells [82,83]. However, mouse placentas are maze-like and less 
invasive, and their morphology may have led to the evolution of features 
different from human trophoblasts [84]. The mouse had a labyrinth of 
placenta with two layers of SYN and a complete monocyte trophoblast 
[85,86]. By contrast, humans have a villous placenta, maternal blood in 
direct contact with the placenta, and only a layer of SYN bathed in 
maternal blood [87,88]. The maternal blood of mice was in direct 
contact with a layer of mononuclear trophoblast (MNT), which covered 
two layers of SYN. Nutrients, gases, and waste must pass through the 
double layers of MNT and SYN to reach the fetal blood [89,90]. The 
pregnant mouse models can be used to understand how the host immune 
system balances fetal tolerance and maternal and fetal defense against 
pathogens [72]. Such models can be used to investigate how SE colo-
nization and transmission occur during pregnancy [73]. The mouse 
model can also test the role of specific cell types and cytokines on the 
maternal-fetal interface. 
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5.2. Non-human primates 

Non-human primates (NHP) have the most similar placental struc-
ture and immune response to humans [91]. Like humans, NHP have 
blood villous placenta that invades the decidua [92]. SE can be colo-
nized clinically in NHP [93], but it is rarely used to study vertical 
transmission. NHP has a long gestation period and a small number of 
fetuses per pregnancy. Ethical and legal need considerations regarding 
the use of these animal standards. In addition, it is common for these 
models to have two placentas in a fetus, whereas in humans each fetus 
has one. 

5.3. Human placenta organ explant 

Human placenta organ explant is the preferred path for research 
vertical transmission to human pathogens, it can simulate the process of 
human placental infection with pathogens and eliminate the differences 
caused by other animal models, but the samples obtained in the early 
stage of pregnancy are very different from those obtained after delivery 
[94]. The placenta and decidua change throughout pregnancy. Because 
the law may restrict or completely prohibit donation, the genetic dif-
ferences between donors may vary greatly in the results. Finally, human 
tissues in situ cannot be genetically manipulated by standard cell culture 
techniques. Human placental culture has led to key discoveries of how 
the placenta can resist infection, and the ability to image and infect 
human placental tissue using differentiated and spatial tissue cell types 
can be a useful tool for understanding the placental defense. Decidual 
organ culture can also be used to explore how the maternal uterine layer 
can resist pathogens. 

5.4. Embryo model 

As an important animal model for basic research on poultry, chicken 
has a very special evolutionary status between mammals and verte-
brates, such as an important model used in classical experimental 
embryology, immunology, behavior, reproduction, and vertical trans-
mission of pathogens [67,95,96]. The chicken embryo develops very 
quickly compared with the model of mammals. Poultry embryos consist 
of two flat layers of blastocysts located on the surface of the yolk when 
spawning, so it is easily accessible. In addition, the egg hatch can be 
terminated at any time, thus providing certain experiments in the 
development stage of the embryo. Because chicken embryos are similar 
to human embryos at molecular, cellular, and anatomical levels, chicken 
embryos play a vital role in biomedical research. Another important 
advantage of a chicken embryo over a mammalian model is that it can be 
easily incubated and manipulated inside and outside the egg at a very 
low cost. Importantly, both intra-and extra-egg chicken embryos are 

easy to visualize, and a variety of cell labeling techniques can be used to 
track cell movement and fate in real-time in chicken embryos. 

6. Prevention and control strategy for vertical transmission of 
SE into the future from a One-Health perspective 

The vertical transmission of SE brings economic losses to the 
breeding industry, in poultry, and which products poses a grave threat to 
human life and health [97,98]. The prevention and control strategy for 
vertical transmission of SE into the future from a One-Health perspective 
need consideration of a multiple factors involving the inter-relationship 
between human, animal, economic, and environmental health, and 
establishment of a multidisciplinary, cross-sectoral approach to control 
SE infection and mitigation of complex public health problems. In 
Canada, the National Integrated Enteric Pathogen Surveillance Program 
(C-EnterNet), collected data along the farm-to-fork continuum and 
provide information about exposure routes and sources of enteric or-
ganisms, suggesting that SE is frequently recovered from a variety of 
animal species along the farm-to-fork continuum and is particularly 
common among chicken samples [99]. However, even when corrective 
measures were taken, some of the farms were still found to be contam-
inated with the same outbreak strain or even multiple outbreak strains in 
Europe [100]. Recently, several international consortia (e.g., One 
Health European Joint Programme [https://onehealthejp.eu/], Public 
Health Alliance for Genomic Epidemiology [https://github.com/pha4 
ge/pha4ge.github.io], and Genomic Epidemiology Ontology 
[https://genepio.org/]) will provide data support for the traceability of 
SE. Therefore, in the future, the vertical transmission of SE in the One- 
Health environment needs to use the “One Health” a multidisciplinary 
and cross-sectoral cooperation approach involving partners in public 
health, food safety, veterinary and environmental sectors (Fig. 3). 

7. Conclusion 

In poultry and livestock, SE causes huge economic losses. Poultry and 
livestock and their products with contaminated SE adversely affect 
human pregnancy. In poultry, SE is transmitted to the next generation of 
poultry by infecting the ovaries, attaching to the vitelline membrane, 
and colonizing the yolk after spawning. In addition, SE is unique in that 
it can enter and multiply in eggs without causing noticeable changes. 
However, it remains to be seen whether male sperm is transmitted 
vertically. Unlike mammals, eggs do not develop in the safe environment 
of the uterus but are constantly protected by the hen’s immune system. 
The inflammatory response induced by SE infection may support its 
vertical transmission in poultry. 

In humans and poultry, the placenta can be considered the most 
critical barrier limiting vertical transmission of SE. At the same time, it 

Table 1 
Comparison of advantages and disadvantages of various models for studying placental pathogens in SE.  

Models Features Function Advantages Disadvantages 

Mouse Invasion of hemochorial and 
trophoblasts into maternal 
decidua; Similar to decidual 
immune cell composition 

Testing the roles of specific cell types 
and cytokines at the maternal-fetal 
interface; Determining how 
colonization and dissemination occur 

Investigating the immune responses to 
SE; Carrying out a large set of genetic 
knockouts and a short gestation with a 
large litter 

Labyrinthine and less invasive; The 
interface with the maternal blood is 
thicker 

Non-human 
primates 

The placental structure and 
immune response most similar to 
those of humans 

Investigating immune regulation in 
placentas 

The villous hemochorial placentades into 
the decidua 

A single fetus has two discoid 
placentas with a long gestation period 

Human 
placental 
organ 
explants 

Simulating the process of human 
placental infection with SE and 
eliminating the differences caused 
by other animal models 

Understanding how the human 
placenta resists SE infection and 
exploring how the maternal uterine 
layer defends against pathogens 

Removing the concern of a species 
artifact 

A first-trimester sample differs 
considerably from a sample obtained 
after delivery; Genetic differences 
between donors 

Embryo 
model 

The avian embryo consists of a 
flat; Two-layered blastoderm that 
lies on the surface of the yolk and 
therefore is readily accessible 

Focusing on the molecular basis of 
cell development or cell-cell 
interactions, immunology, and the 
relatively new field of epigenetics 

The chicken embryos develop very fast; 
The incubation of chicken eggs can be 
terminated at any time; Both in-ovo and 
ex-ovo chicken embryos are easy to 
visualize 

The abiotic factors have been found to 
influence embryonic development and 
adult phenotype; The maternal effect 
is restricted to egg composition  
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enters and colonizes the uterus of livestock, and enters the placenta 
through the SYN. Are the risks posed by infected pregnant women and 
pregnancy after infection the same? The pro- and anti-inflammatory 
responses may affect vertical transmission in humans and livestock. 
The placentas of many small animals show significant anatomical dif-
ferences. It is difficult to develop a laboratory model that summarizes 
the complexities of vertical transmission of SE in humans and the stages 
of pregnancy. This is a major obstacle to understanding the mechanism 
of vertical transmission. Considering the vertical transmission of SE 
helps to provide important insights into the control and decontamina-
tion pathways of SE in animal husbandry, increasing the understanding 
of how these pathways can be therapeutic targets in humans and helping 
to improve the prevention of fetal infection during human pregnancy. 
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