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Abstract

Our ability to identify genes that participate in cell growth and division is limited because

their loss often leads to lethality. A solution to this is to isolate conditional mutants where the

phenotype is visible under restrictive conditions. Here, we capitalize on the haploid growth-

phase of the moss Physcomitrella patens to identify conditional loss-of-growth (CLoG)

mutants with impaired growth at high temperature. We used whole-genome sequencing of

pooled segregants to pinpoint the lesion of one of these mutants (clog1) and validated the

identified mutation by rescuing the conditional phenotype by homologous recombination.

We found that CLoG1 is a novel and ancient gene conserved in plants. At the restrictive tem-

perature, clog1 plants have smaller cells but can complete cell division, indicating an impor-

tant role of CLoG1 in cell growth, but not an essential role in cell division. Fluorescent

protein fusions of CLoG1 indicate it is localized to microtubules with a bias towards depoly-

merizing microtubule ends. Silencing CLoG1 decreases microtubule dynamics, suggesting

that CLoG1 plays a critical role in regulating microtubule dynamics. By discovering a novel

gene critical for plant growth, our work demonstrates that P. patens is an excellent genetic

system to study genes with a fundamental role in plant cell growth.

Author summary

Genes important for cell growth are difficult to identify because their disruption often

results in the death of the organism. A solution to this problem is to isolate temperature-

sensitive mutants where growth is blocked only at high temperatures. Here, we used the

moss Physcomitrella patens, a simple model plant, to isolate temperature-sensitive mutants

with reduced growth. We used whole-genome sequencing to identify the gene disrupted
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in one of these mutants (clog1). We found that CLoG1 is a previously uncharacterized

gene present in algae and plants. Localization studies of CLoG1 protein in living cells

showed CLoG1 concentrates on microtubules and tracks depolymerizing ends. Loss-of-

function analysis suggests a possible role in controlling microtubule dynamics. Our

approach establishes the moss P. patens as a valuable model-organism to investigate genes

important for cell growth in plants.

Introduction

Early adopters of P. patens as a genetic model plant identified its haploid genetics as a valuable

attribute for genetic analysis. Mutants displaying a variety of defects, including metabolic and

hormonal deficiencies as well as morphological and physiological alterations, were easily iso-

lated using simple mutagenesis [1–3]. Despite the success in isolating mutants, identification

of the causal mutations was not readily achieved until recently with the advance of whole-

genome sequencing and the availability of polymorphic strains [4]. Similar to other systems,

mapping can be rapidly achieved by pooling the mutant DNA from segregants resulting from

crosses between polymorphic strains and sequencing the segregants’ genomes, providing an

immediate map to identify the location of a mutation with high accuracy [4–7].

Although the predominant haploid growth phase of P. patens is valuable for genetic screen-

ing, identifying mutations in essential genes, including genes important for cell growth and

division, can be complicated. To overcome these limitations it is possible to isolate conditional

mutants, which has been an effective approach to study genes that are essential for growth and

viability in a number of organisms [8–13]. Temperature-sensitive (TS) conditional mutants

display phenotypic defects under restrictive temperatures. TS mutants have not been widely

used in plants, but some important studies–show their great potential for investigating plant

genes important for growth [14–17] and microtubule dynamics in Arabidopsis thaliana [18–

20].

Among many essential cellular structures, the microtubule cytoskeleton plays a prominent

role in organizing plant cell growth and division. Subcellular arrays, such as the mitotic spindle

and the phragmoplast, are critical for proper chromosome segregation and cytokinesis, respec-

tively [21, 22]; while the cortical microtubule array is involved in cellulose deposition and the

delivery of other cell wall components [23, 24]. For the microtubule cytoskeleton to function,

it is necessary that the interaction of motors, bundling proteins, severing proteins, and end

binding proteins are regulated in a dynamic fashion [25–27]. Many of these microtubule-asso-

ciated proteins are conserved in plants and shown to have similar function to their animal and

fungal homologues [28]. Nevertheless, it has also been shown that the plant microtubule cyto-

skeleton has unique forms of regulation and associated proteins not found in cells of other

organisms [29]. Due to its complexity, our understanding of the composition and regulation

of the plant microtubule cytoskeleton still requires additional investigation.

Here, to identify genes important for plant cell growth and division, we aimed to isolate TS

mutants from P. patens and identify the causal mutation using pooled segregant analysis and

next-generation whole-genome sequencing. We used ultra-violet (UV) light-induced muta-

genesis and screened mutants with impaired growth by separating them by size. We isolated

several mutant plants that grow normally at room temperature (20–25˚C) but had reduced

growth at 32˚C. We selected one mutant with reduced cellular growth for detailed characteri-

zation and identified the mutation responsible for the TS phenotype. Highlighting the poten-

tial importance of our approach, the gene we identified was previously uncharacterized, but is
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conserved in slime molds, algae, and plants. Interestingly, this novel protein localizes to the

microtubule cytoskeleton in P. patens, and tracks depolymerizing microtubules ends. RNA-

based loss-of-function analysis suggests a possible role in the regulation of microtubule

dynamics. Our TS mutant screen allowed us to discover a novel protein conserved throughout

evolution and important for plant cell growth.

Results

Isolation and screening of temperature-sensitive mutants

To isolate temperature-sensitive (TS) mutants, we first identified a temperature span that

allows wild type P. patens plants to grow to a similar extent and have similar morphology. By

comparing the plant area and morphology, we found wild type plants grow similarly between

20˚C and 32˚C (Fig 1). To identify TS mutants, we selected our standard culturing tempera-

ture of 25˚C as the permissive temperature, and the maximum temperature of 32˚C as the

restrictive temperature. To isolate mutant plants, we irradiated protoplasts with UV light to

Fig 1. Mutant clog1 plants show evidence of growth defects at 32˚C. (A) Three representative micrographs of indicated moss plants that were

grown at 20˚C, 25˚C, and 32˚C. In growth assays, the plants were photographed on day 3 after being passed onto growth medium and grown at the

indicated temperatures. Bar = 100 μm. (B) and (C) Plots show normalized area and solidities of mutant and control at 20˚C, 25˚C, and 32˚C on day 3

after passing onto growth medium. Standard error of the mean is shown. Letters on top of the bar show groups that cannot be distinguished

statistically by one-way ANOVA-Tukey (P<0.05). Asterisk indicate a P<0.01 against all other groups. Plant sample sizes are as follows: WT-

20C:279, WT-25C:375, WT-32:256, clog1-20C:457, clog1-25C:557, clog1-32C:522.

https://doi.org/10.1371/journal.pgen.1007221.g001
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induce mutations, optimizing the amount of irradiation to obtain approximately 90–95% kill-

ing frequency [30]. Protoplasts regenerated their cell walls for four days at 25˚C and then were

cultured for one week at 32˚C to induce potential TS defects. Following this regeneration and

culture period, we isolated plants smaller than 200 μm in diameter by filtering all the regener-

ated plants through a sieve. We grew these small plants at 32˚C for an additional week to dis-

card the background non-TS plants that grow under these conditions. We manually selected

small plants that fail to grow at 32˚C and distinguished TS plants from non-TS mutant plants

by their ability to resume growth upon transfer to 25˚C (S1 Fig and Materials and Methods).

To confirm temperature-sensitivity, we compared the growth of each putative TS mutant

against wild type plants by expanding the isolated mutants onto two agar plates and culturing

the plants at 25ºC and 32ºC. From three initial screens, where approximately 5,000 mutant

plants were screened in each, we obtained an average yield of six TS mutant plants per screen.

We named these genes CLoG for Conditional Loss of Growth and selected the mutant plant

clog1, which expresses a strong TS phenotype, for additional analysis.

Morphological characterization of the TS mutant clog1
To obtain quantitative growth and morphological information, we performed growth assays

on the clog1mutant [31]. Protoplasts were regenerated for four days, transferred to growth

medium, and assayed for growth at 20˚C, 25˚C, and 32˚C. Three days after transfer to growth

medium, we stained the cell walls of the regenerating plants with calcoflour, and imaged them

with epifluorescence microscopy [31]. The mutant and wild type plants grew similarly at 20˚C

and 25˚C and only clog1 exhibited an inhibition of plant growth at 32˚C (Fig 1). We measured

plant area and solidity (area/convex hull area), using total area to assess growth rate and solid-

ity to assess the extent of polarization and branching of protonemata filaments [31]. These

data show that clog1 is a TS mutant for growth, demonstrating that by using a simple sieving

and temperature selection screening system (S1 Fig) we can isolate TS mutant plants of P. pat-
ens with altered growth at the restrictive temperature.

To further characterize the cellular basis of the reduced plant growth, we measured cell size

and investigated possible cell division defects. We analyzed plants at the same stage and tem-

perature as indicated above using three-dimensional reconstruction (see Materials and Meth-

ods section). To evaluate cell size, we stained the cell walls, and to evaluate the presence of

multinucleated cells, we generated clog1 cell lines expressing a GFP-GUS fusion with a nuclear

localization signal [32]. The apical and sub-apical cells of the longest filaments showed a signif-

icant reduction in length, which was accompanied by an increase in width (Fig 2A–2C). The

change in width was not compensatory, because the final volume of the clog1 cells at the

restrictive temperature was smaller than in control cells. These results suggest a role for

CLoG1 protein in cell polarization and growth. With regard to cell division, we did not observe

multinucleated cells in clog1 plants grown at the restrictive temperature (Fig 2A), indicating

that CLoG1 is not essential for completing cell division.

Mapping of clog1 by outcrossing and genome sequencing of segregants

A critical limitation that has hindered the establishment of P. patens as a forward genetic sys-

tem is the inability to map and subsequently identify a mutated allele. Here we chose genome

sequencing of pooled segregants as the strategy to identify the causal mutation for the clog1 TS

mutant [6, 7]. By only selecting segregants that display the TS phenotype, the causal mutation

remains with the segregants while other parts of the genome undergo random chromosomal

crossover and recombination during meiosis. Therefore, genomic recombination rates should

decrease in frequency for regions closer to the causal mutation. We generated a mapping
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population by outcrossing clog1 plants (Gransden strain) to a polymorphic Villersexel strain

[33], which expresses soluble mCherry (Vx::mCherry). We identified the crossed sporophytes

by mCherry fluorescence of the capsule on a non-fluorescent TS mutant gametophyte [33].

Mapping using whole-genome sequencing is most successful with a large enough mapping

population. To determine the appropriate size of our mapping population, we designed a

Monte Carlo simulation exploring the relationship between the size of the mapping population

(number of segregants) and the size of the mapping interval—the region potentially containing

the causal mutation (for details see Materials and Methods section). The simulation was based

on an approximately 450Mbp genome consisting of 27 chromosomes (Physcomitrella patens
v3.0 early release) and a recombination frequency per chromosome of zero, one, or two[34].

As seen in S2 Fig, the magnitude of the decrease in median mapping interval size became

smaller when the mapping population size was increased from 20 to 30 and even smaller when

the population size increased from 40 to 90. Based on the simulation results, and given good

sequencing quality with enough depth (10x coverage), the causal mutation should reliably be

mapped onto one chromosome within 1–3 Mbp. This conclusion is based on a mapping popu-

lation of 24 F1 clog1 segregants and an approximately 450 Mbp genome consisting of 27

chromosomes.

Fig 2. Mutant clog1 plants show reduced cell growth, but no multinucleated cells at 32˚C. (A) Three representative micrographs of indicated moss plants

that were grown at 20˚C, 25˚C, and 32˚C. The plants were imaged on day 3 after being passed onto growth medium and grown at the indicated temperatures.

Bar = 100 μm. (B) and (C) Plots show width and length of the apical and subapical cells from the longest filament in the mutant and control plants at 20˚C,

25˚C, and 32˚C on day 3 after passing onto growth medium. Standard error of the mean is shown. Letters on top of the bar show groups that cannot be

distinguished statistically by one-way ANOVA-Tukey (P<0.05). Asterisk indicate a P<0.01 against all other groups, sample sizes are 40 cells for all conditions.

https://doi.org/10.1371/journal.pgen.1007221.g002
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To identify and pool the segregants of clog1, we screened outcrossed plants at 25˚C and

32˚C for loss of growth at 32˚C. After screening 120 F1 segregants, 24 were selected that exhib-

ited a robust TS phenotype similar to that of clog1 at 32˚C (Materials and Methods). It is

important to note that the precise segregation ratio was difficult to estimate because, to reduce

any possible background, we discarded any plants that could not be clearly assigned a TS phe-

notype. To identify the approximate location of the clog1mutation, we extracted, pooled, and

sequenced genomic DNA from the 24 F1 progeny of the clog1-Vx::mCherry cross (Materials

and Methods). We identified single nucleotide polymorphisms (SNPs) as markers that defined

differences between the Villersexel and Gransden genomes to measure genomic recombina-

tion in pooled segregants. The reference (Gransden) allele frequency at marker positions was

used to map the clog1mutation. We expected that the reference allele frequency would be

highest in regions close to the causal mutation and would be approximately 0.5 in the rest of

the genome assuming that random recombination occurs. We also calculated marker densities

(1 marker every 200 /bp) and average read depth (8X) to assist in assessment of reference allele

frequencies at different chromosomal positions (Materials and Methods).

We mapped the suspected causal mutation and the gene where it is located after aligning

the reads to P. patens genome assembly V1.2 [35], as this was the only assembly for which the

genome annotation file was publicly available. We selected a total of 2,292,625 SNP markers by

comparing the genome sequences of the P. patens Gransden and Villersexel strains, at an aver-

age of one marker per 207 bp. At the marker positions, we detected 1,722,037 SNPs (75.1% of

all markers) in the pooled segregants’ genome sequence. We used a MATLAB routine to visu-

alize reference allele frequencies, marker densities, and average read depth across all 27 chro-

mosomes (Materials and Methods). We conducted these calculations for every non-

overlapped 40 Kbp window.

We found that chromosome 24 was the only chromosome whose reference allele frequency

reached one at a particular position (Fig 3), approximately 4.6 Mbp into chromosome 24 (the

green line in Fig 3A). On both sides of this peak, the reference allele frequencies gradually

increase from 0.5 on the right side and 0.6 on the left side to 1.0. We did not observe a similar

pattern on any of the other chromosomes, where the reference allele frequencies mostly fluctu-

ated around 0.5 (Fig 3B shows chromosome 12 as a representative). Additionally, the marker

densities and average read depth of all chromosomes fluctuated around 200 markers per 40

Kbp window (one marker per 200 bps) and 8X coverage respectively (Fig 3). This is very close

to the average marker density of one marker per 207 bp and the genome coverage of 9.2X

determined from the alignment of the pooled segregants’ genome, indicating that markers

were generally evenly distributed across the 27 chromosomes and that most regions of every

chromosome were supported by eight reads. Taken together these data identified the mapping

interval for the causal mutation of clog1 as a 1 Mbp segment (located at 4.1–5.1 Mbp) centered

at the peak of reference allele frequency (4.6 Mbp) on chromosome 24.

With such a large mapping interval (30–40 genes) it is not possible to identify a single gene.

Instead, we reasoned that the causal mutation is most likely a non-synonymous SNP in the open

reading frame of a gene. There are two main reasons for this: first, point mutations are one of

the most common signature mutations of UV mutagenesis [36], and second, the causal mutation

is likely to cause an amino acid change (missense mutation) in a functional protein because the

protein conformational change and resulting growth defect only take place at high temperature.

Therefore, we filtered for non-marker and non-synonymous SNPs within the mapping interval

on chromosome 24, which was covered by scaffolds 73, 274, and 387 of the V1.2 genome assem-

bly (Materials and Methods). We found one mutation in scaffold 387 that fulfills these require-

ments. The mutation is located at position 4,325,703 of chromosome 24 (Physcomitrella patens
v3.0 early release) (orange line in Fig 3A), which is approximately 270 Kbp from the peak of the
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Fig 3. The causal mutation of clog1’s temperature-sensitivity is located on chromosome 24. The causal mutation is

located by calculating the reference (Gransden) allele frequencies, marker (Villersexel SNP) densities, and average read

depth using sliding windows of 40,000 bp for all 27 chromosomes. The curves were generated using a simple moving

Conditional genetic screen in plants identifies a novel and conserved microtubule tracking protein
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reference allele frequency. This mutation mapped to gene Pp1s387_7V6 [Pp3c24_6470, Gen-

bank MG754010] and was predicted to cause an amino acid change at position 874 from a leu-

cine to a phenylalanine; the length of the ORF is 3,822 bp (1,274 amino acids). The function of

Pp3c24_6470 is currently unknown and there is only one copy of this gene in P. patens [35].

Additionally, no conserved domain of known function has been identified in the protein

encoded by this gene. We identified homologous proteins in amoeboid protists (Dctyostelium
fasciculatum, Dyctostelium discoideum, and Polysphondylium pallidum), green algae, and land

plants. The Panther Classification System classifies CLoG1 in the unnamed gene family

PTHR34958. Interestingly, with only a few exceptions, the gene is present as a single copy in

most of the species analyzed (S1 Table).

Phylogenetic analysis of the amino acid sequences groups the proteins homologous to

CLoG1 with the expected clades of protists, bryophyte, monocots, etc. (S3 Fig). Amino acid

composition shows an abundance of leucine residues (~12%), secondary structure prediction

shows the propensity for the presence of alpha-helices and no coiled-coil formation (S4 Fig).

To evaluate the most conserved regions of the protein we aligned the amino acid sequences of

two amoeboid protists, two green algae, and two land plants. Interestingly, the alga sequences

are significantly longer that their plant or protist counterparts. We selected six highly con-

served regions containing 20% or more identical residues between all six species. These regions

are indicated on the P. patens sequence in S4 Fig and the alignments shown in S5 Fig. Besides

the presence of abundant leucine residues in all these regions, no other obvious sequence

motifs were observed. The longest conserved regions are located at the N and C termini of the

molecule.

CLoG1 locus verification by genetic rescue

To confirm that the mutation identified was responsible for the TS clog1 phenotype, we used

homologous recombination to replace a 2kb genomic region flanking the putative clog1 point

mutation with a wild type genomic fragment. We used PCR to amplify the 2kb fragment and

transformed the PCR product into clog1mutant plants. We co-transformed a circular plasmid

with hygromycin resistance to help select for transformed plants. To confirm the replacement,

via homologous recombination, of the mutant allele with the wild type allele, we sequenced the

amplified region in twenty transformed plants and identified one plant with the wild type

sequence. We verified that this plant was of the mutant’s genetic background—and not a result

of contamination with wild type DNA, by sequencing a second mutant locus in chromosome

24 which exhibited the mutant’s genetic background. Using a growth assay, we confirmed

genetic reversion of the conditional loss-of-growth phenotype (Fig 4). Together, these results

strongly support that we identified the causal mutation responsible for clog1.

CLoG1 localizes to the microtubules and accumulates at depolymerizing

ends

To gain insight into the intracellular function of CLoG1, we generated CLoG1 proteins fused

to monomeric enhanced green fluorescent protein (mEGFP) and determined their subcellular

localization. To evaluate whether the fluorescent protein fusions are functional, we took

average model with a window size of 7. (A) Reference allele frequencies, marker densities, and average reading depth

per nucleotide locus of chromosome 24. The green and orange lines in the top plot of panel A indicate the peak

(around 4,563,000 bp) of the reference allele frequency and the predicted causal mutation (4,325,703 bp) respectively.

(B) Reference allele frequencies, marker densities, and average reading depth per nucleotide locus of chromosome 12.

The red line in the top plot of each panel indicates the reference allele frequency of 0.5.

https://doi.org/10.1371/journal.pgen.1007221.g003
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advantage of a well-established transient RNAi and complementation assay [37, 38]. We gener-

ated an RNAi construct that targets the 5´UTR of CLoG1. Importantly, we found that plants

transformed with the CLoG1-UTR RNAi construct show, at room temperature, a similar loss-

of-growth phenotype to clog1mutants grown at the restrictive temperature (Fig 5). By co-

transforming CLoG1-UTR RNAi with a construct that constitutively expresses the CLoG1
open reading frame, we observed complete rescue of the RNAi phenotype (Fig 5). We also

observed that either C-terminal and N-terminal fusions of CLoG1 to mEGFP fully comple-

mented the CLoG1-RNAi plants, demonstrating that both fusion proteins are functional (Fig

Fig 4. Rescue of clog1 temperature-sensitive phenotype using homologous recombination. (A) Representative images of

control, clog1mutant plants, and rescued plants at the permissive and restrictive temperatures. The mutation in the clog1
conditional allele was repaired using a PCR product from the wild type plant. Scale Bar = 100 μm. (B) and (C) Plots show

normalized area and solidities of control, mutant and rescue plants at 20˚C and 32˚C on day 3 after passing onto growth

medium. Standard error of the mean is shown. Letters on top of the bar show groups that cannot be distinguished

statistically by one-way ANOVA-Tukey (P<0.05). Asterisk indicate a P<0.01 against all other groups. Plant sample sizes

are as follows: WT-20C:198, WT-32C:158, clog1-20C:141, clog1-32C:337, Cured-20C:186, Cured-32C:178.

https://doi.org/10.1371/journal.pgen.1007221.g004
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Fig 5. Fluorescent protein fusions of CLoG1 are functional. Transient RNAi-based silencing of CLoG1 and transient

complementation using CLoG1 mEGFP fusions were used to test for protein fusion functionality. All experiments were done at

room temperature. (A) Representative images of control, control-RNAi plants, plants transformed with the CLoG1-RNAi

construct, and plants complemented with the CLoG1 cDNA and C- and N- terminal fusions. Scale Bar = 100 μm. (B) and (C)

Plots show normalized area and solidities of control-RNAi, CLoG1-RNAi and complemented plants on day 3 after passing onto

growth medium. Standard error of the mean is shown. Letters on top of the bar show groups that cannot be distinguished

statistically by one-way ANOVA-Tukey (P<0.05). Asterisk indicate a P<0.01 against all other groups. Plant sample sizes are as

follows: control-RNAi:88, 5´UTR-RNAi:90, +CLoG1:98, +CLoG1-mEGFP:102, +mEGFP-CLoG1:88.

https://doi.org/10.1371/journal.pgen.1007221.g005

Conditional genetic screen in plants identifies a novel and conserved microtubule tracking protein

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007221 May 10, 2018 10 / 29

https://doi.org/10.1371/journal.pgen.1007221.g005
https://doi.org/10.1371/journal.pgen.1007221


5). Finally, clog1 plants expressing a C-terminal fusion of CLoG1 to mEGFP complement the

TS phenotype, further confirming that the fusion protein is functional and demonstrating that

the clog1 allele is recessive (S6 Fig).

We attempted to generate lines with the endogenous locus tagged with mEGFP, which we

have shown is functional. Unfortunately, the resulting fluorescence levels in the properly

tagged lines were too low to detect above background using our confocal microscope system.

Low levels of CLoG1 protein are consistent with a low level of transcript expression deduced

from the transcriptome atlas of P. patens [39]. Therefore, to observe the intracellular localiza-

tion of CLoG1-mEGFP, we generated stable lines in the wild type background where CLoG1--

mEGFP was driven by a constitutive promoter [37]. For imaging, we selected plants with

normal growth. Strikingly, we found that CLoG1 localizes to filamentous structures that

resemble the microtubule cytoskeleton [40–42]; we could identify filaments immediately

below the plasma membrane, as well as in the cytoplasm (Fig 6A and 6B). To identify if

CLoG1 localizes with specific sub-structures of the microtubule cytoskeleton, we expressed

mCherry-labeled alpha-tubulin, which integrates into dynamic microtubules, in the CLoG1 C-

terminal mEGFP fusion line. In growing apical caulonema cells, CLoG1-mEGFP appeared to

only localize to sections of microtubules, sometimes forming punctate structures (Fig 6A and

6B, and S1 Movie). By analyzing the double-labeled line, we found that the CLoG1-mEGFP

accumulation at the apical region of growing cells, at the zone where microtubules overlap at

the tip of growing cells. This zone of microtubule overlap has been previously described and

shown to be important for polarized growth [43].

Analysis of dividing cells showed an accumulation bias of CLoG1-mEGFP signal toward

the spindle poles during anaphase (Fig 6C, S7 Fig, and S2 Movie). It is well established that

tubulin subunits in mitotic spindles undergo flux with subunit depolymerization at their poles

[44, 45]. This accumulation pattern suggested that CLoG1 might be tracking depolymerizing

microtubules. To investigate this possibility, we analyzed individual cortical microtubules

using high-resolution confocal microscopy of subapical cells, where the cytosolic signal of

CLoG1-mEGFP is lower than in apical cells, resulting in an increase of the signal to noise

ratio. This analysis confirmed that CLoG1-mEGFP localization on microtubules is punctate,

with a bias towards depolymerizing ends (S3 Movie). Kymographs of single depolymerizing

microtubules confirmed the accumulation with depolymerizing ends (Fig 7 and S4–S6 Mov-

ies). The fluorescent protein signal can be detected as a spot on both, slowly (Fig 7A and 7C

and S4 Movie) and rapidly (Fig 7B and 7C and S5 Movie) depolymerizing microtubules. This

suggests that CLoG1 can track the plus and minus ends of microtubules during depolymeriza-

tion. In fact, this double localization is clearly observable in time-lapse movies where both

ends of a single microtubule depolymerize simultaneously (Fig 8A and S6 and S7 Movies).

We never observed accumulation of CLoG1 on growing microtubules, but in some occasions,

we were able to observe accumulation on microtubule ends after they stop polymerizing and

start depolymerizing (undergoing catastrophe) (Fig 8B and S8 and S9 Movies).

Microtubule dynamics are slower in CLoG1 knock-down cells

CLoG1-mEGFP localizes to microtubules and tracks their depolymerizing ends; therefore, we

hypothesized that microtubule dynamics may be altered with reduced levels of CLoG1 protein.

To observe microtubule dynamics, we transiently silenced CLoG1 with the CLoG1-UTR-tar-

geting RNAi construct in the background of a line stably expressing mCherry-αTubulin as

well as the nuclear silencing marker (NLS-GFP-GUS) [46]. P. patens protonema have two

microtubule populations- cortical and cytoplasmic. We acquired single-plane confocal images

near the cortical microtubules of seven-day-old plants to get minimal background images for
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analysis. To quantify the cortical microtubule dynamics, we measured the correlation coeffi-

cient across frames for each movie, as described previously for actin [46, 47] and microtubules

[41]. In cells with silenced CLoG1, the correlation coefficient did not decay as rapidly as in

Fig 6. CLoG1 fluorescent protein fusions localize to the microtubule cytoskeleton. (A) Laser confocal images of a growing caulonema cell

expressing mCherry-tubulin (red) and CLoG1-mEGFP (green), cortical optical section are shown. (B) Laser confocal images of a growing caulonema

cell expressing mCherry-tubulin (red) and CLoG1-mEGFP (green), medial optical section are shown. (C) Representative example of CLoG1-mEGFP

and mCherry tubulin during mitosis and early cytokinesis. Note that CLoG1-mEGFP (green) is present in the whole spindle but with a bias toward

the spindle poles in relation to mCherry-tubulin (red); this is most obvious during anaphase (8:28 min:sec). Scale bars = 5 μm.

https://doi.org/10.1371/journal.pgen.1007221.g006

Fig 7. CLoG1 associates with fast and slow microtubule depolymerizing ends. Representative examples of (A) slow

and (B) fast depolymerizing microtubules. CLoG1-mEGFP (green) and mCherry-tubulin (red) were visualized on a

subapical cell; arrowheads and small arrows indicate the accumulation of CLoG1-mEGFP at the microtubule’s end.

Bottom panel shows the kymographic analysis of the time series. (C) Depolymerization rates were estimated by

modeling a mix of two Gaussians to the data shown in the histogram. The probability density for both populations is

shown with a black dashed line, the individual densities for each population are shown in red and blue lines. The rate

values are: slow ends (red) 1.7 ± 0.6 μm/min and fast ends (blue) 7.9 ± 2.9 μm/min (mean ± st. dev.). A total of 46 ends

were measured from 3 different cells.

https://doi.org/10.1371/journal.pgen.1007221.g007
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control cells, and thus these plants have slower microtubule dynamics (Fig 9). The detailed

changes in dynamics from individual microtubules were not further analyzed due to difficulty

generating a large data set and due to the small cell size of the CLoG1-RNAi cells.

Discussion

Here we established a strategy to isolate and map loss-of-growth mutations in the moss P. pat-
ens, which enabled identification of a novel and ancient gene important for cell growth. CLoG1
is conserved in all plants and encodes a protein that localizes to the microtubule cytoskeleton

and can track depolymerizing microtubule ends. We accomplished these advances by perform-

ing a conditional mutant screen, which is a powerful tool used in fungal and invertebrate sys-

tems, to identify genes important for cell growth. We then used segregation analysis and next-

generation whole-genome sequencing to map the causal mutation. Taking advantage of efficient

homologous recombination in moss, we used genetic complementation to validate the identity

of the mutant gene. Finally, we used transient RNAi and functional complementation with

Fig 8. GLoG1 can associate with both ends of a depolymerizing microtubule and with depolymerizing ends after catastrophe. (A) Two examples of

microtubules undergoing depolymerization from both ends where CLoG1-mEGFP accumulates at both ends. Arrowheads and small arrows indicate slow and fast

depolymerization, respectively. Bottom panels show the kymographic analysis of the time series. (B) Two examples of microtubules undergoing polymerization

followed by catastrophe. Note that CLoG1-mEGFP is not associated with the growing end, but associates with the depolymerization end. CLoG1-mEGFP (green)

and mCherry-tubulin (red) were visualized on a subapical cell; arrowheads indicate when GLoG1-mEGFP can be detected after depolymerization starts. Bottom

panels show the kymographic analysis of the time series.

https://doi.org/10.1371/journal.pgen.1007221.g008
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mEGFP fusions to demonstrate that the novel protein localizes to microtubules, tracks the

depolymerizing ends and may play a role in increasing microtubule dynamics.

Understanding the precise role that CLoG1 plays in the cell will require further analysis;

nevertheless, based on the loss-of-growth phenotype observed and its intracellular localization,

we hypothesize that it may play a role in the regulation of microtubule organization during cell

division and cell expansion [26, 48, 49]. Our measurements of growing cells shows reduced

cell length and increased in cell diameter; these observations are consistent with CLoG1 partic-

ipation in tip growth and the polarization machinery. Because we did not observe multinucle-

ated cells in the clog1 cells at the restrictive temperature, we do not expect CLoG1 to play an

essential role in cell division, but the number of cells per plant appears to be reduced in the

clog1 plants grown at the restrictive temperature, suggesting that the timing of cell division

may be slower in clog1 cells.

Concerning the effects on microtubule dynamics, the following two possible scenarios

could result in the slower dynamics we observed in the CLoG1-RNAi lines: a decrease in the

rate of polymerization or depolymerization, or a decrease in the frequency of rescue or catas-

trophe. Because CLoG1 does not appear to localize to polymerizing ends, we suggest it may

increase depolymerization rates. However, it may also play a subtler role by affecting the fre-

quency of catastrophe or rescue events. Detailed analyses of CLoG1 localization with microtu-

bules in the wild type and mutant backgrounds as well as in vitro studies should help to

distinguish these possibilities.

Consistent with a defect in microtubule dynamics, our localization studies show that

CLoG1 accumulates on microtubules. While we expressed the CLoG1-mEGFP protein fusion

from a constitutive promoter in the wild type background, it is possible that some of the

observed localization is due to over-expression. Thus, additional studies using lines tagged at

the endogenous locus with tandem mEGFP tags to boost the fluorescent signal are needed.

Fig 9. Microtubule dynamics are slower in CLoG1-RNAi cells. (A) The microtubule correlation coefficient as a function

of time shows that microtubule activity is higher in control RNAi (red) than CLoG1 RNAi (blue) cells, as seen by the more

rapid rate of decay. Experiments were done at room temperature. Error bars are standard error of mean. Across two

experiments, n = 21 cells for control RNAi and n = 20 for CLoG1 RNAi; two-tail t-tests were done on each time point, and

the asterisk at 14 seconds indicates where p<0.05, all time points after maintain significance. (B) Temporal-Code Color of

representative movies. Scale bar equals 3μm.

https://doi.org/10.1371/journal.pgen.1007221.g009
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Nevertheless, it is interesting to note that the observed tracking of depolymerizing plus and

minus ends is similar to that of microtubule depolymerizing kinesins, such as the kinesin 13

family [50]; a possible hypothesis is that CLoG1 may associate or regulate kinesin-based end

depolymerization. Many microtubule end-binding proteins have been reported previously,

including proteins associated with depolymerizing ends [51], but with the exception of kine-

sins mentioned above, these proteins associate only with one end of the depolymerizing micro-

tubule. Hence, elucidating the mechanism for association of CLoG1 to both depolymerizing

ends is likely to reveal a novel and important system for regulating microtubule dynamics dur-

ing cell division and cell growth during interphase. The identification of CLoG1 as a compo-

nent of this system will facilitate its analysis by providing a handle for future research.

Our study reveals the great potential of P. patens in forward genetics that was envisioned by

the pioneers of this system [1, 2], and similar to Arabidopsis, it guarantees to provide novel

insights into many plant biology problems when combined with more sophisticated genetic

screening strategies [52]. We anticipate that the combination of haploid genetics, simple devel-

opment, and reduced genetic complexity will continue to strengthen the role of P. patens as a

model land plant to study many aspects of plant growth and development [53, 54].

Materials and methods

Moss culture and protoplasting

Except during crossing, all plants used in this study were proliferated on solid PpNH4 plates

[55] at the designated temperature (15˚C, 20˚C, 25˚C, or 32˚C) under a cycle of 16 h light

(90 μmol m-2 s-1) and 8 h dark. Plant tissue was ground with a homogenizer (Power Gen 125,

Fisher Scientific) and transferred onto solid PpNH4 plates overlaid with cellophane. One

week-old moss was harvested and incubated with a cell wall digestive solution (0.5% (w/v) dri-

selase in 8% (w/v) mannitol) for 1 h in order to remove the cell wall. The protoplasts were

sieved through 70 μm mesh to remove debris and then centrifuged, after which the pellet of

protoplasts was re-suspended in 10 mL 8% (w/v) mannitol and washed twice more.

UV mutagenesis and mutant selection

The genetic screen performed here (S1 Fig) was based on one used for identifying conditional

morphological mutations in Neurospora crassa [12] and conditions for UV-induced mutagen-

esis were adapted from a protocol for isolation of gravitropic moss mutants in Ceratodon pur-
pureus [30]. Wild type Gransden P. patens protoplasts were suspended in 1 to 2 mL liquid

PpNH4 containing 8% (w/v) mannitol and 10mM CaCl2 and their concentration was calcu-

lated by counting the number of cells in the suspension using a hemocytometer. The proto-

plasts were distributed onto 90 mm petri dishes containing solid protoplast regeneration

medium bottom [PRMB] overlaid with cellophane. Approximately 500,000 protoplasts were

distributed onto each plate, which were then irradiated using UV light (Fisher Scientific

FB-UVXL-1000 UV Crosslinker). After regeneration, this resulted in approximately 500 plants

per plate. The plates were then incubated at 25˚C for four days followed by 32˚C for a week.

After this, mutant plants were re-suspended in 12 mL sterile liquid PpNH4 medium and

selected by sieving through a 200 μm nylon mesh. Selected mutants were re-plated at 32˚C for

another week. Plants with mutant phenotypes were identified by eye, picked with tweezers to a

fresh PpNH4 plate, cultured at 25˚C on a PpNH4 plate until the plant reached ~5 mm in diam-

eter, and tested for temperature-sensitivity by grinding and expanding each line on two

PpNH4 plates: one at 25˚C and one at 32˚C.
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Growth assay

The growth assay in this study is a modified version of the method described previously [31].

Protoplasts of the control and TS mutants were suspended in 1 to 2 mL 8% (w/v) mannitol

and the cells from this suspension were counted using a hemocytometer. Each mutant’s proto-

plasts were re-suspended in 2 mL melted PRMT medium [55] and kept at 47˚C in concentra-

tions of 25,000 and 50,000 cells/mL. This medium was distributed onto 90 mm PRMB plates

overlaid with cellophane, on which the protoplasts were regenerated at 25˚C for 4 d. After this,

the cellophane from each plate was cut into three equal pieces, each of which was transferred

to a different PpNH4 plate (on Day 0); the three pieces were incubated at 20˚C, 25˚C, and

32˚C.

On day three, microscope slides were prepared by adding 30 μL of 10 μg/mL calcofluor

(Fluorescent Brightener 28, Sigma) diluted in distilled water onto a glass slide and inverting a

coverslip-sized square of the sample–the cellophane with PRMT agar on top–onto the calco-

fluor. The cellophane was removed from the agar, another 20 μL calcofluor was added, and a

coverslip was placed on top and sealed with a 1:1:1 mixture of melted vaseline:lanoline:paraf-

fin. Imaging was performed with a 10X objective using a Zeiss Axiovert 200M microscope fit-

ted with a CoolSNAP fx CDD camera. Zeiss Axiovision software was used to create an

overlapping grid pattern of 200 to 300 pictures and an ImageJ macro [31] was used to measure

parameters of the plants in these pictures, such as plant area and solidity. This procedure was

repeated three times to reach the sample size indicated in the figure legend (Fig 1).

Plant area was normalized to the average area of the wild type plants at either 25˚C or 20˚C.

For statistical comparisons, the variance between experiments and groups has been previously

shown to be similar [37]; the area was further normalized by obtaining the natural logarithm,

because of the log normal distribution of plant areas [37]. To determine if there was a signifi-

cant difference in plant area and solidity between the mutants and controls when grown at

20˚C, 25˚C, and 32˚C, OriginPro 8.1 was used to conduct one-way ANOVA-Tukey tests to

reject equivalence of means. From these tests, adjusted p-values for comparing ln(area) and

solidity for 20˚C vs. 25˚C, 20˚C vs. 32˚C, and 25˚C vs. 32˚C were obtained for the mutant line

and wild type at day three following transfer to growth medium. If the adjusted p-values were

smaller than 0.05, it was assumed that the difference in ln(area) or solidity was statistically

significant.

To evaluate stable complementation analysis, the growth assay described above was slightly

modified. Images were acquired using the MosaicX module from AxioVision that allows for

tile-based acquisition and stitching. Composite images were constructed by 10x10 individual

images. A single composite image was generated for each condition and analyzed as indicated

above. Plants from three experiments were used for the analysis. Statistical comparisons (one

way ANOVA-Tukey) and plotting were performed using RStudio.

Expression of GFP-NLS in the clog1 background and cell size analysis

The clog1 line and the corresponding wild type lines were transformed with the

NLS-GFP-GUS construct previously described [32] and lines expressing similar levels of

nuclear GFP signal were selected. For cell size analysis, protoplasts were plated and regener-

ated in the same conditions as for the growth assay (see above) and analyzed three days after

transfer to growth medium. Cell walls were stained with 30 μL of 10 μg/mL calcofluor and the

cells were visualized with a Zeiss Observer, 10x lens, DAPI and FTIC fluoresce filters, and

equipped with an Apotome for three-dimensional sectioning. Z-stacks were projected by max-

imal intensity in blue and green channels and pseudo-colored green (wall) and red (nuclei).

Length and thickness were determined using the ImageJ measuring tool. In total 40 cells were
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measured from 3 independent experiments. Statistical comparisons (one way ANOVA-Tukey)

and plotting were performed using RStudio.

Moss crossing

The method used for crossing moss was adapted from standard protocols for identification of

hybrid Physcomitrella patens sporophytes [33]. TS mutants and fluorescently-labeled P. patens
Villersexel (Vx::mCherry) were proliferated and harvested for crossing at one week old. A spe-

cial solid medium, BCD medium with low nitrogen [33], was used to help sporophyte develop-

ment. Deep petri dishes were prepared using 90 mL of this melted medium.

Plant tissue of all the mutants and the polymorphic Villersexel strain was ground with a

homogenizer (Power Gen 125, Fisher Scientific), and the ground tissue of each TS mutant was

mixed with the same amount of ground tissue of Vx::mCherry. The mixed moss tissue was

grown at 25˚C for 3 weeks, after which the plates were cultivated at 15˚C. After 2 weeks, sterile

distilled water was added to each plate to just submerge the tissue and the water was removed

after one day. The same procedure was repeated after 3 weeks of culture at 15˚C, and sporo-

phytes were picked when capsules turned brown. To identify crossed sporophytes, tissue was

observed using a fluorescence stereo microscope (Zeiss) with green light excitation and red

light emission filters. The sporophytes of plants with fluorescent capsules on non-fluorescent

gametophytes were chosen.

One to three sporophytes were harvested in a sterile 1.5 mL microcentrifuge tube and then

sterilized following published protocols [56]. To germinate the spores, the capsules were gently

crushed with the pipette tip and mixed to produce a spore suspension, and approximately

400 μL of this suspension was distributed evenly onto germination solid medium in 90 mm

petri dishes. The germination medium recipe is available from PHYSCObase’s spore germina-

tion protocol (moss.nibb.ac.jp). When plants were large enough, they were picked onto

PpNH4 agar plates. To screen for F1 segregants that retained the TS phenotype, each segregant

and a control plant were proliferated on two PpNH4 agar plates each and incubated at 25˚C

and 32˚C for one week. Imaging was performed on a stereomicroscope under white light at a

magnification of 64X and because this selection was qualitative, only segregants that could be

clearly identified as temperature-sensitive were pooled.

Genomic analysis

Monte Carlo simulation. To estimate how the size of the mapping interval (the possible

region containing the causal mutation) changes with respect to the size of mapping population

(number of F1 segregants), a Monte Carlo simulation was conducted using MATLAB (code

available upon request). The size of the mapping interval was defined as the size of chromo-

somal segment(s) where no crossover occurred. In order to simulate the crossover process, a

few assumptions were made about the crossover process: 1) there is one causal mutation

(SNP) located randomly on one nucleotide of any of the 27 chromosomes (based on known

characteristics of UV-induced mutations and TS mutations and also the unclear locations of

telomeres and centromeres) [13, 36, 57, 58]; 2) there is either zero, one, or two crossovers per

chromosome (based on a study of the crossover landscape of outcrossed F2 Arabidopsis which

found this to be the case approximately 70% of the time) [34]; 3) the average number of cross-

overs of a certain chromosome is positively correlated with the chromosome’s length (based

on the crossover landscape of F2 Arabidopsis) [34]; 4) if there is only one crossover on a chro-

mosome, the crossover point is randomly chosen from all nucleotides of that chromosome

(i.e., no influence from centromere or telomeres); and 5) if there are two crossovers on a chro-

mosome, the crossover point of the first crossover is random, and the distance between the
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second crossover and the first is generated according to a gamma distribution whose shape

and scale parameters are correlated with the chromosome’s length [34].

The chromosome lengths of P. patens (S2 Table) were obtained from the V3 genome

assembly (Physcomitrella patens v3.0 early release), and the chances of zero, one, and two cross-

overs per chromosome and the shape and scale parameters of gamma distributions were calcu-

lated accordingly (S3 and S4 Tables). The Monte Carlo simulation was formulated to generate

random crossovers for a defined number of F1 segregants of P. patens based on the aforemen-

tioned five assumptions and to determine the distribution of the sizes of mapping intervals by

repeating the random crossovers for a defined number of F1 segregants 100 times. The simula-

tion’s algorithm followed these steps: 1) randomly select the causal mutation for a population

of a defined number of mutants; 2) for each chromosome of each F1 segregant, determine the

number of crossovers according to its chances of having zero, one, or two; 3) determine cross-

over location(s) for chromosomes with one or two crossover(s) randomly or according to pre-

calculated gamma distribution; 4) determine how chromosomes are segregated into F1 segre-

gants, assuming random segregation and selection for causal mutation; 5) update the mapping

interval with known crossover locations; 6) repeat steps two to four for the defined number of

mutants in a mapping location; 7) count the number of chromosomes and base pairs in the

mapping interval; and 8) repeat steps one to seven 100 times and record the results. This simu-

lation was run for a population size of 10, 20, 24, 50, 70, and 90 in order to find the lower limit

of for a reasonably-sized mapping population and to find how the size of the mapping interval

decreases with increasing size of the mapping population. The results of this simulation are

shown in S2 Fig.

Genome sequencing of pooled segregants. Based on the results of the simulation and of

existing studies that used genome sequencing of pooled segregants to map randomly-gener-

ated casual mutations [6, 7], the size of the mapping population, sequencing depth, and

sequencing type were decided to be 24, 10X coverage, and paired-ended with 90 nucleotide

read length, respectively. In order to extract approximately the same amount of genomic DNA

from each of the 24 F1 segregants of TS mutant clog1, approximately 0.2 g of one-week old

moss was weighed for each segregant. The genomic DNA of these samples were then extracted

using the Mo Bio PowerPlant Pro DNA Isolation Kit in groups of two. The concentration and

purity of each DNA extraction were measured using a NanoDrop 2000c UV-Vis spectropho-

tometer (Thermo Scientific), and equal amounts of DNA from all extractions were pooled

together. DNA was sequenced using next-generation sequencing (Illumina HiseqTM200, con-

ducted by Beijing Genomics Institute, http://www.genomics.cn/en/index). DNA sequencing

yielded 5,536,364,400 bp, using paired-end reads (500bp insert size, 90bp read length) where

96.2% of the reads had quality score higher than 20. The quality score (sQ) is calculated using

Eq 1 below where E stands for sequencing error rate. The high quality reads were aligned to

the V3.0 reference genome using Burrows-Wheeler Aligner (BWA) version 0.7.8—the mem

algorithm with default settings. The alignment was of good quality with 48,573,929 out of

61,515,160 (79%) high-quality reads aligning to the genome.

sQ ¼ � 10log10E ð1Þ

Causal mutation mapping. Dense SNP markers across the whole-genome are required

for analyzing the crossover landscape of pooled segregants. Therefore, a set of SNP markers

was obtained by comparing the genomic sequence of P. patens Gransden and P. patens Viller-

sexel. Since the Villersexel genome assembly was unavailable, the V3 genome assembly of

Gransden (Physcomitrella patens v3.0 early release) was used as the reference sequence in the

alignment of Villersexel sequencing reads (Joint Genome Institute, 2013). The alignment was
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performed using BWA [59] and variant calling was conducted using SAMTOOLS [60] to gen-

erate SNP markers. The alignment was processed with default options. When generating a

pileup file for variant calling using SAMTOOLS, the C parameter was set to 50 for downgrad-

ing mapping quality of reads, and the thresholds of map quality and base quality were set to 30

while no indel was called. At the end, the SNPs were again filtered by vcfutils.pl varFilter (a

subprogram of SAMTOOLS) to only keep those with root mean square (RMS) mapping qual-

ity higher than 30, read depth more than five but fewer than 200, and at least three reads sup-

porting the alternate base.

The sequencing reads of clog1 segregants were then analyzed with the same pipelines but

slightly adjusted command options to detect occurrence of recombination at the SNP marker

positions. The reads were aligned to the P. patens V3 genome assembly. To increase the sensi-

tivity of SNP detection, the–E option was applied instead of setting the C parameter to 50 in

the generation of a pileup file while other options were kept the same as analyzing the Viller-

sexel genome. After the SNPs at the marker positions were called, they were again filtered by

vcfutils.pl varFilter to only keep those with root mean square (RMS) mapping quality higher

than 30, read depth more than five but fewer than 80, and at least one read supporting the

alternate base.

For the mapping of the causal mutation, the reference allele (Gransden) frequency at the

marker positions, marker density, and average read depth were calculated using sliding win-

dows of 40 Kbp for each of the 27 chromosomes. The reference allele frequency is equivalent

to the number of reads consistent with the Gransden allele divided by the total read depth at a

specific marker position. The marker density is equivalent to the total number of SNPs within

the 40 Kbp window. The average read depth is equivalent to the total read depth of SNPs

detected in the pileup file of the pooled segregants divided by the number of SNPs within the

40 Kbp window. The rest of the genome’s scaffolds were not considered in this analysis due to

their small sizes. The reference allele frequency, marker density, and average read depth were

plotted against chromosomal positions for all 27 chromosomes using a simple moving average

model with a window size of seven. All calculations and visualizations were conducted using

MATLAB (code available upon request).

A 1 Mbp segment centered at the peak of reference allele frequency was selected as the

region where the causal mutation was likely to be located. The candidate causal mutations

were selected by filtering for non-synonymous and non-marker SNPs in the genes located in

the 1 Mbp segment. Since genome annotation files were only available for the V1.2 genome

assembly [61], the sequencing reads of pooled segregants were also aligned to the V1.2 assem-

bly. The pipelines and options used for alignments to V3 and V1.2 genome assemblies and var-

iant calling were the same except that the variant calling for alignment to V1.2 assembly was

not limited to marker positions. The detected SNPs were then annotated with SnpEff [62] and

the P. patens V1.6 genome annotation [63]. The Gbrowser on Phytozome.org provided the

cross reference of V3 and V1.6 genome annotations, and the V1.6 annotation of all genes

located in the 1 Mbp segment was found.

Verification of CLoG1 identity via genetic rescue

We confirmed the presence of the clog1mutation, mapped and identified as indicated above,

by amplifying and sequencing the region of the locus predicted. Primers CLoG1-mut(F) and

CLoG1-mut(R) (S5 Table) were used to amplify the DNA region containing the mutation

from wild type (Gransden) and clog1 plants; primers CLoG1-inF and CLoG1-inR were used

for sequencing the PCR product. To confirm the causal nature of this mutation via genetic res-

cue, plant DNA was isolated from wild type P. patens (Gransden) using the PowerPlant Pro
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DNA Isolation Kit (Mo Bio). DNA was amplified using two rounds of PCR reactions with the

primers CLoG1-mut(F) and CLoG1-mut(R), and the PCR product purified (NucleoSpin

Extract II kit Machery-Nagel); the total PCR product yield was ~30 μg. This wild type-derived

PCR product, together with pTH-Ubi-3XmEGFP (used for transient selection of hygromycin-

resistant plants), were transformed into clog1mutants following standard transformation pro-

cedures [55]. Nineteen plants resulting from the transformation were expanded and DNA was

extracted as above. PCR was performed for each sample extracted from these plants using the

external primers CLoG1-outF and CLoG1-outR. These primers were selected external to the

previous set to amplify the putative CLoG1 locus and to avoid amplification of any uninten-

tional insertion site of the previous targeting PCR product. PCR products amplified with prim-

ers CLoG1-outF and CLoG1-outR were gel-purified and sequenced using primers CLoG1-inF

and CLoG1-inR.

To confirm that that the background of the mutant line (clog1) was present in the rescued

plant, and that we were not analyzing accidentally a wild type plant, we identified and ampli-

fied a mutation found elsewhere in chromosome 24 of clog1 but not in the wild type plants.

This mutation was identified using MATLAB code designed for comparing differences in

nucleotides between the sequenced pool of DNA and the wild type genomes (code available

upon request). We identified one mutation present in the clog1 background but absent in the

wild type genomes (Gransden and Villersexel). To avoid any interference from the rescue

DNA, the mutation was located at position 10,809,758 of chromosome 24, which is several Kb

from the putative casual mutation. Primers mutCLoG1-2F and mutCLoG1-2R were designed

to bind between positions 10,809,479 and 10,810,028 generating a 550 bp PCR product. Fol-

lowing amplification and purification, the PCR product was sequenced using the same primers

used for amplification. The phenotype of rescued and mutant plants was compared using the

growth assay indicated above. The procedure was repeated three times to reach the sample size

indicated in the figure legend (Fig 4).

Amino acid sequences alignment and phylogenetic tree construction

Protein sequences for CLoG1 protein homologues were identified by BLAST (default settings)

in the Phytozome web portal (phytozome.jgi.doe.gov) or the ENTREZ web portal (blast.ncbi.

nlm.nih.gov). In most cases only a single gene locus was identified. This is consistent with

results from the Panther Classification System for gene families (www.pantherdb.org). All

sequences analyzed and the corresponding accession numbers are listed in S6 Table. Multiple

alignment and gene construction were done using the Geneious R7 software. Multiple align-

ment was done with the ClustalW algorithm using default settings. A maximum likelihood

tree was obtained with the PHYML plugin [64], using the Le Gascuel substitution model and

bootstrap for branch support (100 bootstraps). A consensus tree was generated where only

branches having more than 50% support are shown. Hydrophobicity and secondary structure

plots were also determined using the Geneious default settings. To identify highly conserved

regions in CLoG1, an alignment of two amoeboid protists, two algae, and two land plant pro-

teins sequences was performed and an identity graph displaying a 30 residue window was used

to visually identify conserved regions.

Transient silencing of CLoG1 and complementation of CLoG1 5´UTRi

To observe a silencing phenotype of CLoG1, a silencing construct was designed to target a 500

bp region of the 5´ untranslated region (5´UTR) of CLoG1. This region was PCR amplified

from wild type (Gransden) cDNA using primers CLoG1UTRi500bpF and CLoG1UTRiR (S5

Table) and cloned into pENTR/D-TOPO. After sequencing, we used an LR clonase reaction
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(Invitrogen) to transfer the amplified region into the silencing vector pUGGi [65]. The result-

ing construct was named CLoG1-UTRi. Thirty μg of CLoG1-UTRi silencing construct was

transformed into a line stably expressing GFP-GUS with a nuclear localization sequence (NLS-

4) [65], as previously described [37, 38, 47, 58, 66]. Briefly, antibiotic resistant plants are visu-

ally selected for the loss of nuclear GFP signal, which indicates they are actively undergoing

gene silencing of the target gene (in this case CLoG1). The plants are photographed using the

chlorophyll out fluorescence and their area and solidity (convex hull area/area) are calculated

for statistical comparison. Phenotypes were observed and measured on 7-day-old plants. To

rescue the silencing of CLoG1, the wild type CLoG1 coding sequence was PCR-amplified from

cDNA using primers CLoG1-full-cds-F and CLoG1-full-cds-R. The PCR product was then

cloned into pENTR/D-TOPO, and the coding sequence was inserted into an expression vector,

pTHUBI-gate [37], via an LR clonase reaction (Invitrogen). The resulting construct was

named pTHUbi-CLoG1cds. The mEGFP:CLoG1 fusion constructs were created using Invitro-

gen Multisite Gateway Pro 2.0 kit. For the C-terminal fusions, CLoG1 cDNA was PCR ampli-

fied using primers attB1CLoG1F and attB5rCLoGR, to produce attB1 and attB5r-flanked

CLoG1 cDNA. The flanked PCR fragment was cloned into pDONR P1-P5r vector via a BP

clonase reaction (Invitrogen). This entry clone was sub-cloned, along with an entry clone con-

taining mEGFP flanked with attB5 and attB2, into the pTHUBI-gate destination vector using

an LR clonase reaction (Invitrogen). For the N-terminal fusions, the expression clone was con-

structed using the same method above; however, the CLoG1 cDNA PCR fragment was flanked

with attB5 and attB2 while the mEGFP was flanked with attB1 and attB5r. The primers used

for the CLoG1 cDNA PCR were attB5CLoG1F. Thirty μg of CLoG1-UTRi and 2.5–15 μg of

pTHUbi-CLoG1cds or the pTHUbi-mEGFP:CLoG1 fusions were co-transformed into NLS-4

protoplasts, and phenotypes were observed and measured on 7-day-old plants using the

growth assay described above, but using liquid plating medium instead of solid plating

medium. This procedure was repeated at least three times to reach the sample size indicated in

the figure legend (Fig 5).

Stable expression of fluorescent protein fusions of CLoG1 and confocal

microscopy

The pTHUBI constructs containing C and N terminal mEGFP fusions of CLoG1 were linear-

ized using the SwaI enzyme and transformed into wild type moss using PEG-mediated trans-

formation, and stable lines were generated following standard protocols [55]. Plants

expressing mEGFP signal were screened by laser scanning confocal microscopy (Leica SP5).

Cell lines expressing the lowest detectable level of expression and showing normal morphology

were selected for high resolution microscopy. To observe growing cells, the plants were cul-

tured on a thin layer of agar prepared on a coverglass of a Mattek dish [67]. Under these condi-

tions caulonemal cells grow for several days and can be observed with high numerical aperture

(NA) optics. To image the cells, we used the 63X 1.4 NA lens of the SP5 system (Leica)

upgraded with a hybrid detector. Images were acquired at 0.68–1 sec. intervals. Images were

background subtracted with a radius of 30 and contrast enhanced by histogram stretching

(normalization) allowing a 0.4% of saturated pixels using ImageJ (Fiji distribution).

A single moss line expressing a CLoG1 with a C-terminal fusion of mEGFP was trans-

formed with the plasmid pTZUbi-mCherry-tubulin that expresses mCherry-labeled alpha-

tubulin and selected with Zeocin [40]. Lines expressing the tubulin reporter were selected and

analyzed by confocal microscopy. For high-resolution time series acquisition, the confocal pin-

hole was closed to 0.4–0.5 airy units. Scanning rate was set to 200 Hz, the acquisition format

set to 512x246 pixels, with a zoom of 6 and a pixel size of 80.2 nm. To maximize signal

Conditional genetic screen in plants identifies a novel and conserved microtubule tracking protein

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007221 May 10, 2018 22 / 29

https://doi.org/10.1371/journal.pgen.1007221


acquisition and reduce background a hybrid detector was used to acquire the CLoG1-mEGFP

signal. The green channel (CLoG1-mEGFP) was background subtracted (radius of 20) and

normalized (0.4% saturation), the red channel (microtubules) was background subtracted

(radius 50), filtered with unsharp mask (radius 10, mask weigh 0.5) and Gaussian blur (sigma

1), and normalized (0.4% saturation). Equivalent settings were used to image spindle and

phragmoplast formation. For kymographic analysis of microtubule ends, we use the “Multi

Kymograph” function of the ImageJ (Fiji distribution). An in-house macro (available upon

request) was used to track the microtubule ends from kymographs and determine their depo-

lymerization rates based on the angles formed. To estimate the mean velocities for fast and

slow depolymerizing ends we used a two Gaussians mixture model from the mixtools package

(normalmixEM procedure) from R (RStudio), which is based on the iterative expectation max-

imization (EM) algorithm.

Measuring bulk microtubules dynamics

CLoG1 UTR RNAi plasmid was transformed into a NLS4/mCh-Tubulin line as described

above. Both test and control transformants were selected for with hygromycin selection.

Seven-day-old plants were visually screened for active silencing (lack of nuclear GFP) via fluo-

rescent stereomicroscope (Nikon SMZ1500), and regions containing plants were marked for

confocal imaging. Silenced plants were transferred to an agar pad mounted slide for confocal

imaging. Cortical mCh-Tubulin was excited with a 561nm laser, and emission was collected

with a 570+nm bandpass. ImageJ was used for post-acquisition processing. The correlation

coefficient analysis was performed in MatLab as previously described [47]. Traces for individ-

ual cells were compared, and outliers were removed from the final average. An outlier was

defined as a cell with a trace that was outside 1.5 times the interquartile range more than 50%

of the trace.
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S1 Fig. Diagram outlining a genetic screen to identify temperature-sensitive mutants in

Physcomitrella patens.
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S3 Fig. Maximum likelihood phylogenetic tree based on the amino acid sequence align-

ment of proteins homologous to CLoG1 from amoeboid protists, green algae, and land

plants. The tree is the consensus from 100 bootstrap and only branches with more than 50%

support are shown. P. pallidum was selected as the root. Accession numbers for the sequences
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S4 Fig. Amino acid sequence of CLoG1 with hydrophobicity plot and secondary structure

prediction. A sliding window of 5 was used for the hydrophobicity plot (below the sequence,

red indicates high hydrophobicity). Secondary structures are blue cylinders for alpha-helices,
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logues. Two amoeboid protists, two green algae, and two land plants were selected for compar-

ison. Regions with identities above ~20% were selected. The largest highly conserved regions

are present both at the N and C termini. Note the presence of abundant leucine residues.

(PDF)

S6 Fig. Stable complementation of clog1 mutant by CLoG1-mEGFP. Three lines were tested

all showing significant higher levels of growth and cell polarization at the restrictive tempera-

ture (32˚C) when compared with the clog1mutant.

(PDF)

S7 Fig. Two additional representative examples of CLoG1-mEGFP bias to the spindle

poles during anaphase. Note that CLoG1-mEGFP (green) is present in the whole spindle but

accumulates toward the spindle poles in relation to mCherry-tubulin (red). Compare with Fig

6 in the main text.

(PDF)
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genomes.

(PDF)
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Carlo simulation.
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S4 Table. Scale and shape parameters of the gamma distribution which determines the dis-
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S5 Table. Primers used in this study.
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S6 Table. Species, accession numbers, and amino acid sequence lengths of CLoG1 protein
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S1 Movie. Apical caulonemal cell expressing a C-terminal mEGFP fusion of CLoG1 and

mCherry-Tubulin. Scale bar = 5 microns.

(MOV)

S2 Movie. Mitosis and cytokinesis of a caulonemal cell expressing a C-terminal mEGFP

fusion of CLoG1 and mCherry-Tubulin. Scale bar = 5 microns.

(MOV)

S3 Movie. Cortical microtubule and CLoG1 dynamics in a caulonemal cell expressing C-

terminal mEGFP fusion of CLoG1 and mCherry-Tubulin. Scale bar = 5 microns.

(MOV)

S4 Movie. Short sequences of a representative depolymerizing microtubule illustrating

slow end depolymerization and CLoG1 accumulation in a caulonemal cell expressing C-
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terminal mEGFP fusion of CLoG1 and mCherry-Tubulin. Scale bar = 5 microns.

(MOV)

S5 Movie. Short sequences of a representative depolymerizing microtubule illustrating fast

end depolymerization and CLoG1 accumulation in a caulonemal cell expressing C-termi-

nal mEGFP fusion of CLoG1 and mCherry-Tubulin. Scale bar = 5 microns.

(MOV)

S6 Movie. Short sequence of a representative depolymerizing microtubule illustrating

simultaneous two end depolymerization and CLoG1 accumulation in a caulonemal cell

expressing C-terminal mEGFP fusion of CLoG1 and mCherry-Tubulin. Scale bar = 5

microns.

(MOV)

S7 Movie. Short sequence of a representative depolymerizing microtubule illustrating

simultaneous two end depolymerization and CLoG1 accumulation in a caulonemal cell

expressing C-terminal mEGFP fusion of CLoG1 and mCherry-Tubulin. Scale bar = 5

microns.

(MOV)

S8 Movie. Short sequence of a representative polymerizing and depolymerizing microtu-

bule (catastrophe) illustrating association of CLoG1 to a depolymerizing end in a caulone-

mal cell expressing C-terminal mEGFP fusion of CLoG1 and mCherry-Tubulin.

(MOV)

S9 Movie. Short sequence of a representative polymerizing and depolymerizing microtu-

bule (catastrophe) illustrating association of CLoG1 to a depolymerizing end in a caulone-

mal cell expressing C-terminal mEGFP fusion of CLoG1 and mCherry-Tubulin.

(MOV)
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