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Simple Summary: The present study aimed to investigate the possible use of MRI delta texture
analysis (D-TA) in order to predict the extent of pathological response in patients with locally
advanced rectal cancer addressed to neoadjuvant chemo-radiotherapy (C-RT) followed by surgery.
We found that D-TA may really predict the frequency of pCR in this patient setting and, thus, it may
be investigated as a potential item to identify candidate patients who may benefit from an aggressive
radical surgery.

Abstract: We performed a pilot study to evaluate the use of MRI delta texture analysis (D-TA)
as a methodological item able to predict the frequency of complete pathological responses and,
consequently, the outcome of patients with locally advanced rectal cancer addressed to neoadjuvant
chemoradiotherapy (C-RT) and subsequently, to radical surgery. In particular, we carried out a
retrospective analysis including 100 patients with locally advanced rectal adenocarcinoma who
received C-RT and then radical surgery in three different oncological institutions between January
2013 and December 2019. Our experimental design was focused on the evaluation of the gross tumor
volume (GTV) at baseline and after C-RT by means of MRI, which was contoured on T2, DWI, and
ADC sequences. Multiple texture parameters were extracted by using a LifeX Software, while D-TA
was calculated as percentage of variations in the two time points. Both univariate and multivariate
analysis (logistic regression) were, therefore, carried out in order to correlate the above-mentioned
TA parameters with the frequency of pathological responses in the examined patients’ population
focusing on the detection of complete pathological response (pCR, with no viable cancer cells: TRG 1)
as main statistical endpoint. ROC curves were performed on three different datasets considering that
on the 21 patients, only 21% achieved an actual pCR. In our training dataset series, pCR frequency
significantly correlated with ADC GLCM-Entropy only, when univariate and binary logistic analysis
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were performed (AUC for pCR was 0.87). A confirmative binary logistic regression analysis was then
repeated in the two remaining validation datasets (AUC for pCR was 0.92 and 0.88, respectively).
Overall, these results support the hypothesis that D-TA may have a significant predictive value in
detecting the occurrence of pCR in our patient series. If confirmed in prospective and multicenter
trials, these results may have a critical role in the selection of patients with locally advanced rectal
cancer who may benefit form radical surgery after neoadjuvant chemoradiotherapy.

Keywords: rectal cancer; neoadjuvant chemo-radiation; MRI; texture analysis

1. Introduction

Preoperative RT, in combination with fluoropyrimidines alone or combination with
oxaliplatin, is regarded as the standard of care in the treatment of patients with locally
advanced rectal cancer (LARC) before radical surgery (mesorectal excision, TME) [1–6].
Chemo-radiotherapy (C-RT), in fact, decreases the rate of local relapse and prolongs the
progression-free survival (PFS) of these patients, albeit its effects on overall survival (OS)
are still to be proven [7,8]; additionally, it allows for less-invasive surgery with a lower
frequency of complications [9]. On the other hand, the evaluation of prognosis indexes, as
well as the response assessment of the neoadjuvant chemo-radiation therapy (C-RT) plus
total mesorectal excision (TME) [7], still represents a challenge [10], although these topics
could be exciting to customize the therapy to the patient needs [11]. Several works in the
last few decades suggest the feasibility of a wait-and-see approach in patients with very
high surgical risk or trans-anal rectal excision approach if a significant response to CRT
is assessed [1,10,12,13]. In this regard, magnetic Resonance Imaging (MRI) seems to be
helpful to provide morphological and functional pieces of information that can be used to
predict prognosis in pre-treatment patients [14–19], but its value in the pre- and post-CRT
response assessment is still debated [20–29].

At present, a number of studies highlight the reliability of local staging with pelvic
magnetic resonance imaging (MRI) in defining parameters strictly correlated with a high
risk of relapse, which include circumferential tumor margins, a possible extramural vascular
infiltration, and the presence of metastases to loco-regional nodes [30].

Further, other studies suggest that the additional use of diffusion-weighted imaging
(DWI) may also define the tumor tissue cellularity, which, in turn, offers the promising
ability to predict the local response to C-RT [31–34].

In more recent times, the development of texture analysis (TA) has allowed researchers
to attempt to quantify heterogeneity within the target tumor sites, thus, identifying further
valuable parameters, undetectable by naked eye observation [35,36]. TA refers to multiple
mathematical models able to provide reliable measurements of heterogeneity within a se-
lected image (texture features). This innovative analysis is currently investigated in several
fields and requires a computer quantification of both gray-level intensity and the position
of pixels [37–49]. Several authors are investigating a possible application in the monitoring
and research of biomarkers in cancer patients, including those with LARC [27,50–52]. In
this context, Antunes et al. accurately described, in a retrospective multisite study on
radiomic features of rectal cancer for Neoadjuvant C-RT response, how a limited number
of four radiomic features extracted from T2w MRI scans allows one to achieve good per-
formance for predicting pCR using Laws and CoLIAgE operators to quantify fluctuations
in local image heterogeneity. Those results were achieved independently from MRI scan
types (1.5T vs. 3T) [53].

The most recent methodological acquisitions have opened the way for the newest TA
approaches that take into account the variations in TA parameters recorded at different
acquisition times and defined as delta texture analysis or delta radiomics (D-TA) [54–59].
It is consequential that these kinds of method may be evaluated as possible items able to
investigate the meaning of the reported TA variations in the course of anticancer therapy,
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including radio/chemo/immuno and target therapy, as well as common neoadjuvant
cytoreductive strategies [55–58,60]. Overall, this promising field of investigation may theo-
retically lead to a possible oncological treatment, ushering in the future in this field, being
more reliable than other imaging approaches in multicenter clinical experimentations [61].
In the last few months, several authors have tested this approach in the context of LARC,
with promising results in different endpoints [62–67]. In line with these considerations,
we designed a retrospective study aiming to evaluate the potential ability of MRI D-TA to
predict the frequency of pathological response of patients with LARC undergoing C-RT
prior to radical surgery.

2. Materials and Methods
2.1. Patient Series

This is a retrospective analysis including patients with rectal cancer who received
neoadjuvant therapy and then surgery in three different Radiation Oncology Units between
January 2013 and December 2019.

Standard inclusion criteria were taken into consideration for this study (achievable
endoscopic/bioptic diagnosis and localized disease at the pre-treatment staging, standard
long-course neoadjuvant C-RT protocol, and MR imaging examination at baseline and after
the end of C-RT, surgical treatment by TME, and the evaluation of tumor regression grade
in the post-surgical report). Patients with MRI examinations without DWI acquisition
or lack of post-C-RT MR examination were excluded from the analysis. All the patients
gave written consent to anonymous use of their examinations for research scope, and a
notification of the study was submitted to the local ethical committee as established by
national laws.

2.2. Standard Chemo-Radiation Therapy Protocol

According to the international guidelines, all of the patients received oral chemother-
apy with capecitabine (825 mg/m2, twice daily for five days/week) which could be deliv-
ered daily for five weeks in parallel with the radiotherapy treatment. Radiation therapy
volumes focused on the rectum, mesorectum, presacral nodes, and internal iliac nodes [68]
with a radiation dosage of 45 Gy, delivered with a conformational radiation technique (3D-
CRT) or intensity-modulated RT (IMRT) (5 weekly sessions of 1.8 Gy/daily for five weeks)
with further boost dose of 9 Gy (fractioned in five sessions), coned down to tumor with a
2 cm margin and adjacent mesorectal region. Simultaneous integrated boost (SIB-IMRT)
was also allowed.

2.3. Magnetic Resonance Imaging

Pelvic MRI examination (1.5-T system, Signa Excite HD, GE Healthcare, Milwaukee,
WI, USA for the training dataset, 1.5-T system, Signa Voyager HD, GE Healthcare, Milwaukee,
WI, USA and 1.5T system, Achieva XR, Software release 5.3.1, Philips, Amsterdam, The
Netherlands, respectively, for the validation datasets) with an eight-channel phased-array
coil performed at baseline and 30 ± 15 days after the end of C-RT was available for all the
patients included in the study (see Table 1 for the characteristics of the three MRI vendors).

Table 1. Acquisition parameters of the three magnetic resonance imaging vendors used in the three datasets.

Parameters Training Dataset Validation Dataset One Validation Dataset Two

Vendor Signa Excite HD, GE
Healthcare 1.5 T

Signa Voyager HD, GE
Healthcare 1.5 T

1.5T system, Achieva XR, Software release
5.3.1, Philips, Amsterdam, The Netherlands

Sequences
FSE T2 (axial, coronal,

sagittal), T1 (axial pre and
post c.e.), DWI and ADC

FSE T2 (axial, coronal,
sagittal), T1 (axial pre and
post c.e.), DWI and ADC

FSE T2 (axial, coronal, sagittal), T1 (axial pre
and post c.e.), DWI and ADC

DWI B 0. 500. 800 s/mm2 B 0. 500. 1000 s/mm2 B 0. 600. 1000 s/mm2
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The imaging protocol was chosen following the European Society of Gastrointestinal
Abdominal Radiology (ESGAR) recommendations [5,7,69].

The imaging protocol consisted of high-resolution fast spin-echo (FSE) T2-weighted
sequences in the sagittal, axial, and coronal–oblique planes, oriented perpendicularly and
parallel to the axial extension of the lesion in the rectal lumen [69]. The DWI is based on
the echo-planar spin-echo (SE-EPI) sequence. A fat-saturated pulse was always applied
to avoid chemical shift artifacts. Each sequence was acquired in the same axial oblique
plane of the T2-weighted images by application of a b-factor and relative apparent diffusion
coefficient (ADC) maps.

2.4. Surgery and Histopathological Assessment

TME was commonly performed 50 ± 18 days after the end of C-RT protocol. Surgical
specimen pathological examinations also reported the tumor regression grade (TRG) estab-
lished according to the literature (Mandard score: grade 1 complete regression with fibrosis,
grade 2 isolated cells in fibrotic tissue, grade 3 cell groups in massive fibrosis, grade 4 high
amount of cell groups in fibrotic tissue, grade 5 no regression) [70,71].

2.5. Feature Extraction and TA

The gross tumor volume (GTV) was contoured by a radiation oncologist (VN and RG)
and confirmed by expert radiologists (SFC, AR) on T2, DWI, ADC sequences. GTV on post
C-RT treatment was contoured, taking into consideration the baseline GTV and in selected
cases using an elastic fusion approach to assist the contouring.

The target contouring variations were analyzed by performing two delineations for
each patient. The TA parameters were also tested for reliability by using the Intraclass
Coefficient Correlation method (ICC). All the analysis were accomplished by using the LifeX
Software © (Version 7.2, LITO 22, Deveoped by C. Nioche, INSERM, Paris, France) [72].
TA parameters in particular, included features of gray-level co-occurrence matrix (GLCM),
shape parameters, and indices from the gray-level histogram (see Supplementary Table S1
for the description of the parameters). D-TA was finally calculated as variation ratio of each
TA parameter extracted in the two time points, with the formula [(T2-T1)/T1].

2.6. Long-Term Follow-Up

All of the patients were scheduled in a post-surgery oncological follow-up program,
including a CT-scan and/or MRI repeated every 9–12 weeks at first, and then every six
months for the first two years. General examinations with the recording of toxicity, blood
cell counts, and chemistry and serum CEA levels were also reported on a three-monthly
basis for the first two years.

2.7. Variables’ Selection

A reliability ICC analysis previously identified reliable TA parameters (ICC > 0.70.
single measure) including the T2-MRI (7 out of 13 cases; 54%) for DWI-MRI (ten out 13 cases;
77% and ADC-MRI (11 out of 13 cases; 84%) (see Supplementary Table S2 Materials for the
description of the ICC of the texture features).

2.8. Endpoints and Statistical Analysis

The clinical characteristics of the three datasets were tested with Chi-Square analysis
(see Table 1).

2.9. Training Dataset

The complete pathological response (pCR, with no viable cancer cells: TRG 1) was cho-
sen as the target statistical endpoint to be statistically correlated with the above-mentioned
D-TA parameters. Univariate analysis (univariate logistic regression, with Bonferroni
correction for the number of variables) was performed in order to correlate D-TA with the
defined endpoint within an internal cohort of patients (see Table 2) observing a correlation
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larger than 0.80 (Pearson correlation). All of the variables with the inferior univariable
correlation with the endpoint were omitted in order to avoid the risk of model overfitting
and multicollinearity [73]

Table 2. Characteristics of patients.

Characteristic Training
Dataset

Validation
Dataset 1

Validation
Dataset 2 Chi-Square Test

Sex

p:0.597
Males 26 (70%) 21 (64%) 17 (57%)

Females 11 (30%) 12 (36%) 13 (43%)
Age

<70 years 23 (62%) 22 (64%) 16 (53%)
p:0.841>70 years 14 (38%) 11 (36%) 14 (47%)

Stage (T)

p:0.340
cT2 8 (22%) 6 (18%) 3 (10%)
cT3 25 (67%) 18 (55%) 20 (66%)
cT4 4 (11%) 9 (27%) 7 (24%)

Stage (N)

p:0.323
cN0 5 (14%) 4 (12%) 2 (7%)

cN1/2 32 (86%) 29 (88%) 28 (93%)
Grading

p:0.743
G1 2 (5%) 3 (9%) 2 (7%)
G2 30 (81%) 23 (70%) 20 (67%)
G3 5 (14%) 7 (21%) 8 (26%)

TRG

p:0.180

1 10 (27%) 6 (18%) 5 (17%)
2 13 (35%) 19 (57%) 13 (43%)
3 13 (35%) 8 (24%) 8 (26%)
4 1 (3%) 0 (0%) 4 (14%)

The correlation between the significant TA parameters and the endpoint in the multi-
variate analysis (binary logistic regression) was performed as reported in previous studies
from our group [74,75]. Finally, a logistic regression analysis was optimized on a training
cohort of patients, and the receiver operating characteristics (ROC) curve was extrapolated
from the logistic regression analysis. ROC curve was used to calculate and report the
model cut-off.

2.10. Dataset Validation

A confirmatory binary logistic regression was repeated in the two validation cohorts,
and the corresponding ROC curves were finally extrapolated from the analysis. The cut-off
extrapolated by the training dataset was used for the validation dataset. The cut-off of
the training model was used to calculate specificity, sensitivity, and accuracy of the model
in the training model and validation models. All the statistical analyses were conducted
by using SPSS software 23.0 (IBM Corp. Released 2015. IBM SPSS Statistics for Windows,
Version 23.0. Armonk, NY: IBM Corp.). and considered as statistically significant when a
p-value < 0.05 was recorded.

3. Results
3.1. Patients’ Features

This retrospective analysis was performed on an unmasked sample of 37 consecutive
patients in the training dataset and, respectively, 33 and 30 consecutive patients in the
two validation datasets. The main characteristics of the three datasets are summarized in
Table 2. There was a rate of 27% (10 patients) that showed a pCR in the training dataset
and, respectively, 18% (6 patients) and 17% (5 patients) in the two validation datasets.
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3.2. Factors Predicting ePD

We performed an analysis of the correlation between the preselected texture analysis
parameters, the known prognostic markers, including sex, age, stage, grading, and the
pCR, using Bonferroni correction in the training dataset (see Table 3). After Bonferroni
correction, the only TA parameters that was significantly correlated with pCR were ADC
GLCM Entropy (p < 0.001), DWI Volume (p:0.048), and ADC GLCM Entropy (p:0.045).
From the multivariate logistic regression, the only parameter that remained significantly
correlated with pCR in the training dataset was ADC GLCM Entropy (OR 0.14). The same
analysis was repeated in the two validation datasets, confirming the significant correlation
(respectively, OR 0.08 and OR 0.06) (see Supplementary Table S3 and Figure 1).

Table 3. Univariate analysis (Chi-Square) of the reliable texture features and the chosen endpoint
(TRG0) for the training dataset.

MRI
Sequence TA Parameter Univariate Analysis

(Chi-Square)
Bonferroni Correction

(Number: 27)

T2-MRI

Volume.ml 0.49 NS
Skewness 0.68 NS
Sphericity 0.82 NS
Compacity 0.21 NS

GLCM.homogeneity 0.17 NS
GLCM.entropy 0.97 NS

GLCM.dissimilarity 0.62 NS

DWI-MRI

Volume.ml 0.00018 0.0486
Skewness 0.03 NS
Kurtosis 0.20 NS
Entropy 0.25 NS

Compacity 0.71 NS
GLCM.homogeneity 0.45 NS

GLCM.contrast 0.37 NS
GLCM.correlation 0.72 NS

GLCM.entropy 0.0017 0.0459
GLCM.dissimilarity 0.32 NS

ADC-MRI

Volume.ml 0.54 NS
Skewness 0.98 NS
Kurtosis 0.90 NS
Entropy 0.42 NS
Energy 0.59 NS

Sphericity 0.78 NS
Compacity 0.11 NS

GLCM.homogeneity 0.03 NS
GLCM.contrast 0.40 NS
GLCM.entropy 0.00017 0.00459

GLCM.dissimilarity 0.60 NS

Clinical
Parameters

Sex 0.32 NS
Age 0.25 NS

Stage 0.24 NS
Grading 0.28 NS

3.3. Calculation of Cut-Of

ROC curves were generated from the multivariate logistic regression analysis in both
the datasets, and the AUC for pCR was 0.87 for the training dataset and, respectively, 0.92
and 0.88 for the two validation datasets (see Supplementary Table S4 and Figure 2). The
cut-off of ADC GLCM Entropy calculated on the training dataset was equal to −0.10. Using
this cut-off, the sensibility of the model was 70%, the specificity of the model was 74%, and
the accuracy of the model was 73%. The same cut-off, calculated on the two validation
datasets, showed, retrospectively, a sensibility of 100% and 80%, a specificity of 66.7% and
80%, and an accuracy of 72.7% and 80% (see Figure 3 and Table 4).
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Table 4. Specificity, sensibility, and accuracy of the cut-off of the texture parameter GLCM.
EntropyADC.

Model Count TRG > 0 TRG0 Total

Training
Dataset

GLCM.EntropyADC < 0.10 7 7 14

GLCM.EntropyADC > 0.10 20 3 23

Validation
Dataset 1

GLCM.EntropyADC < 0.10 9 6 15

GLCM.EntropyADC > 0.10 18 0 18

Validation
Dataset 2

GLCM.EntropyADC < 0.10 5 4 9

GLCM.EntropyADC > 0.10 20 1 21

Legend
GLCM.EntropyADC < 0.10 False Positive True Positive

GLCM.EntropyADC > 0.10 True Negative False Negative

4. Discussion

The results of our study suggest that a non-invasive and dynamic analysis of MRI
imaging, such as D-TA, can be used to predict the outcome of patients with LARC and,
therefore, may help in the research on predictive biomarkers of responses to neoadjuvant C-
RT and selection of patients who may avoid the risk of surgery. Many authors have already
investigated the possible correlation of imaging techniques, especially MRI (volumetric
analysis and TA) with patient outcomes; however, many of them mainly used T2 and
DWI maps [23,31,76–84]. Conversely, CT imaging is used in different pathologies [85–91].
The results obtained in the present study show that TA applied to ADC maps could help
to assess clinical and pathological response in LARC. In a previous study, significant
findings in the response assessment were found about kurtosis, based on the T2-weighted
dataset of images [92–94]. The authors found a significantly lower kurtosis in pre-treatment
TA of pCR, with significant changes after CRT. Conversely, we chose to extrapolate TA
parameters from ADC maps because of the direct relationship between the ADC values
and tissue architecture, which seems to be independent of acquisition parameters. Indeed,
some differences in geometrical and acquisition modality of the sequence could modify
the spatial and contrast resolution of images, introducing a factor of variability. DWI
sequence can also be influenced by the same parameters, but the obtained ADC maps
are nonparametric dataset, similar to CT images, and their gray-scale levels in the image,
are directly correlated to the imaged substrate (proton diffusivity and atomic number,
respectively). At the same time, ADC sequences seem stable and useful in the setting of
LARC [95,96]. We, therefore, found that the D-TA ADC GLCM Entropy was significantly
decreased in patients who achieved pCR in the treatment. These results were in line
with those recently reported by Nie et al., who found a higher Entropy (on T2 sequence)
and a lower GLCM-Homogeneity (on DWI sequences) in LARC patients who did not
benefit from neoadjuvant C-RT, in terms of a complete pathological response [97]. All
together, these findings led us to hypothesize that the above-mentioned parameters might
be strongly predictive of treatment resistance in LARC patients. Liu et al. [98] already
used the ADC texture analysis for the same endpoint, suggesting that apparent diffusion
coefficient texture analysis could improve the prediction of responders to neoadjuvant
treatment. Similarly, other authors have successfully used ADC maps calculated on basal
MRI for rectal cancer staging [99,100].

At present, MRI radiomic changes featuring between pre- and post-nC-RT are under
active investigation in TRG prediction for pCR, good response, and T-downstaging [101].
For this purpose, Shayesteh et al. [64] assessed 96 delta radiomics features extracted from
T2-weighted MRIs of 53 patients. They used 17 patients as an external validation set
and reached, in the delta-radiomic-based model, the highest AUC of 0.96 (±0.01). Their
delta-radiomics model outperformed both pre- and post-treatment features (p-value < 0.05).
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In another model, Wan et al. [66] used a T2-weighted and DWI MRI showing a good
performance for pCR prediction and reporting AUCs of 0.91 in the training and validation
sets. Similarly, Jeon et al. [67] investigated both 2D and 3D features extracted from T2-
weighted MRIs, finding that 2D delta-radiomics can be used as a good surrogate for 3D
features in rectal cancer patients.

In more recent times, Boldrini et al. [60] investigated the feasibility of radiomics
analysis to predict cCR using a hybrid 0.35 T magnetic resonance, acquired during RT
procedures. In this case, the variation in the three target delta features (energy, gray-
level non-uniformity, and least axis length), showed a statistically significant correlation
(p-value < 0.05) with pCR achievement. These data were later confirmed in the validation
set by the same group, who reported a performance of ∆L least in predicting cCR and pCR,
with an accuracy of 81% and 79%, respectively [62].

In line with this evidence, changes in tumor morphology and heterogeneity in delta
radiomics features have also been correlated with the risk of metastatization and with the
OS. In fact, Chiloiro et al. [63] selected 110 delta radiomics features showing the relevance
of this approach in identifying the subset of patients with a higher risk of distant metastases
at two years, in a large single-institution cohort.

To our knowledge, our study represents the first attempt to predict pathological
response in LARC patients using the delta radiomics approach based on the use of ADC
sequences with volumetric TA, with three datasets. Furthermore, the use of delta radiomics
features, with the calculation of the differences among features before and after specific
treatment, would probably provide more detailed information about treatment response
than static TA. The robustness of the delta radiomics signature was evaluated in a recent
study on a phantom model, which confirmed an increased reproducibility of D-TA signature
compared to TA extracted from ADV, T2w, and DWI MRI Scans [61]. Our results confirm,
in a larger dataset, including three cohorts from different institutions, that the volumetric
D-TA, and specifically, the ADC-MRI, could provide additional information in assessing
pathological response and can be used to identify the patients at risk.

Limitations of the Study

The results of our study may be worthy of critical consideration for methodological
and technical refinements due to the retrospective nature. We believe that the correlations
between textural parameters and clinical outcomes may need further investigation to better
understand the pathological basis sustaining the observed TA parameters. We definitely
need to further investigate the real reproducibility and the reliability of this kind of analysis
in other oncological centers, targeting different parameters of MRI acquisitions. We believe
that the ability to perform subsequential imaging in each single center using the same
acquisition parameters might increase the robustness of D-TA.

5. Conclusions

Pathological response to neoadjuvant CHT-RT represents an early outcome of treat-
ment, strictly correlated with the prognosis of patients. Our results appear to be promising,
since the D-TA seems to improve the knowledge of the predictive factors of response and
may lead to different approaches to this subset of patients, such as intensive neoadjuvant
chemotherapy or short-course RT with intensive adjuvant chemotherapy, or deferral of
surgery, in selected subsets. Further prospective studies on a large population with external
validation are needed to best estimate the present preliminary data.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers14123004/s1, Table S1: Texture analysis parameters calculated
with Lifex Software, and corresponding description, Table S2: Reliability analysis of TA parameters,
Table S3: Logistic regression analysis performed on both Training Dataset and Validation Dataset,
Table S4: Characteristics of the ROC Curves. 2LL: 2 log-likelihood; R2: Nagelkerke R2, AUC: Area
Under the Curve of the ROC; SE: standard error; HL: Hosmer–Lemeshow.
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