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Abstract
With the trend in molecular epidemiology towards both genome-wide association studies and complex model-

ling, the need for large sample sizes to detect small effects and to allow for the estimation of many parameters

within a model continues to increase. Unfortunately, most methods of association analysis have been restricted

to either a family-based or a case-control design, resulting in the lack of synthesis of data from multiple studies.

Transmission disequilibrium-type methods for detecting linkage disequilibrium from family data were developed

as an effective way of preventing the detection of association due to population stratification. Because these

methods condition on parental genotype, however, they have precluded the joint analysis of family and case-

control data, although methods for case-control data may not protect against population stratification and do

not allow for familial correlations. We present here an extension of a family-based association analysis method

for continuous traits that will simultaneously test for, and if necessary control for, population stratification. We

further extend this method to analyse binary traits (and therefore family and case-control data together) and

accurately to estimate genetic effects in the population, even when using an ascertained family sample. Finally,

we present the power of this binary extension for both family-only and joint family and case-control data, and

demonstrate the accuracy of the association parameter and variance components in an ascertained family sample.
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Introduction

For much of the past three decades, linkage analysis

has been the primary tool for the initial exploration

of complex diseases believed to have an underlying

genetic aetiology and has resulted in many large

cohorts of family data with DNA samples available.

Unfortunately, however, the ability of linkage analysis

to localise potentially segregating susceptibility or

protective genotypes has been limited to, at best,

regions of 5–10 centimorgans (cM) in length and, at

worst, 20 cM in length.1 This limitation has led to a

rise in popularity of methods for detecting allelic (or

gametic) association in candidate genes, in candidate

linkage regions or genome-wide. This allelic associ-

ation, coupled with linkage, allows for much more

precise localisation of regions housing disease genes

because, if it is due to linkage disequilibrium (LD), it

will span a much shorter distance within the genome

than is usually found by linkage analysis. With this

rise in association studies, there has been a trend
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toward the collection of unrelated case-control

samples, often with the abandonment of large family

studies. Certainly, these samples are much easier to

obtain than are family samples, but they also have

certain limitations, even within the context of recent

genome-wide association successes.2,3 Further, allelic

association can be due to factors other than LD

(which we define as the combination of allelic associ-

ation and linkage) or pleiotropy (a marker allele itself

being involved in the aetiology of the disease).4

Population stratification, which exists when mul-

tiple strata within a given sample differ with respect

to either the underlying trait distribution or the

marker genotype distribution (and which leads to

spurious association when it occurs with respect to

both), is a commonly cited cause of false-positive

findings in case-control association studies (eg

Knowler et al.5) and the most likely cause in genetic

epidemiological studies. This threat of increased type

I error rate has led to the development of many

methods that guard against the effects of population

stratification. The first two general classes use

unlinked loci and can both be subsumed under the

term ‘genomic control’: (1) test for population strati-

fication using unlinked regions of the genome; (2)

allow for the population stratification, as estimated

from unlinked regions of the genome when per-

forming an analysis of allelic association. The third

general class guards against population stratification

by using non-transmitted alleles as controls (ie a

case-control design perfectly matched for ethnicity

by appropriately using family data). While these

methods are effective in controlling for population

stratification, they each have their limitations with

respect to power, efficiency and flexibility.

The limitations of genomic control methods6–8

are the requirement of having genotypes at many

loci unlinked to the disease allele. In the context of

a genome-wide association scan, the choice of the

best regions to use as a ‘control’ is difficult, as there

is no guarantee that the markers being used are

indeed unlinked to a disease gene. Applying this

method to a candidate gene study suffers from the

same limitation, but also requires significant

additional cost and labour to type enough (and

how many is enough?) additional loci.

Transmission disequilibrium tests (TDTs) — as

they were termed by Spielman et al.9 and are com-

monly referred to — comprise, in general, a

unique study design (rather than a single statistical

test) that protects against the effects of population

stratification by comparing the frequencies of alleles

(haplotypes or genotypes) transmitted from parents

to their affected children with the frequencies of

non-transmitted alleles to these same children.

These tests of allelic association condition on, at

least, parental genotypes and offspring disease phe-

notypes. Many TDT-type designs have been

suggested since first proposed by Rubinstein

et al.,10 including extensions for multiple siblings,

missing parents and extended pedigrees — to name

but a few (see Table S1). All of these extensions,

however, retain conditioning on part of the data

available and therefore share the following limit-

ations: (1) conditional tests are sensitive to sampling

strategy, leading to very low power under several

conditions;11 and (2) missing parental data, trans-

missions from homozygous parents — or from

heterozygous parents to heterozygous children —

are non-informative, which results in a dramatic

reduction of effective sample size and therefore of

power, particularly when analysing single nucleo-

tide polymorphism (SNP) data. This may also lead

to an increased type I error rate if care is not taken

to include the transmissions from two similarly het-

erozygous parents when the child is heterozy-

gous.12 Further, as for all tests of allelic association,

the power of TDT-type designs rapidly decreases if

the marker is not the disease locus and/or if the

marker and disease allele frequencies differ.13–15

Novel methodological approaches for the analysis

of LD in family data include a class of variance

component approaches and what are termed

family-based association tests (FBATs). Fulker first

proposed a test for both between-family association

(or, more appropriately, ‘among-family’, as we typi-

cally expect more than two families), which models

the phenotypic means given the marker locus gen-

otypes, and within-family association (linkage) by

using identity-by-descent status in modelling the

sib-pair variance–covariance structure.16 It was

shown that the within-family component provides
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an estimate of the additive genetic effect unaffected

by population stratification. Sham et al.17 extended

this method to incorporate larger sibships, domi-

nance variance and multi-allelic markers. It was

further extended to sibships with or without par-

ental genotypes, and to multi-generational pedigree

data by Abecasis et al.18 FBAT is a unified approach

to family-based tests of association that ‘compares

tests for association to their conditional distri-

butions given the minimal sufficient statistics under

the null hypothesis for the genetic model, sampling

plan and population admixture’,19 in two steps: (1)

building a test statistic that is sensitive to the

co-variation of the trait and marker; and (2) finding

the distribution of the test statistic under the null

hypothesis. Broadly speaking, the test statistic is the

‘covariance between a function of the genotype

and a function of the trait’,20 the dependent vari-

able being the offspring genotype. While the first

step gives great flexibility in the choice of test stat-

istic, the second is designed to ensure correct type

I error rates (ie validity), regardless of population

admixture, genetic model or ascertainment

scheme.21 These approaches are broad, in that they

can handle different genetic models, different

family structures (including extended pedigrees)

and disease phenotypes (qualitative or quantitative,

single or multiple). As with the original TDT,

however, only heterozygous parents are informative

in this framework; non-family data cannot be

included and, in the case of FBAT, even if one does

have a random sample, the effect size of the allele

of interest is not estimated. This can lead to a dra-

matic loss of effective sample size and therefore

potential power and/or precision when compared

with an unconditional method such as that pre-

sented here and demonstrated in our previous

work.22 Other methods more robust to these par-

ticular limitations have been recently proposed for

assessing quantitative traits in family-based

samples23 and binary traits in case-control samples,

including related individuals.24,25 Neither of these

methods, however, includes an ascertainment cor-

rection (central to pooling family and case-control

samples), nor do they estimate family or cluster

effects. Further, the former does not allow for the

inclusion of case-control data and the latter does

not allow for the inclusion of covariates.

Based on the limitations of the existing strategies

for testing LD, we present an alternative two-stage

family-based association test in which we combine

attributes of two existing methods, first to test

whether population stratification is present and

then appropriately test for and estimate the effect

of, LD of a marker to a continuous trait. We

further offer extensions of this method that can be

applied to binary traits and hence allow an analysis

of case-control data together with family data. We

illustrate the power of this method for various

sample sizes and structures, specifically for joint

family and population-based samples that cannot be

analysed by existing methods. We also extend this

method to allow for the accurate estimation of

association parameters and residual variance com-

ponents from ascertained family data, and demon-

strate, via simulation, that this method is effective

in controlling ascertainment bias.

Methods

Continuous traits

The framework on which our approach is built was

first described by George and Elston26 and Elston

et al.27 in the special context of a randomly selected

family sample with a measurable, quantitative trait

of interest. For any individual i, with continuous

trait (or, as we will later discuss, liability) yi, jth cov-

ariate values cji and a genotype indicator zi, we can

construct a regression model of the form:

h yið Þ ¼ h aþ g1c1i þ g2c2i þ . . .þ gncni þ dzið Þ
þ pi þ fi þ f 0i þ mi þ si þ 1i; ð1Þ

in which the number of A1 alleles, along with other

covariates, is a predictor of phenotype. In this

model, zi is coded such that the allelic effect of sub-

stituting A2 for A1 is 1
2
d. The random components

include pi, a random polygenic effect, fi and f ’i,

random nuclear family effects, mi, a random marital

effect, si, a random sibship effect and 1i, a random

residual individual effect. In addition, the general-

ised power transformation (h),28 applied to both the

PRIMARY RESEARCH Gray-McGuire et al.

4 # HENRY STEWART PUBLICATIONS 1479–7364. HUMAN GENOMICS. VOL 4. NO. 1. 2–20 OCTOBER 2009



trait and its predictors, when simultaneously esti-

mated under a model that assumes normality of the

residuals, helps assure both linearity and normality,

thus making the model robust to non-independence

(as can be the case in large pedigrees). There are

two random nuclear family effects fi and f 0i in model

(1) because each individual is potentially a member

of two different nuclear families, one in which we

include the individual’s parents and siblings and one

in which we include the individual’s spouse and

children. All the random effects in the model are

assumed to be mutually independent and, after the

transformation, normally distributed with zero

means and variances sp
2, sf

2 ¼ sf ’
2 , sm

2 , ss
2 and s1

2

such that: V[h(yi)] ¼ sp
2 þ sf

2 þ sf ’
2 þ sm

2 þ ss
2 þ

s1
2 for families with more than two generations, and

V[h(yi)]¼sp
2 þ sf

2 þ sm
2 þ ss

2 þ s1
2 for families

with only two generations. It is important to note

that the total variance V[h(yi)] is made the same for

all individuals by adjusting the residual variance s1
2

separately for each person (see Elston et al.27 for

details). This model has recently been further

extended to allow for each person to have more

than two nuclear family effects, as can occur when

there are half-sibships in the data, and other kinds of

common environmental cluster effects.

As currently implemented in the S.A.G.E.

program ASSOC, the likelihood is maximised

numerically over all parameters, and standard errors

are determined by numerical double differentiation

of the log likelihood. Also, p-values, based on the

likelihood ratio or a Wald test, can be calculated for

the transformation parameters, any of the variance

components and any regression coefficients. They

are two-sided for all transformation parameters and

regression coefficients, and one-sided for all var-

iance components.

This method is meant to follow existing evi-

dence of linkage because it does not control for

population stratification. With the growing popu-

larity of genome-wide and candidate gene associ-

ation studies, however, there are likely to be many

instances in which linkage is not known a priori.

For this reason, we suggest — rather than auto-

matically resorting to cumbersome genomic

control methods or a less powerful TDT-type

design — using a two-stage procedure to (1) test

for a stratification effect and then (2) test for allelic

association. If there is no stratification, then the

association resulting from model (1) can be inter-

preted as LD effects. If there is stratification, then

one can use the same regression model framework

to perform a test like those mentioned above (TDT

and FBAT) that conditions on parental genotype.

To test for stratification, we use the same

regression model outlined above, but with the

addition of transmitted and non-transmitted allele

indicators (x1i and x2i) defined as:

x1i ¼

1 if A is transmitted from an informative mating

0 otherwise

�

x2i ¼
1

if A is not transmitted from an

informative mating

0 otherwise:

8>><
>>:

Thus, the regression equation (3) for the trait value

yi is now defined as

hðyiÞ ¼ hðaþ b1x1i þ b2x2i þ g1c1i þ g2c2i

þ . . .þ gncni þ dziÞ þ hi; ð2Þ

where hi is the random effect comprising all of the

familial, sibling, marital, polygenic and individual

specific errors outlined above. George et al.29 gave

details of how the indicator variable x1i is constructed

to form a TDT-type test by substituting it for zi in

regression model (1). We point out that, because it

includes components of a TDT-type test, it requires

family data. The variable x2i is formed analogously

for the other allele of an SNP. In the case of a multi-

allelic marker, all the other alleles can be pooled into

a single allele for this purpose. To test for a stratifica-

tion effect, we first test the null hypothesis that the

genotypic effect is half the difference of the trans-

mitted allele effects; that is, b2 – b1 ¼
1
2
d. If we do

not reject this null hypothesis at some liberal signifi-

cance level such as p ¼ 0.2, we infer that there is no

evidence of stratification, set b2 ¼ b1 ¼ 0 and esti-

mate the allele A1 effect by 1
2
d. If there is any
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evidence of stratification, we set d ¼ 0 and estimate

the allele A1 effect by b2 – b1. Thus, once either

b2 ¼ b1 or d is set to 0, as appropriate, we return to

a framework in which we simultaneously estimate the

effect of allele A1, the residual variance components

and one or more transformation parameters. We can

use asymptotic results to obtain confidence intervals

for all parameter estimates in the usual way, and the

method can be extended to estimate genotype effects

rather than allele effects. While other approaches like

the principal component approach proposed by Zhu

et al.30 work well within this regression framework

and are potentially more informative when many

SNPs are available, this new approach is a viable

option, even if only one or a few SNPs are typed (ie

in the case of a candidate gene study).

Extension to binary traits

The generalised modulus power transformation

mentioned above is fairly effective in inducing

approximate normality, but does, of course, assume

a continuous trait distribution. In many cases, con-

tinuous traits are not available to characterise

complex diseases and only the presence or absence

of disease is available. Therefore, we propose the

following algorithmic extension of Zhu et al.31 Let

mi0 ¼
0:9; if y�i ¼ 1

0:1; if y�i ¼ 0

�
; ð3Þ

where yi
* is the binary trait of interest, 1 represents

affected individuals and 0 represents unaffected, and

mi0
represents an initial estimate of E(yi

*). Our aim

here is to define a new trait yi that, if mi were its

expected value, would be approximately normally

distributed with mean 0 and variance 1. We use

the values of yi defined by equations (2) and (3) as

the dependent variable in a simple generalised

linear regression model of the form

log it½EðyiÞ� ¼ aþ b1x1i þ b2x2i þ g1c1i þ g2c2i

þ . . .þ gncni þ dzi ð4Þ

We have shown that the iterative maximisation pro-

cedure currently implemented in our software

(ASSOC) is quite robust to these initial estimates,

regardless of family size or misspecified analysis

model.32 We do note, however, that the ease of maxi-

misation and the accuracy of estimates depend on

both the sample size and the number of parameters

estimated. In general, we recommend at least 20

observations per parameter estimated to ensure accu-

racy (which can be assessed based on standard errors

we provide).

Because the likelihood that is maximised by this

process is perhaps not a true likelihood (it is a

pseudo-likelihood, in that the estimates of the var-

iance components may be based on incorrect

model assumptions), the variance–covariance

matrix of the estimators obtained by double differ-

entiation of the likelihood may not equal the true

variance matrix, even asymptotically. We may

therefore estimate the variance–covariance matrix

using the robust sandwich estimator,33

V sand ¼ Ĥ�1
1 Ĥ2Ĥ

�1
1 ; ð5Þ

where Ĥ1 is the estimated Fisher information matrix,

which we need not assume is correctly specified,

and Ĥ2 is the estimated outer product gradient

expressed as

Ĥ2 ¼
X

k

D̂0k
X̂�1

k
½ðyk � mkÞðyk � mkÞ

0�
X̂�1

k
D̂0k

ð6Þ

where, for the the kth pedigree,
P̂

k is a diagonal

matrix with elements mik(12mik), yk is the vector of

trait values for the kth pedigree, mk is the vector of

means specific to the kth pedigree and Dk, with trans-

pose D0k, is the matrix of first order partial derivatives

of mk with respect to b obtained assuming that the

covariates are fixed:

Dk
Nkxp
¼

@m1

@b1

@m1

@b2

� � � @m1

@bp

@m2

@b1

@m2

@b2

� � � @m2

@bp

..

. ..
. . .

. ..
.

@mNk1

@b1

@mNk1

@b2

� � � @mNk1

@bp

2
66666666664

3
77777777775
: ð7Þ
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In matrix (7), Nk is the number of persons in the kth

pedigree, p is the total number of regression coeffi-

cients in equation (4), including the intercept, and bj

represents any one of them.

Combining case-control and family data

One of the benefits of the regression framework

outlined above is the flexibility to include families

of any size or structure. This is vital, given, as men-

tioned above, that the magnitude of the effects

associated with any given gene for a common

complex disease is likely to be small. Certainly, pro-

vided we are only interested in hypothesis testing

(we will discuss parameter estimation later),

unmatched case-control data can be easily included

as single person pedigrees with only an individual-

specific variance. In this framework, however,

matched case-control data can also be included by

simply specifying the matched pairs as members of

the same cluster (a cluster, of course, being a

special case of a pedigree). We include in the

model a cluster-specific variance component sc
2,

such that V[logit(yi)]¼sc
2þs1

2, and then adjust the

residual variance s1
2 so as to keep the total variance

the same for all individuals. This approach does not

limit the case-control cluster size or composition,

as does conditional logistic regression.

Correcting for ascertainment

The underlying assumption of the method outlined

above is that the sampling units (families, individ-

uals, case-control clusters) represent a random

sample from the same population. This is often not

the case — particularly when families were sampled

for a linkage study — and cannot be the case for

case-control samples. The sample association and

variance component estimates are thus not repre-

sentative of the population values. We therefore

present an ascertainment correction specifically for

family data (and briefly address an extension to

case-control data in the discussion).

Let the proband sampling frame (PSF) comprise

those individuals who, regardless of phenotype,

could have allowed the family to be ascertained by

reason of being in the catchment area (the area

from which the sample was collected). Then, let

the ascertainment corrected natural log (ln) likeli-

hood be:

ln LðPÞ ¼ ln LðPAllÞ � ln LðPPSFÞ ð8Þ

where L(P) is the final likelihood, L(PAll) is the like-

lihood for the whole sample on the assumption of

random sampling of families and L(PPSF) is the like-

lihood for the family members in the PSF, similarly

on the assumption of random sampling. (For single

ascertainment, only the probands are included in

the PSF). Maximising this likelihood (8) leads to

consistent estimators of all the parameters.34

Power calculations for family data

To assess the power and type I error of our associ-

ation analysis method as extended to binary traits, as

well as to verify the accuracy of both the association

parameters and the residual variance components

for ascertained data, we simulated 2,000 replicates of

samples of 1,000 individuals comprising either 200

nuclear families (two founders, three offspring) or

125 extended pedigrees (three founders, one of

whom is a ‘marry-in’: three generations; one sibship

of size 3 in generation 2; one sibship of size 2 in

generation 3). A continuous liability was created

according to the following linear model:

yi ¼ ai þ gpi þ
Xk

j¼1

djd ji þ 1ei; ð9Þ

where i represents the ith individual; ai is the genoty-

pic effect assigned based on an individual’s major

genotype defined as:

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

ls

2q 1� qð Þ

s
; ð10Þ

where q is the allele frequency and hls
2 is locus-

specific heritability, which we varied to have values

0 (the null hypothesis), 0.0025, 0.0125, 0.025,

0.0375, 0.05 and 0.0625; g is the coefficient (set to

0.25) of the polygenic effect (or ‘polygenotype’) pi,

generated from a N(0,1) distribution for founders
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# HENRY STEWART PUBLICATIONS 1479–7364. HUMAN GENOMICS. VOL 4. NO 1. 2–20 OCTOBER 2009 7



and for non-founders derived as 1
2

(polygenotype of

the mother þ polygenotype of the father) þ a ran-

domly generated value from a N(0, 1
2
); dj is the coef-

ficient for the jth environmental effect which, in our

examples were familial (F), sibling (S) and/or

marital (M) (set to 0 when not included in the

model and to 0.25 otherwise); dji is the environ-

mental factor value assigned to all individuals within

the same familial cluster and distributed N(0,1)

across such clusters, 1 (set to 0.5) is the coefficient

of the random effect; and ei is generated separately

for each individual from a N(0,1) distribution. The

liability yi was then transformed to a binary pheno-

type. First, a standardised liability was created as:

zi ¼
ðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=n� 1
Pn
i¼1

ðyi � �yÞ2
r ; ð11Þ

where yi is the continuous liability created as

defined above and is a mixture of three normal dis-

tributions with means equal to the genotypic effects

of the three genotypes and a common variance

(specific to the variance component model as

shown in Table 1), �y is the sample mean, n is the

total sample size, and 1=n� 1
Pn
i¼1

ðyi � �yÞ2 is the

sample variance. This transformation resulted in

three distributions for the A1A1, A1A2, and A2A2

genotypes, with means (a 2 (q2a2(1 2 q)2a)), (0 2

(q2a 2(1 2 q)2a)), and (2a 2 (q2a 2(1 2 q)2a)),

respectively, the whole mixture distribution having a

variance of 1. Then, an individual was classified as

affected if zi . x, unaffected otherwise. For all

simulations, x was fixed at 1.28, corresponding to a

disease prevalence of approximately 0.1. Thus, A1 is

the ‘risk’ allele.

Creation of a random sample was achieved by

simply collecting individuals (and thus their entire

pedigree) from the simulated population in the

order in which they were encountered until the

desired sample size (1,000 individuals) was met. All

replicates were analysed using both the simulated

correlation model and an ‘incorrect’ correlation

model. For example, if data were simulated to have

both a familial and polygenic effect, they were ana-

lysed under a model (denoted as FP) including

both effects and one (denoted P) that included

only a polygenic effect. Names for all the models

investigated are enumerated in Table 1.

Type I error was calculated as the number of

replicates simulated under the null hypothesis

meeting a recommended cut-off point for genome-

wide association studies by the Wellcome Trust of

a ¼ 5�10–7.35 Power was calculated as the

number of replicates meeting the same criterion

but simulated under the alternate hypothesis.

Sample size estimation for joint family and
case-control data

In addition to the simulations outlined above, in

order to demonstrate the usefulness of this method

for the joint analysis of family and population or

Table 1. Total variance of the non-major gene component of the continuous liability underlying the binary trait and the proportion of

that variance represented by each variance component for each model

Simulated proportion of variance for each variance component

Model

name

Total

variance

Polygenic Familial Sibling Marital Random

P 0.3125 0.200 - - - - - - - - - - - - - - - - - - 0.800

FP 0.3750 0.167 0.167 - - - - - - - - - - - - 0.667

SP 0.3750 0.167 - - - - - - 0.167 - - - - - - 0.667

MP 0.3750 0.167 - - - - - - - - - - - - 0.167 0.667

SMP 0.4375 0.143 - - - - - - 0.143 0.143 0.571

F ¼ familial effect; M ¼ marital effect; P ¼ polygenic effect; S ¼ sibling effect.
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case-control data, we analytically estimated, for a

combination of unrelated individuals (50 per cent

cases, 50 per cent controls), nuclear families and/or

extended pedigrees, the number of individuals

required to detect a given effect size at a fixed type

I error rate and power.

For these calculations, we classified families

according to the number of founders and non-

founders (where unrelated individuals were simply

one-founder pedigrees). Suppose there are ni

families of the ith type, each with nfi founders and

nnfi non-founders. Let yjm be the trait value under-

lying liability for the mth individual in the jth family

with polymorphic marker value gji, and let ajm be a

row vector whose elements are the intercept and

effect of other covariates. Let b be the regression

coefficient on the polymorphic marker and define

Zjm¼yjm2ajm1¼b(gjm2E(gjm)), where 1 is a

column vector of unities. The three genotypes of

the marker are assumed to have the values

(22,1,1), (21,21,2) and (21, 0, 1) for dominant,

recessive and additive modes of inheritance,

respectively. Then, letting Zi
0¼(zf1 . . . zfni

, znf1
. . .

znfnfi
), S

�1
i ¼ the inverse of the variance–covariance

matrix for the ith-type family and assuming

multivariate normality, the log likelihood for

the ith-type family is Li ¼ const2
1

2
(Zi2b(Gi2

E(Gi)))
0S�1

i (Zi2b(Gi2E(Gi))), giving the

maximum likelihood estimator

b̂ ¼

P
i

niðGi�EðGiÞÞ0S�1
i ZiP

i

niðGi�EðGiÞÞ0S�1
i ðGi�EðGiÞÞ

; with

varðb̂ Þ ¼

P
i

nivarððGi�EðGiÞÞ0S�1
i ZiÞ

ð
P

i

niðGi�EðGiÞÞ0S�1
i ðGi�EðGiÞÞ2

¼

P
i

niðGi�EðGiÞÞ0S�1
i ðGi�EðGiÞÞ

ð
P

i

niðGi�EðGiÞÞ0S�1
i ðGi�EðGiÞÞÞ2

¼ 1P
i

niðGi�EðGiÞÞ0S�1
i ðGi�EðGiÞÞ

:

This is an extension of Nick et al.,36 who gave

approximate results for exactly two founders and a

dominant mode of inheritance, and assumes the

quantitative trait locus and marker variants are in

perfect LD. We derived var(b̂) more generally for nfi

founders, for both additive and dominant inheri-

tance, as well as for relative pair specific correlations.

We also allowed for incomplete LD by applying a 1/

(0.8)-fold factor (equivalent to r2 ¼ 0.8, D’ � 0.9).

For these calculations, we made some simplifying

but conservative assumptions. First, we assumed that

founder pairs have a correlation of 0 and that parent–

offspring correlations (rpo) and sib–sib correlations

(rss) correspond to a residual heritability of 2 rpo ¼ 2

rss and that grandparent–grandchild pairs have a

residual correlation of rgg corresponding to a residual

heritability of 4 rgg. We further assumed, for simpli-

city, that all persons with the same genotype at the

disease locus have the same disease risk and that LD

between the locus and the closest SNP, assuming the

same allele frequencies at the two loci, is given by r2.

Finally, we imposed the type I error recommended

for genome-wide association studies by the

Wellcome Trust of a ¼ 5�1027,35 and assumed a

fixed power equivalent to a sample of 500 cases and

500 controls (0.92 for an additive model and 0.86 for

a dominant model), and a locus-specific heritability

of hls
2 — see equation (11) — of 0.05. We did this for

samples of nuclear families only, extended pedigrees

only and mixtures of both, for various sample sizes,

and then, demonstrated the approximate linearity of

the trend in sample size needed to detect the same

effect given a fixed power and type I error.

Accuracy of association and variance
component estimates

In addition to generating random family samples

(RAND), we also generated a sample of singly ascer-

tained families (ASC) by assigning each family a

probability of entering the sample based on the

number of affected members in the family: P(family

enters sample)¼Na/N, where Na is the number of

affected members in the family and N is the number

of family members. Each simulation output file was

parsed and, if a family had an affected member, the

above probability was calculated and, based on the
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appropriate Bernoulli distribution, the family was

either ascertained or not until the desired sample size

was met.

The accuracy of the locus-specific association

parameter (b) and the polygenic and familial var-

iance components were assessed after the appropri-

ate analysis (ie with ascertainment correction if ASC

and without if RAND) using the empirically found

mean square error (MSE) averaged over 100 repli-

cates, each comprising 1,000 individuals from either

200 nuclear families or 125 extended pedigrees. In

all cases, the root mean square error (rMSE) com-

pared with the simulated value (Tables 2–4) is

reported. As mentioned, the accuracy of estimates

in ascertained case-control samples was not

addressed in this study, but is discussed below.

Results

Type I error and power in family data

Under both additive and dominant models, the

association method we present for detecting dialle-

lic trait loci has stable type I error rates of less than

0.05 (mean ¼ 0.0452) for the RAND sample of

both the nuclear families and extended pedigrees.

The ASC sample had slightly higher type I error

rates for the nuclear family sample (0.0523) but not

for the extended pedigrees (0.0427). The power

reached 100 per cent at a total heritability of 0.25

(hls
2¼0.0625) for both the additive and dominant

models in both the nuclear family sample and the

extended pedigrees, and there was virtually no

power to detect a heritability of 0.01. The power

curves for the RAND and ASC samples were vir-

tually identical, so for the sake of space only the

ASC curves are presented. The nuclear family

sample (200 families, 1,000 individuals), out-

performed the extended pedigree sample (125

families, 1,000 individuals) under both models.

Further, there was a steep decline in power

between heritabilities of 0.15 (hls
2 ¼ 0.0375) and

0.10 (hls
2 ¼ 0.025) (Figure 1).

Sample size estimation in joint family and
case-control data

To demonstrate the usefulness of family data in

association analysis, as well as the usefulness of

combining samples from both linkage (family-

based) and association (typically case-control)

Table 2. Accuracy of the association parameter as ln odds of

being affected given two copies of the disease allele versus one

copy for a sample size of 1,000 individuals

Nuclear Extended

Model* RAND ASC RAND ASC

FP–FP Est 2.529 2.479 2.511 2.561

rMSE 0.1709 0.1210 0.1530 0.2030

FP–P Est 2.537 2.509 2.517 2.524

rMSE 0.1789 0.1510 0.1591 0.1661

P–FP Est 2.780 2.655 2.763 2.722

rMSE 0.1775 0.0529 0.1603 0.1196

P–P Est 2.780 2.648 2.768 2.724

rMSE 0.1775 0.0458 0.1655 0.1212

*Model indicates the variance components that were simulated followed by those
included in the analysis model (F ¼ familial and P ¼ polygenic); Est is the average
estimate across all replicates of that model; rMSE is the square root of the mean
square error; ASC represents the analysis of an ascertained sample using
ascertainment correction and RAND represents the analysis of a random sample
without any such correction.

Table 3. Accuracy of the association parameter as ln odds of

being affected given two copies of the disease allele versus no

copies for a sample size of 1,000 individuals

Nuclear Extended

Model* RAND ASC RAND ASC

FP–FP Est 5.058 4.958 5.022 5.122

rMSE 0.2936 0.3936 0.3295 0.2296

FP–P Est 5.074 5.018 5.034 5.048

rMSE 0.2777 0.3336 0.3176 0.3036

P–FP Est 5.560 5.310 5.526 5.444

rMSE 0.1010 0.5696 0.3536 0.4357

P–P Est 5.560 5.296 5.536 5.448

rMSE 0.3195 0.5836 0.3437 0.4316

*Model indicates the variance components that were simulated followed by those
included in the analysis model (F ¼ familial and P ¼ polygenic); Est is the average
estimate across all replicates of that model; rMSE is the square root of the mean
square error; ASC represents the analysis of an ascertained sample using
ascertainment correction and RAND represents the analysis of a random sample
without any such correction.
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studies, we evaluated the number of unrelated indi-

viduals that need to be added to an existing family

sample to be able to detect the same effect size as

in a population-based sample of 1,000 unrelated

cases and 1,000 controls. Beginning with a collec-

tion of 125 extended pedigrees or 200 nuclear

families (samples that are quite prevalent), one can

decrease the number of unrelated samples needed

to detect a given effect size (hls
2 ¼ 0.05) by at

minimum close to 40 per cent and at maximum

more than 50 per cent (Figure 2).

Note that the equivalence of samples is shown,

assuming (1) a common minor allele frequency

(q ¼ 0.5), for which the family data are not as

informative as are the case-control data, and (2) an

allele frequency under which the family sample is

fairly informative (q ¼ 0.1). As expected, the

nuclear family sample (assuming an additive model

Table 4. Accuracy of variance components as proportions of the total variance, N¼1,000

Nuclear Extended

Parameter Model RAND ASC RAND ASC

Marital MP–MP Est 0.079 0068 0.0775 0.0696

rMSE 0.0877 0.0990 0.0894 0.0693

SMP–SMP Est 0.1743 0.0636 0.1291 0.0555

rMSE 0.0316 0.0781 0.0141 0.0866

Sibling SP-SP Est 0.0574 0.0669 0.0549 0.0713

rMSE 0.1095 0.1000 0.1122 0.0959

SMP–SMP Est 0.0549 0.0554 0.057 0.0579

rMSE 0.0883 0.1118 0.0860 0.1090

Polygenic FP–FP Est 0.0896 0.0604 0.1711 0.1388

rMSE 0.0775 0.1068 0.0000 0.0283

MP–MP Est 0.0741 0.0655 0.0775 0.0643

rMSE 0.0927 0.1015 0.0894 0.1030

P–P Est 0.063 0.0805 0.0602 0.0755

rMSE 0.1039 0.1196 0.1068 0.1249

SMP–SMP Est 0.2169 0.0617 0.1759 0.0559

rMSE 0.0742 0.0800 0.0332 0.0860

SP–SP Est 0.0962 0.0723 0.0782 0.0603

rMSE 0.0707 0.0949 0.0889 0.1068

Familial FP–FP Est 0.1133 0.0122 0.033 0.0139

rMSE 0.0539 0.3521 0.1342 0.1530

P-FP Est 0.0198 0.0032 0.048 0.0102

rMSE 0.0200 0.0032 0.0480 0.0100

*Model indicates the variance components that were simulated followed by those included in the analysis model (F ¼ familial, M ¼ marital, S ¼ sibling and P ¼ polygenic); Est is
the average estimate across all replicates of that model; rMSE is the square root of the mean square error; ASC represents the analysis of an ascertained sample using
ascertainment correction and RAND represents the analysis of a random sample without any such correction.
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with q ¼ 0.5) requires the fewest additional unre-

lated individuals to detect a given effect, and the

extended pedigree sample (assuming a dominant

model with q ¼ 0.5) requires the most additional

unrelated individuals. The extended pedigree

sample, under a dominant model with q ¼ 0.5 or

0.1, performed similarly, as did the nuclear family

sample under a dominant model with q ¼ 0.5 or

0.1. The extended pedigree and nuclear family

samples (assuming an additive model) require

approximately the same number of additional unre-

lated persons to detect the given effect size.

Figure 1. Power to detect association by both total and locus-specific heritability for nuclear families (nuc fam) under an additive

model (No Dom) and a model with 50 per cent additive and 50 per cent dominance variance (Add ¼ Dom).

Figure 2. Number of unrelated case-control samples needed, in addition to a fixed sample of either nuclear or extended pedigrees,

to achieve a power of 92 per cent under an additive model (No Dom) and 86 per cent under a model with 50 per cent additive and 50

per cent dominance variance (Add ¼ Dom). Values were generated for fixed sample sizes of both nuclear families and extended

pedigrees, as well as for allele frequencies of both 0.5 and 0.1.
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In addition to providing the number of

additional individuals necessary to detect a fixed

effect size given a sample of nuclear or extended

pedigrees, we further provide this information

given a sample comprising varying proportions of

nuclear and extended pedigrees. We found that, for

the additive and dominant models, regardless of the

allele frequency, the samples that contained 30 per

cent extended pedigrees and 70 per cent nuclear

families (30:70) required the fewest additional unre-

lated individuals (of the three mixtures examined)

to attain the same power. For the model in which

dominance and additive variance were equal

(Add ¼ Dom) with allele frequency 0.5, the sample

with equal frequency of nuclear and extended pedi-

grees (50:50) and the sample that is 70 per cent

extended and 30 per cent nuclear (70:30) require

similar sample sizes except in the extreme cases

where there are very few to no unrelated individ-

uals (Figure 3). The results for the Add ¼ Dom

model with q ¼ 0.1 are similar to those for the

model with q ¼ 0.5, except that the divergence of

the 50:50 and 70:30 samples is not as large as in

the previous case (Figure 4). The additive model

indicates the least difference in the three sample

types (Figure 5); for example, a sample of 140

nuclear families and 38 extended pedigrees requires

500 additional individuals to achieve the same

power and type I error as 100 nuclear families, 63

extended pedigrees and 625 additional unrelated

persons.

Estimation using family samples

Accuracy of the association parameter

The estimates of the association parameter

(expressed as the ln odds of two copies of the

disease allele versus one copy) were, on average,

2.615 for the nuclear family sample and 2.636 for

the extended family sample — not too dissimilar to

the simulated value of 2.48. The RAND and ASC

samples had similar averages of 2.648 and 2.603,

respectively. Note that we purposely generated the

data under a (probit) model different from the

(logit) model used to analyse the data, to illustrate

the robustness of the analysis model, and that the

accuracy of the ascertainment correction is seen in

the small difference in parameter estimates between

the RAND and ASC samples. The average estimate

for the ascertained extended families (2.633) was

overestimated by a factor of 1.06, a slightly larger

deviation from the simulated value than seen in the

Figure 3. Number of unrelated case-control samples needed, in addition to a fixed, mixed sample of nuclear and extended pedigrees,

to achieve a power of 86 per cent under a model with 50 per cent additive and 50 per cent dominance variance (Add ¼ Dom),

assuming an allele frequency of 0.5. Values were generated for samples that comprised 30 per cent nuclear families and 70 per cent

extended pedigrees, 50 per cent and 50 per cent, and 30 per cent and 70 per cent, respectively.
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nuclear family samples, which had an average of

2.573 — only 1.03 times the simulated value (and

the closest to it). The rMSE averaged over all

models was 0.210 and all estimates were within a

factor of 1.15 of the simulated value (Table 2).

Results were similar for estimates comparing the

odds of two disease susceptibility alleles to no sus-

ceptibility alleles, on average 5.251 — again, not

too dissimilar to the simulated value of 5.616. The

RAND samples had an average of 5.296 and the

Figure 4. Number of unrelated case-control samples needed, in addition to a fixed, mixed sample of nuclear and extended pedigrees,

to achieve a power of 86 per cent under a model with 50 per cent additive and 50 per cent dominance variance (Add ¼ Dom),

assuming an allele frequency of 0.1. Values were generated for samples that comprised 30 per cent nuclear families and 70 per cent

extended pedigrees, 50 per cent and 50 per cent, and 30 per cent and 70 per cent, respectively.

Figure 5. Number of unrelated case-control samples needed, in addition to a fixed, mixed sample of nuclear and extended pedigrees,

to achieve a power of 92 per cent under as additive model (No Dom), assuming an allele frequency of 0.1. Values were generated for

samples that comprised 30 per cent nuclear families and 70 per cent extended pedigrees, 50 per cent and 50 per cent, and 30 per cent

and 70 per cent, respectively.
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ASC samples almost the same (5.206). Nuclear

(NUC) families had the estimate 5.230 and

extended families 5.273. In these cases, the random

nuclear family samples were the closest to the simu-

lated value. The average rMSE was 0.351 and all

estimates were within a factor of 0.88 of the simu-

lated value (Table 3). Notice that for these com-

parisons the effect was always under- rather than

overestimated, whereas in the previous comparisons

they were overestimates.

Accuracy of the variance components

Overall, the rMSEs were, as might be expected,

smaller for the RAND samples than for the ASC

samples. When comparing the estimated values

with the simulated proportions of variance

(Table 4), the estimates from the RAND and ASC

samples yielded good estimates of the true simulated

population values for the polygenic and familial

components, but the sibling and marital com-

ponents were often over- or underestimated in the

ASC sample, depending on both model and family

structure. Specifically, sibling (S) and marital (M)

components were consistently underestimated in the

SMP–SMP scenarios and overestimated in all other

scenarios.

The accuracy of the variance component esti-

mates were affected by the sampling scheme, as

expected. The RAND samples resulted in estimates

closest to the simulated population values, but ASC

samples yielded estimates reasonably reflective of

the population values as well.

Discussion

The prediction of the future of genetic studies of

complex disease is ever changing, but what remains

true is that we must have methods of analysis that

are both powerful and flexible. Whether searching

for common genes with small effect or rare genes

with large effect, we shall need large samples that

are likely to come only from combining family,

population-based and case-control data and we

must have methods that analyse these combinations.

In fact, the use of family samples was recently high-

lighted by Visscher et al.,2 showing that including

related individuals results in only a small loss of

power but large gains in terms of quality control,

flexibility of tests to be performed and ability to

control for population stratification. Our results

support these assertions and we further recommend

that association methods must account for environ-

mental covariates (which are certain to play a role

in complex diseases) and must not be restricted by,

but rather be effective in controlling for, population

stratification. These tools will be powerful in aiding

both genome-wide association and candidate gene

studies.

We have present here a method to test and estimate

the association between an allele or genotype and a

continuous or binary trait, as well as approaches to

combining family and case-control data that are

powerful as well as robust to ascertainment. We also

present a two-stage procedure to determine the need

for a test that is robust to stratification. A purist

would argue that a two-stage approach could affect

type I error rate. The important thing to note,

however, is that this decision should be made on the

basis of the significance, not the magnitude, of

the difference in the two estimates of marker effect,

b2 – b1 versus 1
2
d, because a study whose sample

size is powered to detect a small effect will auto-

matically be powered to detect the small biases that

stratification could induce.

We further present a method for correcting for

ascertainment and accurately estimating association

parameters, as well as variance components, even in

ascertained family data. Two things should be

pointed out, however. First, we examined only

single ascertainment, when a more complex

scheme is used to collect families such that most of

the sample is in the PSF and/or the PSF is unde-

fined, the estimates for the association parameter

and the variance components will reflect only the

effect in the sample. Note, however, that the test

for association is still valid and it is only the par-

ameter estimates that are affected. Secondly, when

combining data from a case-control sample and an

ascertained family sample, for the parameter esti-

mates from this method to be reflective of the

population from which the samples were drawn,

certain assumptions must be met: (1) the cases in
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the population-based data should have been pheno-

typed in a manner similar to the cases in the family

data; (2) there must be appropriate correction for

ascertainment; and (3) the non-cases or ‘controls’,

although matched, should apart from this also be a

random sample — if they are a completely random

sample from the same population, it is possible to

estimate a relative risk, while if they are a random

sample of those showing absence of the phenotype

of interest, only an odds ratio can be estimated. If

the phenotype is sufficiently rare such that choos-

ing controls based on absence of the trait of interest

is essentially the same as random sampling, then the

relative risk and odds ratio will be essentially the

same. Because this is not the case for common

complex diseases, we suggest and will investigate

further in future studies, two other ways of com-

bining case-control and family data for accurate

estimation: (1) express the likelihood for the case-

control data in terms of odds ratios, which are

functions of the parameters in the pedigree likeli-

hood, and constrain the maximum likelihood for

them such that the marginal probability of disease,

given a set of regressors, is finite;37 and (2) multiply

the likelihood by a factor that summarises any

information we have about the prevalence of

disease independent of the sample data. This factor

would be expressed as mR(12m)N–R, where m is the

prevalence of the disease — expressed as a function

of the parameters in the full likelihood at particular

values of the covariates in the model — and R

reflects our external information about the number

of affected persons in a population of size N. For

example, if we have an estimate of m, m̂ and its stan-

dard error (s.e.), we can estimate reasonable values

for N and R by noting s:e: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂ð1� m̂Þ=N

p
, and

hence N ¼ m̂ð1� m̂Þ=ðs:e:Þ2 and R ¼ Nm̂. It is

known that constraining likelihood maximisation so

that the estimated disease prevalence is equal to its

true prevalence can be equivalent to a correction for

single ascertainment.38 These two options offer

simple solutions for ‘non-traditional’ samples and

will be examined in future work.

The general method described in this paper,

which is currently being implemented in the

program package S.A.G.E., is more flexible than

other TDT-type methods and more efficient (in

the practical sense) than genomic control methods.

Further, we have shown the power of this method

for binary traits in various types of family,

population-based and combined samples at a con-

stant type I error rate and, while we concede that a

population-based sample could sometimes detect a

smaller effect size than the respective family-based

samples, as mentioned earlier, these scenarios

assume the same degree of heterogeneity and spora-

dic cases in all samples after correction for ascer-

tainment. We know that this is not likely to be the

case, as family samples are designed to decrease

greatly the number of sporadic cases and, at least to

some extent, reduce the amount of heterogeneity

in the sample in a manner that makes appropriate

ascertainment correction difficult. Further, for

most complex phenotypes, family samples of at

least the size examined here (and usually much

larger) already exist and, as shown in Figures 2 and

3, can drastically reduce the number of population-

based samples needed to detect even very small

effects. Other benefits of family data, such as

increased ability to assess the effects of shared

environment and parent-of-origin effects, to detect

errors and many others are beyond the scope of this

paper, but must also be considered. Finally, while

having to correct for ascertainment is one of the

reasons often cited for using population-based

versus family data, we have demonstrated that, in

principle, our method can be used to estimate

fairly accurately the effect size of a given allele of

interest for a given population, even if using an

ascertained sample. For situations where most of

the sample is in the PSF (and hence likelihood (8)

contains little information), or the PSF is ill-

defined, we suggest constraining the likelihood to

give an accurate estimate of the disease prevalence.

Future investigation will determine the accuracy of

estimates obtained in this manner.
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Table S1. Summary of TDT-type methods and their respective features

Incorporation of:

Method/

Reference

Missing

parents

Multiple

alleles

Parental

phenotypes

Quantitative

traits

Extended

pedigrees

Different

family

structures

Multiple

markers

Covariates

Curtis (1997)S1 * *

S-TDT (Spielman

and Ewens, 1998)S2

* * *

DAT (Boehnke and

Langefeld, 1998)S3

* *

SDT (Horvath and

Laird, 1998)S4

* * *

NFS (Whittemore

and Tu, 2000)S5

* * * * *

TRANSMIT

(Clayton, 1999)S6

* * * *

RC-TDT (Knapp,

1999)S7

*

1-TDT (Sun et al.,

1999)S8

* *

Martin et al.

(1997)S9

* * *

George et al.

(1999)S10

* * * * *

P-TDT (Abecasis

et al., 2000)S11

* * * * *

Bickeboller and

Clerget-Darpoux

(1995)S12

*

Spielman and

Ewens (1996)S13

*

Purcell et al.

(2005)S14

* * *

TDT(max) (Morris,

1997)S15

*

Lazzeroni and

Lange (1998)S16

* *

Monks and Kaplan

(2000)S17

* * * *

Xiong et al.

(1998)S18

* *

Continued
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Table S1. Continued

Incorporation of:

Method/

Reference

Missing

parents

Multiple

alleles

Parental

phenotypes

Quantitative

traits

Extended

pedigrees

Different

family

structures

Multiple

markers

Covariates

Fan and Jung

(2002)S19

* * * *

TDT(Q1) –

TDT(Q5) (Allison,

1997)S20

* *

Rabinowitz

(1997)S21

* * *

Allison et al.

(1999)S22

* * *

Sun et al. (2000)S23 * * * *

Schaid and

Rowlands (2000)S24

* * *

Waldman et al.

(1999)S25

* *

Sinsheimer et al.

(2000)S26

* * * * *

Kistner and

Weinberg (2004)S27

* * *

QTDT (Abecasis

et al., 2000)S28

* * * *

Zhu and Elston

(2001)S29

* * * *

PDT (Martin,

2000)S30

* *

Goring and

Terwilliger

(2000)S31

* *

Clayton and Jones

(1999)S32

* *

ETDT (Sham and

Curtis, 1995)S33

*

TDT-EX (Cleves

et al., 1997)S34

* *

Fulker (1999)S35 * * *

Fan et al. (2002)S36 * * *
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