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ARTICLE

Estimation of Maximum Recommended Therapeutic Dose
Using Predicted Promiscuity and Potency

T Liu1, T Oprea2, O Ursu2, C Hasselgren3 and RB Altman4,∗

We report a simple model that predicts the maximum recommended therapeutic dose (MRTD) of small molecule drugs based
on an assessment of likely protein–drug interactions. Previously, we reported methods for computational estimation of drug
promiscuity and potency. We used these concepts to build a linear model derived from 238 small molecular drugs to pre-
dict MRTD. We applied this model successfully to predict MRTDs for 16 nonsteroidal antiinflammatory drugs (NSAIDs) and 14
antiretroviral drugs. Of note, based on the estimated promiscuity of low-dose drugs (and active chemicals), we identified 83
proteins as “high-risk off-targets” (HROTs) that are often associated with low doses; the evaluation of interactions with HROTs
may be useful during early phases of drug discovery. Our model helps explain the MRTD for drugs with severe adverse reactions
caused by interactions with HROTs.
Clin Transl Sci (2016) 9, 311–320; doi:10.1111/cts.12422; published online on 13 October 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔ The maximum recommended therapeutic dose (MRTD)
estimates the upper limit beyond which a drug’s efficacy
is not increased and side effects begin to outweigh ben-
eficial effects. Currently, MRTD is empirically derived from
human clinical trials. We have an opportunity to use com-
putational methods to study the molecular basis of the
MRTD.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔ What are the factors that affect MRTD estimation? What
molecular targets may cause the most undesirable off-
target activities?
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
✔ We built a simple model that predicts MRTD of small-
molecule drugs based on an assessment of likely protein–

drug interactions.We found two important factors of MRTD:
drug promiscuity and pseudo-potency. We identified 83
proteins as “high-risk off-targets” (HROTs) that may cause
most undesirable adverse reactions.
HOW THIS MIGHT CHANGE CLINICAL PHARMACOL-
OGY OR TRANSLATIONAL SCIENCE
✔Our MRTD model reveals some molecular aspects of
drug action. The ability to predict MRTD directly from
drug target interactions is both scientifically and clinically
important in terms of drug development and use. The pre-
dicted MRTD can be used to estimate the maximum rec-
ommended starting dose (MRSD) when designing phase I
human clinical trials. The identification of HROTs provides
a novel and reliable set of “red flags” for pharmacological
profiling.

The “maximum recommended therapeutic dose” (MRTD)
for a drug is the upper limit beyond which efficacy is not
increased and side effects begin to outweigh beneficial
effects.1 MRTD is empirically derived from human clinical tri-
als, and provides a threshold for dose-related side effects.
The US Food and Drug Administration (FDA) created expert
systems that use quantitative structure activity relationship
(QSAR) methods to estimate both the MRTD as well as the
“no effect level” (NOEL) of organic chemicals in humans.1,2

These models use data obtained from pharmaceutical clin-
ical trials and postmarket surveillance of the adverse reac-
tions reported in the FDA’s Adverse Event Reporting Sys-
tem (AERS) databases.3 Ideally, MRTD estimates provide a
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relevant, accurate, sensitive, and specific estimate of the
toxic dose level of chemicals in humans.
Estimating the best “first in human” (FIH) dose is also an

essential activity in clinical drug development. FIH dose esti-
mation is usually based on the “no observable adverse effect
levels” (NOAELs) in multiple species.4 Agoram reported a
relationship between pharmacokinetic profiles and the FIH
dose.5 Other pharmacokinetic models predict human clear-
ance (CL) and bioavailability, with an emphasis on toxicity.5,6

However, drug effectiveness is not typically the focus when
estimating FIH dose.
The predicted MRTD can be used to estimate the maxi-

mum recommended starting dose (MRSD) and FIH dose for
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phase I human clinical trials.2 However, there are no reported
methods for estimating MRTDs in the absence of clinical
data. Branham et al. associated the chemical properties of
antiretroviral drug molecules to their MRTDs.7 Of the six
properties examined, only aqueous solubility and biodegra-
dation probability were statistically associated with MRTDs.
The model was limited to 31 antiretroviral drugs and is not
directly applicable to other drug classes. Thus, the ability to
predict MRTD directly from drug target interactions is both
clinically and scientifically attractive for drug development
and treatment management.
We have previously reported two methods for computa-

tional profiling of drug promiscuity and target druggability.8,9

Promiscuity is often considered a major factor in determin-
ing drug side effects.10 A drug’s promiscuity can be mea-
sured by its binding spectrum to (ideally) all human proteins
in the cell. A protein’s druggability is its ability to be modu-
lated by high-affinity interactions with small-molecule drugs.
Although we do not have direct means to predict potency,
druggability predictions for the known targets of a drug can
be used as a proxy estimate of its potency. In particular, we
compute the average druggability of all the known targets
of a small molecule—high average druggability implies high
average affinity and thus high potency.8 Conversely, low aver-
age druggability implies low average affinity and low potency.
For this discussion, we will refer to the average druggability
as pseudo-potency to stress that it is not a direct measure of
potency (see Methods for detailed definition).
MRTD is an empirical parameter that draws a line between

therapeutic (desired) effects and adverse or toxic (unde-
sired) side effects.11 Drug promiscuity and pseudo-potency
contribute to undesired and desired effects, respectively.
Therefore, MRTD should be a function of both promiscuity
and pseudo-potency. For example, the MRTD of celecoxib
is relatively low compared with that of other nonsteroidal
antiinflammatory drugs (NSAIDs). Using our computational
methods,8,9 we inspected the binding site of celecoxib in
its functional target COX2 (cyclooxygenase 2) and found
optimized interactions and high druggability score consis-
tent with high pseudo-potency. At the same time, we also
found that celecoxib is a drug of high promiscuity as mea-
sured by the number of human proteins to which it may bind.
The balance between these two characteristics qualitatively
explains celecoxib’s relatively low dose: celecoxib achieves
its desired effects because of the optimal interactions (and
high pseudo-potency) with COX2. On the other hand, its
dose cannot be increased very much because high promis-
cuity leads to side effects.
Although MRTD is established during clinical trials, it can

be changed once data from patient exposures are ana-
lyzed. Ultimately, this information is reflected in drug labels
and guides prescribing physicians. In this work, we aim to
develop a simple model of MRTD based on these two molec-
ular attributes, pseudo-potency and promiscuity—both of
which can be estimated using basic molecular structure
data that is often available to drug developers. Based on
this model, we predict and reevaluate the MRTD of drugs
with severe side effects and provide insights about tar-
get interactions that might best be avoided during drug
development.

METHODS
Datasets
The Drug Dataset comprises 238 small-molecule drugs that
satisfy the following standards: (i) The high-quality 3D struc-
tures of a drug’s binding sites are available in Protein Data
Bank (PDB); (ii) The MRTD values are available from the
FDAMRTDdatabase (http://www.fda.gov/cder/). We normal-
ized the original MRTD values by two steps: (i) The original
MRTD values were normalized to 60 kg body weight; (ii) we
renormalized the MRTD values to 70 kg, which is the “aver-
age” adult mass is 70 kg in physiology studies.2,12 We fur-
ther divided the dosage (expressed in mg) by the molecular
weight (MW) of the actual drug—observing the actual drug
formulation unless the active substance MW was explicitly
stated in the package insert.Whenmultiple valueswere avail-
able, we used theMRTD for the oral formulation. In this study,
log(MRTD) refers to the logarithm of MRTD, expressed in
μMol/kg/day. The values of MRTD of the 234 drugs range
from 10e-5 to 10e4 μMol/kg/day, representing the complete
MRTD range of the FDA database (Supplementary Figure
S1).

TheHuman Protein Dataset comprises 2,291 proteins from
a nonredundant representative set (90% identity) of human
proteins. We used the following filters: (i) a high-quality 3D
structure (x-ray resolution higher than 2.5 Å) is available in
PDB. (ii) The structure is cocrystalized with a small molecule
ligand.13 Using these criteria, we collected 46 low-dose
drugs (MRTD <1 μMol/kg/day) and 37 high-dose drugs
(MRTD >100 μMol/kg/day) from the 238 drugs (Table S1
and Figure S1).

Predict promiscuity
Given a drug, we predict its probability of binding to all pro-
teins in the Human Protein Dataset (Section 1). We employ a
previously reported method, PocketFEATURE,8 which com-
putes the structural similarity between two binding sites in
order to calculate the probability that a drug binding one
site also binds the other. More similar sites are more likely
to share drug binding profiles. We describe a drug by enu-
merating its binding microenvironments (physiochemical and
structural properties) in a target protein using the FEATURE
system.14 FEATURE calculates a set of 80 physicochemi-
cal properties collected over six concentric spherical shells
(total 480 properties = 80 properties × 6 shells) centered
on the predefined functional center. PocketFEATURE uses
the FEATURE representation to calculate site similarities by
aligning microenvironments between two sites. A more neg-
ative score suggests binding site similarity and thus a higher
probability of drug binding to a site similar to its known
binding site. A cutoff of –2.0 indicates likely binding of a
drug to a protein target. A more stringent cutoff –2.5 indi-
cates likely more specific binding. The similarity between a
drug’s binding site and each of the 2,291 binding sites in
the Human Protein Dataset can be calculated by Pocket-
FEATURE. Given a drug, we then count the number of pro-
teins in the Human Protein Dataset that are predicted to bind
the drug (using cutoff of –2.0). We then calculate the aver-
age pseudo-affinity as an indication of promiscuity of the
drug.
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Estimate pseudo-potency
We previously reported a method, DrugFEATURE, that eval-
uates a protein’s potential to bind drug-like molecules by
assessing the microenvironments in putative binding sites.8

DrugFEATURE estimates the potential for high binding affin-
ity between a drug and a protein. Given a drug, the average
druggability of its functional targets bound is a proxy mea-
sure of the drug’s binding affinity in these targets, and mea-
sures the amount of drug required to modulate the target.
In this work, we call the average druggability the “pseudo-
potency.” We apply DrugFEATURE to compute pseudo-
potency for 234 drugs. For each drug, we collect its func-
tional targets from DrugBank and seek cocrystallized struc-
tures of the targets. We then estimate the drug’s pseudo-
potency by averaging the druggability of each of the target
binding sites.

Build linear models and predict MRTD
We built a linear model for MRTD, using independent
variables promiscuity and pseudo-potency using the R
package (Vienna, Austria). We analyzed the significance
of each variable by analysis of variance (ANOVA). We
employed leave-one-out crossvalidation to build linear mod-
els and predict MRTDs of 14 antiretroviral drugs and
16 NSAIDs.

Identify high-risk off-targets (HROTs)
From the 2,291 proteins, we identified 83 targets that (i)
do not bind any of the 37 high-dose drugs (PocketFEA-
TURE stringent cutoff –2.5) and (ii) bind to at least 5 of
the 46 high-dose drugs. We evaluate the statistical signif-
icance of targets matching these criteria using the hyper-
geometric distribution over the 238 drugs. The probabil-
ity of observing binding to low-dose drugs is calculated
as:

pl = f (xl|M, K, Nl ) =

(
K
xl

)(
M− K
Nl − xl

)

M
Nl

Where M is the size of the population (238 drugs); K is the
number of drugs that bind to the given target; Nl is the size
of samples drawn (46 low-dose drugs) and xl is the num-
ber of bindings observed in low-dose drugs. The probabil-
ity of not binding to any of high-dose drugs is calculated
as:

ph = f (xh|M, K, Nh) =

(
K
xh

)(
M− K
Nh− xh

)

M
Nh

Where M is the size of the population (238 drugs), K is the
number of drugs that bind to the given target, Nh is the size
of samples drawn (37 high-dose drugs), and xh is zero (no
observed binding). The significance of a given target is cal-
culated as P = pl × ph.

Figure 1 We compare the pseudo-potency and promiscuity of
37 high-dose (MRTD >100 μMol/kg/day) and 46 low-dose drugs
(MRTD <1 μMol/kg/day). The boxplot shows that high-dose and
low-dose drugs have significantly different pseudo-potency (t-test
P-value = 2.24e-4) and raw promiscuity (t-test P-value = 3.29e-5).
We displayed the distribution of data noting the minimum, first
quartile, median, third quartile, and maximum.

RESULTS
Pseudo-potency and promiscuity are two factors of
MRTD
We employed PocketFEATURE8 to predict affinity between
each of the 238 drugs in the Drug Dataset and the 2,291
proteins in the Human Protein Dataset (see Methods). We
have previously shown that the accuracy of PocketFEA-
TURE is reasonably good.10,15 The predicted scores approx-
imate the probability of binding between a drug and a
protein, and therefore the set of the predicted affinity
scores between a drug and the 2,291 human proteins
(Human Protein Dataset) can be used as an estimate of
drug promiscuity. We also estimated the pseudo-potency
of the 238 drugs in Drug Dataset by averaging the drug-
gability of their functional targets, using the DrugFEATURE
algorithm.9

For the 238 drugs in this study, there were 37 high-dose
drugs (MRTD >100 μMol/kg/day) and 46 low-dose drugs
(MRTD <1 μMol/kg/day) (Figure S1). We compared the
pseudo-potency and the raw scores of promiscuity of the
37 high-dose and the 46 low-dose drugs (Figure 1). The
average pseudo-potency of high-dose drugs is 1.2 and
that of low-dose drugs is 2.6. The average promiscuity of
high-dose drugs is lower than that of low-dose drugs. High-
and low-dose drugs have significantly different pseudo-
potency (P-value = 2.24e-4) and raw promiscuity (P-value
= 3.29e-5).

Linear model
We built a predictive model for MRTD based on promiscu-
ity and pseudo-potency. The results of the multiple linear

www.wileyonlinelibrary/cts
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Table 1 Multiple linear regression analysis. The linear regression model is:
Log(MRTD) � pseudo-potency + promiscuity. Panel A shows that the model
is significant, with F-statistic of the linear fit vs. the constant model is 8.098
(P-value of 3.97e-4). The R-squared value (0.065) indicates that the model
explains 6.5% of the variability in the response. Panel B shows that F-statistics
for assessing the statistical significance of pseudo-potency and promiscu-
ity. Both promiscuity and pseudo-potency contribute to the model of MRTD.
The ANOVA table shows that combining pseudo-potency and promiscuity
improves the model

A. Estimated coefficients

Estimate Std error t value Pr(>|t|)

Intercept 4.2702 0.6254 6.828 7.28e-11***

Promiscuity 0.4640 0.1978 2.345 0.01985*

Pseudo potency −0.3217 0.1134 −2.837 0.00496**

B. ANOVA table of the model terms

Sum sq Mean sq F-value Pr(>F)

Promiscuity 55.37 55.373 8.1488 0.004694**

Pseudo-potency 54.68 54.682 8.0471 0.004956**

regression analysis are in Table 1. Our model for MRTD is:

log (MRTD) = 0.4640 × Promiscuity − 0.3217

×PseudoPotency + 4.2702

Panel A of Table 1 shows that the model is significant; the
F-statistic of the linear fit vs. the constant model is 8.098
(P-value of 3.97e-4). The R-squared value (0.065) shows
that the model explains only 6.5% of the variability in the
response. Panel B shows the F-statistic for assessing the
statistical significance of pseudo-potency and promiscuity
in the model; both variables significantly contribute to the
prediction. The ANOVA table also shows that combining
pseudo-potency with promiscuity improves the model.

Predicted MRTD
We evaluated prediction power using leave-one-out cross-
validation. We also analyzed prediction results on two impor-
tant pharmaceutical categories: 14 antiretroviral drugs and
16 NSAIDs. Figure 2 shows that the predicted values corre-
late with the known MRTDs for both categories. The corre-
lation between the predicted values and the known MRTD
for the 16 NSAIDs is 0.5 (P-value 0.07). The correlation
between the predicted values and the known MRTD for the
14 antiretroviral drugs is 0.9 (P-value 0.0001). Drugs that
achieved good prediction performance (within one unit of
log(MRTD)) are highlighted in red, including eight antiretro-
viral drugs and seven NSAIDs. All seven NSAIDs with good
performance are slow time-dependent inhibitors. Six of the
nine NSAIDs for which predictions did not achieve good per-
formance are rapid inhibitors (Supplementary Table 2A). The
eight antiretroviral drugs with accurate predictions consist of
two nucleoside reverse transcriptase inhibitors (NRTI), one
non-nucleoside reverse transcriptase inhibitor (NNRTI), and
five HIV protease inhibitors (HIV-PI) (Supplementary Table
2B). Drugs of high dose, such as foscarnet and zidovudine,
tend to have less accurate predictions.

Figure 2 Predict MRTD. The top panel shows 16 NSAIDs and
the bottom panel shows 14 antiretroviral drugs. MRTD is in
μMol/kg/day. The x-axis is the known MRTD and the y-axis is the
prediction. The dotted lines suggest prediction errors of one unit of
log(MRTD). Predictionswithin the dotted lines are considered good
performance and highlighted in red. The correlation between the
predicted values and the known MRTD for the 16 NSAIDs is 0.5
(P-value 0.07). The correlation between the predicted values and
the known MRTD for the 14 antiretroviral drugs is 0.9 (P-value
0.0001).

High-risk off-targets (HROTs)
We identified 83 proteins that are predicted to bind low-dose
drugs more frequently than high-dose drugs. We call these
proteins “high-risk off-targets” because they are associated
with drugs whose dose is limited by high promiscuity and low
potency. They consist of 32 proteins that are associated with
transcription process, 36 receptor-related proteins, and 20
hormone receptors. There are six G-protein-coupled recep-
tors (GPCRs, Table 2).

DISCUSSION
Pseudo-potency and promiscuity leverage a drug’s
MRTD
TheMRTD represents themargin between the desired effects
and adverse reactions. It is not surprising that MRTD is
associated with drug promiscuity, which is an important fac-
tor for drug adverse reactions. However, the number of drug

Clinical and Translational Science



Estimation of Maximum Recommended Therapeutic Dose
Liu et al.

315

Table 2 High-risk off-targets. We identified 83 HROTs that bind to low-dose drugs, but not high-dose drugs. The first column lists the UniProt IDs, the third lists
gene names, and the fourth one lists key GO terms for the proteins. The second column shows the hypergeometric P-value computation for the significance of
extracting HROTs. A total of 32 proteins are associated with transcription process; 36 are receptors and 20 are hormone receptors. There are six proteins involved
in GPCR pathways. In addition, 11 enzymes involved in key pharmacokinetics are marked with an asterisk

UniProt P-value Gene name Key go terms

Q15788 4.214e-06 NCOA1 BHLHE74 SRC1 androgen receptor binding
nuclear hormone receptor binding
transcription coactivator activity

Q96RI1 4.214e-06 NR1H4 BAR FXR HRR1 RIP14 bile acid binding
transcription factor activity
ligand-activated sequence-specific DNA binding

Q9Y2Q3 5.4471e-06 GSTK1 HDCMD47P glutathione peroxidase activity
receptor binding

P41595 8.0883e-06 HTR2B G-protein alpha-subunit binding
GTPase activator activity
serotonin receptor activity

Q6VVX0 9.0829e-06 CYP2R1* heme binding oxidoreductase activity, steroid hydroxylase
activity

O95749 1.145e-05 GGPS1 farnesyltranstransferase activity

O00482 1.7458e-05 NR5A2 B1F CPF FTF chromatin binding
transcription factor activity
ligand-activated sequence-specific DNA binding

P35222 1.7458e-05 CTNNB1 CTNNB
OK/SW-cl.35 PRO2286

alpha-catenin binding
nuclear hormone receptor binding
transcription factor activity

Q15466 1.98e-05 NR0B2 SHP steroid hormone receptor activity
transcription factor activity, sequence-specific DNA binding

Q13133 2.3358e-05 NR1H3 LXRA cholesterol binding
sterol response element binding
transcription coactivator activity

P29016 3.5549e-05 CD1B beta-2-microglobulin binding
endogenous lipid antigen binding

P29017 3.5549e-05 CD1C beta-2-microglobulin binding
exogenous lipid antigen binding

P61769 3.5549e-05 B2M CDABP0092 HDCMA22P glycoprotein binding
identical protein binding

Q07869 3.8416e-05 PPARA NR1C1 PPAR RNA polymerase II transcription factor activity,
ligand-activated sequence-specific DNA binding

P41146 4.129e-05 OPRL1 OOR ORL1 G-protein-coupled receptor activity
neuropeptide binding

P37231 4.5007e-05 PPARG NR1C3 activating transcription factor binding
ligand-dependent nuclear receptor transcription coactivator
activity

prostaglandin receptor activity
retinoid X receptor binding

P19793 4.6483e-05 RXRA NR2B1 9-cis retinoic acid receptor activity
transcription factor activity, sequence-specific DNA binding
vitamin D receptor binding

P55055 4.6483e-05 NR1H2 LXRB NER UNR apolipoprotein A-I receptor binding
ATPase binding
RNA polymerase II transcription factor activity

Q15596 4.6483e-05 NCOA2 BHLHE75 SRC2 TIF2 chromatin binding
histone acetyltransferase activity
nuclear hormone receptor binding
thyroid hormone receptor coactivator activity
transcription coactivator activity

P08684 5.1929e-05 CYP3A4 CYP3A3* oxidoreductase activity
steroid hydroxylase activity

P41145 5.8559e-05 OPRK1 OPRK dynorphin receptor activity
neuropeptide binding
opioid receptor activity

P51449 7.934e-05 RORC NR1F3 RORG RZRG steroid hormone receptor activity
transcription factor activity, sequence-specific DNA binding

(Continued)
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Table 2 Continued

UniProt P-value Gene name Key go terms

P11597 8.1254e-05 CETP cholesterol binding
cholesterol transporter activity
phospholipid transporter activity

P10635 9.9326e-05 CYP2D6 CYP2DL1* arachidonic acid epoxygenase activity oxidoreductase
activity

steroid hydroxylase activity

P04150 0.00011289 NR3C1 GRL glucocorticoid-activated RNA polymerase II transcription
factor activity

Q07817 0.00020485 BCL2L1 BCL2L BCLX protein kinase binding

P21453 0.00021589 S1PR1 CHEDG1 EDG1 G-protein-coupled receptor activity

P62508 0.00021589 ESRRG ERR3 ERRG2 retinoic acid receptor activity transcriptional activator activity,

P10276 0.00022192 RARA NR1B1 retinoic acid receptor activity
transcription factor activity

P29274 0.00022192 ADORA2A ADORA2 G-protein-coupled adenosine receptor activity

P10827 0.0002477 THRA EAR7 ERBA1 NR1A1
THRA1 THRA2

chromatin DNA binding
steroid hormone receptor activity
thyroid hormone receptor activity
transcription factor activity

Q9H227 0.00025318 GBA3 CBG CBGL1 beta-galactosidase activity
glycosylceramidase activity

P09960 0.00027014 LTA4H LTA4 aminopeptidase activity
leukotriene-A4 hydrolase activity

P22680 0.00028977 CYP7A1 CYP7* cholesterol 7-alpha-monooxygenase activity

P11511 0.00031799 CYP19A1 ARO1* oxidoreductase activity

Q14994 0.00045613 NR1I3 CAR androgen receptor activity
thyroid hormone receptor activity
transcription factor activity

P14902 0.00051981 IDO1 IDO INDO electron carrier activity
indoleamine 2,3-dioxygenase activity

P27986 0.00054914 PIK3R1 GRB1 1-phosphatidylinositol-3-kinase regulator activity
insulin-like growth factor receptor binding transcription factor
binding

transmembrane receptor protein tyrosine kinase adaptor
activity

P11509 0.00068414 CYP2A6 CYP2A3* arachidonic acid epoxygenase activity oxidoreductase
activity,

steroid hydroxylase activity

P10275 0.00077224 AR DHTR NR3C4 androgen binding
ATPase binding
transcription factor activity

Q9UBK2 0.00077224 PPARGC1A LEM6 PGC1
PGC1A PPARGC1

androgen receptor binding
ligand-dependent nuclear receptor binding
ligand-dependent nuclear receptor transcription coactivator
activity

P05093 0.00081711 CYP17A1 CYP17* S17AH 17-alpha-hydroxyprogesterone aldolase activity steroid
17-alpha-monooxygenase activity

P10826 0.0010141 RARB HAP NR1B2 RNA polymerase II regulatory region binding
steroid hormone receptor activity

P11712 0.0010293 CYP2C9 CYP2C10* drug binding
monooxygenase activity
steroid hydroxylase activity

Q5SQI0 0.0010715 ATAT1 C6orf134 MEC17
Nbla00487

coenzyme binding [GO:0050662]; tubulin N-acetyltransferase
activity [GO:0019799]

P06132 0.0011377 UROD ferrous iron binding [GO:0008198]; uroporphyrinogen
decarboxylase activity [GO:0004853]

Q9Y6Q9 0.00116 NCOA3 AIB1 BHLHE42 RAC3
TRAM1

androgen receptor binding
nuclear hormone receptor binding
thyroid hormone receptor binding
transcription coactivator activity

O43617 0.0011879 TRAPPC3 BET3 CDABP0066 TRAPPC3 BET3 CDABP0066

(Continued)
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Table 2 Continued

UniProt P-value Gene name Key go terms

Q99835 0.0012328 SMO SMOH G-protein-coupled receptor activity
Wnt-protein binding

O75469 0.0013221 NR1I2 PXR drug binding
steroid hormone receptor activity
transcriptional activator activity

O76074 0.0014457 PDE5A PDE5 3’,5’-cyclic-GMP phosphodiesterase activity
phosphodiesterase activity

cGMP binding

P51160 0.0014457 PDE6C PDEA2 3’,5’-cyclic-GMP phosphodiesterase activity [GO:0047555];
cGMP binding [GO:0030553]; metal ion binding [GO:0046872]

P03372 0.0016219 ESR1 ESR NR3A1 ATPase binding
estrogen receptor activity
transcription factor activity
steroid hormone receptor activity s

P12821 0.0017773 ACE DCP DCP1 actin binding
carboxypeptidase activity
endopeptidase activity
mitogen-activated protein kinase binding

P27815 0.001848 PDE4A DPDE2 3’,5’-cyclic-AMP phosphodiesterase activitycAMP binding

O15217 0.001859 GSTA4 glutathione transferase activity

P20813 0.0021009 CYP2B6* steroid hydroxylase activity

Q15119 0.0021009 PDK2 PDHK2 ATP binding
protein kinase activity

Q16678 0.0021009 CYP1B1* aromatase activity

P11474 0.0023382 ESRRA ERR1 ESRL1 NR3B1 steroid hormone receptor activity
transcriptional activator activity

Q13772 0.0023382 NCOA4 ARA70 ELE1 RFG androgen receptor binding
transcription coactivator activity

P33261 0.0023533 CYP2C19* arachidonic acid epoxygenase activity
steroid hydroxylase activity

Q92731 0.0025393 ESR2 ESTRB NR3A2 estrogen receptor activity
steroid hormone receptor activity
transcription coactivator activity

Q86YN6 0.0027512 PPARGC1B PERC PGC1
PGC1B PPARGC1

estrogen receptor binding
ligand-dependent nuclear receptor transcription coactivator
activity

P63092B 0.0027575 GNAS GNAS1 GTPase activity
signal transducer activity

P07550 0.0027575 ADRB2 ADRB2R B2AR beta2-adrenergic receptor activity
epinephrine binding
norepinephrine binding
potassium channel regulator activity

P27487 0.0027575 DPP4 ADCP2 CD26 dipeptidyl-peptidase activity
protease binding
virus receptor activity

P59768B 0.0027575 GNG2 G-protein beta-subunit binding
GTPase activity
signal transducer activity

Q03181 0.0027809 PPARD NR1C2 PPARB steroid hormone receptor activity
transcription factor activity

Q9HCD5 0.0027809 NCOA5 KIAA1637 chromatin binding
poly(A) RNA binding

P02751 0.0029362 FN1 FN collagen binding
integrin binding
peptidase activator activity

P05108 0.0038778 CYP11A1 CYP11A* cholesterol monooxygenase activity
iron ion binding

P10109 0.0038778 FDX1 ADX electron carrier activity

(Continued)
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Table 2 Continued

UniProt P-value Gene name Key go terms

P41235 0.0047816 HNF4A HNF4 NR2A1 TCF14 steroid hormone receptor activity
transcription factor activity

P55789 0.0055894 GFER ALR HERV1 HPO flavin adenine dinucleotide binding
protein disulfide oxidoreductase activity

P68871 0.0055894 HBB oxygen transporter activity

P69905 0.0055894 HBA1; HBA2 oxygen transporter activity

P69891 0.0056218 HBG1 PRO2979 oxygen transporter activity

P28222 0.0060852 HTR1B HTR1DB serotonin receptor activity

P02753 0.0062538 RBP4 PRO2222 retinol transporter activity

Q14541 0.0067333 HNF4G NR2A2 steroid hormone receptor activity
transcription factor activity

P14061 0.0068003 HSD17B1 E17KSR EDH17B1
EDH17B2 EDHB17 SDR28C1

catalytic activity
estradiol 17-beta-dehydrogenase activity testosterone
dehydrogenase (NAD+) activity

P28702 0.0068003 RXRB NR2B2 9-cis retinoic acid receptor activity
steroid hormone receptor activity
transcription factor activity

Proteins marked with “B” are 3D structures are proteins from bovin (percentage of sequence identities between human and bovin proteins are 99.75% for P63092,
100% for P63212). Key enzymes involved in pharmacokinetics are marked with an asterisk.

adverse reactions alone does not correlate well with MRTD
(Figure S2). Therefore, we added drug potency (pseudo-
potency) to our model. Thus, we used computational esti-
mates based on 3D structure interactions that were prox-
ies for promiscuity (using PocketFEATURE8) and potency
(using DrugFEATURE9). We have previously shown that the
promiscuity is associated with drug adverse reactions.10 As
expected, we found that our estimated pseudo-potency is
associated in MRTD (Figure 1). Drugs of low MRTD often
have high pseudo-potency, since only drugs of high pseudo-
potency can achieve their desired effects at low dose. On the
other hand, drugs of low pseudo-potency need high dose
to reach the desired therapeutic effects. ANOVA test shows
that including pseudo-potency improves the linear model,
demonstrating that promiscuity and pseudo-potency provide
independent, complementary information.

Predict and reevaluate MRTD
Although our model has a low R-squared value, it shows
statistically significant coefficients. Without question, a low
R-squared can be problematic when precise estimates are
required. However, we have found it useful in two drug cate-
gories: 14 antiretroviral drugs and 16 NSAIDs.
For NSAIDs, binding to functional targets COX2 or COX1

(cyclooxygenase 1 and 2, respectively) is a key step of drug
action. There are two types of kinetics in NSAIDs binding
(see Supplementary Materials). One type is rapid binding,
including reversible and irreversible inhibitors (e.g., ibupro-
fen, piroxicam, mefenamic acid, aspirin). The other is slow,
time-dependent binding (e.g., celecoxib, diclofenac, flur-
biprofen, indomethacin), which often results in higher in vitro
potency.16,17 Themodel achieves better performance on slow
time-dependent inhibitors. For rapid inhibitors, the predicted
values are often lower than the known MRTDs. Since our
model is a simplified one, we do not include other factors that
may affect MRTD, such as pharmacokinetic properties, drug
metabolizing, enzyme kinetics, and transporter effects. How-

ever, it seems that promiscuity estimation based on high-
affinity drug-binding sites tends to achieve a higher accuracy,
resulting in better performance of MRTD predictions.

For the group of antiretroviral drugs, the clinically effective
dose is often accompanied by substantial adverse effects.
Our predicted MRTDs are generally lower than the observed
MRTDs because most antiretroviral drugs have high promis-
cuity, corresponding to their severe side effects. However,
drugs with high pseudo-potency may be able to exert their
desired functions at lower doses. Thus, we propose that the
MRTD for those drugs may merit reevaluation. For exam-
ple, efavirenz and abacavir have high pseudo-potency (Sup-
plementary Table S2B). Our predicted MRTD is lower than
the empirical MRTD for these two drugs. They may be
able to achieve their effects at a dose lower than MRTD
because of their high pseudo-potency. Furthermore, both
efavirenz and abacavir interact with HROTs (efavirenz inter-
acts with dipeptidyl peptidases and retinol-binding protein;
abacavir interacts with dipeptidyl peptidases and T-cell sur-
face glycoprotein CD1b. Table 2). Therefore, lowering doses
of these two drugs may help reduce the undesired side
effects.

High-risk off-targets (HROTs)
A low-dose drug often has higher potency and higher promis-
cuity, compared with high-dose drugs (Figure 1). In order to
identify proteins that may modulate common and important
side effects, we seek proteins that frequently interact with
low-dose drugs, but not with high-dose drugs. These pro-
teins and their related pathways are sensitive to the modula-
tions induced by drug binding, which could contribute to low
tolerance. We defined HROTs as proteins that seem to be
dose limiting based on frequent predicted interactions with
low-dose drugs.

For example, as a low-dose drug, dexamethasone (0.3
μMol/kg/day) is predicted to be highly effective (pseudo-
potency score 3.55) and promiscuous (promiscuity score
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–3.43). One of its off-targets is glucocorticoid nuclear
receptor 2 (NCOA2), which has been identified as an
HROT. The binding between NCOA2 and dexamethasone
has also been observed experimentally (IC50–22 μM, data
from ChEMBL18). Meanwhile, NCOA2 has been associated
with severe adverse reactions caused by dexamethasone,
including menstrual irregularities, cardiomegaly, and cardiac
arrest.10 Active chemicals that interact with HROTs may
cause severe side effects, resulting in low tolerance.
In previous work, we identified 50 essential proteins that

are significantly associated with drug adverse reactions.10

Among the 50 essential proteins, nuclear receptors are
enriched, suggesting that hormone modulation can con-
tribute to adverse reactions. In this work, among the 83
HROTs nearly half of them are hormone receptors or nuclear
receptors (Table 2). Another important group are proteins
involved in transcription and signaling process, including 32
proteins associated with transcription process. Elucidating
interactions between drugs and transcription factors remains
a challenge because of the complexity of cellular responses
to drugs. Our predictions provide high-risk alerts that drug
binding to these genes may cause severe adverse reactions.
Bowes et al. have published a “minimal panel” of targets

that should be used for pharmacological profiling to iden-
tify the most undesirable off-target activities.19 (The original
source of this panel was four major pharmaceutical compa-
nies.) These targets often have a high hit rate and a high
impact in in vitro profiling. They include 24 GPCRs, seven ion
channel targets, six intracellular enzymes, three neurotrans-
mitter transporters, two nuclear hormone receptors, and one
kinase. We have found that eight HROTs (five GPCRs and
three nuclear receptors) overlap with the “minimal panel,”
suggesting our list of HROTs provides complementary infor-
mation for interpreting pharmacological profiling. In addition,
our HROTs list includes 11 key enzymes in pharmacokinetics
(Table 2).

Reliability of computational profiling
In this work we employed two computational predictions
as proxies for drug potency and promiscuity. Ideally, these
should be derived from direct experimental assays. For
drug promiscuity, it would require a complete binding pro-
file between small molecular drugs and a broad spectrum
of human proteins (not limited to known drug targets). How-
ever, such large-scale binding assays are difficult and expen-
sive. We have inspected the high confidence datasets from
ChEMBL18 and BindingDB13 and found that on average there
are 15 unique assays for each drug. In addition, these assays
are biased towards known target proteins. To estimate drug
promiscuity, we are also interested in proteins that have not
traditionally been considered drug targets. Computational
estimation is imperfect, but it can create an unbiased pro-
file of drug binding to a broad spectrum of proteins. Further-
more, our validations have shown that the predicted affinities
and experimental assays are well correlated.10

The other term, pseudo-potency, is based on our pub-
lished methods for estimating druggability, which have been
validated9 by nuclear magnetic resonance (NMR) experimen-
tal results and comparison to drug discovery outcomes.20,21

To our knowledge, we are the first to associate these two

computational terms, which provide molecular insights into
the drug target space and the influences on therapeutic
doses. It is clear that there are other factors that contribute
to the MRTD, such as clearance and bioavailability. However,
data relevant to these factors are limited because they often
rely on difficult and expensive in vivo preclinical assays as
well as in vitro metabolism and disposition measurements.
Therefore, we have chosen to model only two factors for
small molecule drugs and demonstrated their potential to
reveal molecular mechanisms of drug actions.
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