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Abstract

Neural crest (NC) cells are a multipotent stem cell population that give rise to a

diverse array of cell types in the body, including peripheral neurons, Schwann cells

(SC), craniofacial cartilage and bone, smooth muscle cells, and melanocytes. NC for-

mation and differentiation into specific lineages takes place in response to a set of

highly regulated signaling and transcriptional events within the neural plate border.

Premigratory NC cells initially are contained within the dorsal neural tube from which

they subsequently emigrate, migrating to often distant sites in the periphery. Follow-

ing their migration and differentiation, some NC-like cells persist in adult tissues in a

nascent multipotent state, making them potential candidates for autologous cell ther-

apy. This review discusses the gene regulatory network responsible for NC develop-

ment and maintenance of multipotency. We summarize the genes and signaling

pathways that have been implicated in the differentiation of a postmigratory NC into

mature myelinating SC. We elaborate on the signals and transcription factors

involved in the acquisition of immature SC fate, axonal sorting of unmyelinated neu-

ronal axons, and finally the path toward mature myelinating SC, which envelope

axons within myelin sheaths, facilitating electrical signal propagation. The gene regu-

latory events guiding development of SC in vivo provides insights into means for dif-

ferentiating NC-like cells from adult human tissues into functional SC, which have

the potential to provide autologous cell sources for the treatment of demyelinating

and neurodegenerative disorders.
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1 | INTRODUCTION TO THE NEURAL
CREST CELLS

Often referred to as the “fourth germ layer,” the neural crest (NC) is a

multipotent and migratory stem cell population that contributes to a

wide array of organs and tissues in the vertebrate embryo, including

autonomic ganglia, sensory neurons, adrenal and thyroid glands,

cartilage and bone of the face, smooth muscle cells of some major

arteries, and melanocytes in the skin.1,2 NC formation is first observed

at stage 9 of human embryogenesis and extends till stage 20 as per

the Carnegie staging system.3 Neural crest stem cells (NCSC) were

first identified in rodents by Stemple and Anderson and isolated using

cell sorting for NC-specific cell surface protein p75NTR (neurotrophin

receptor [NTR]). These p75NTR+ cells could self-renew and generate
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neurons and glia of the PNS as well as myofibroblasts.4 The high

degree of self-renewal and regenerative capacity of NC makes it a

very attractive source for stem cell-based therapies.

During embryonic development, formation of NC stem cells origi-

nates in response to a set of signaling events between neural and non-

neural ectoderm, a region termed as the neural plate border.5 Induction

is initiated at the plate border by signals including fibroblast growth fac-

tor (FGF), bone morphogenetic protein (BMP), andWnt.5,6 On establish-

ment of the neural plate border territory, new signaling events are

established for specification of bona fide NCSCs. This process results in

expression of NC specifiers (Snail2, Sox8, Sox9, Sox10, FoxD3, c-Myc,

and Id family members) that in turn mediate changes in shape, motility,

and adhesive properties leading to delamination of NCSCs from the neu-

roepithelium and initiating cell lineage decisions.6 NC precursor cells

within the dorsal neural tube then undergo epithelial to mesenchymal

transition and migrate along precise pathways,7 eventually settling and

differentiating into specialized cell types, according to their axial origin as

well as environmental cues encountered during the process.8 Cranial

NCSCs form craniofacial structures of the head including cartilage and

bone tissue of the skull and face, as well as cranial neurons, glia, and con-

nective tissue of the face. Trunk NCSCs differentiate into dorsal root

ganglia (DRG), containing sensory neurons and satellite glial cells, endo-

crine cells of the adrenal glands, and Schwann cells (SC) along the spinal

nerves. Some of these NCSCs also differentiate into melanocytes in the

skin. Finally, vagal NCSCs populate the enteric nervous system (ENS)

along the length of the gut and contribute to the connective tissues of

the arteries, septation of the outflow tract and cardiac ganglion.1

2 | SOURCES OF NC-LIKE STEM CELLS IN
ADULT TISSUES

2.1 | NC characteristics are retained
postembryonically in adult tissues

Although NC cells are often referred to as stem or stem-like cells, they

are a transient population in the embryo that becomes progressively

restricted in developmental potential during the course of develop-

ment and rapidly lose their multipotency. Nevertheless, recent evi-

dence suggests that many NC derivatives, including skin, cornea, gut,

and peripheral nerves, contain stem or precursor cells with the ability

to give rise to multiple NC derivatives.1,9 These tissues provide poten-

tial sources for obtaining multipotent neural crest-like stem cells

(NClSCs) for the purpose of regenerative medicine and cell therapy,

and consequently, they are under study in several laboratories.

Whether NC-like cells from the adult tissue come from embryonic

NCs and remain dormant in a multipotent state or they attain a spe-

cialized fate and dedifferentiate to their NC progeny in specific cul-

ture conditions has not been established yet. The answers to these

questions can only be attained by lineage-tracing experiments track-

ing migration and differentiation of NCs starting from embryo devel-

opment and throughout adulthood.

NClSCs have been isolated from mouse bone marrow and DRG.

Nagoshi et al used double-transgenic mouse strains P0 and Wnt1-Cre/

Floxed-EGFP to map and isolate NClSCs from bone marrow, DRG, and

whisker pad using cell-sorting. P0 andWnt1 are marker genes expressed

inNC cells in mouse embryos.10 Interestingly, DRG-derivedNClSCs gen-

erated more primary and secondary spheres compared with bone mar-

row and whisker pad–derived cells and showed increased expression of

NCmarkers p75NTR, Sox10, Nestin, andMusashi1. Additionally, 75% of

DRG-derived spheres showed tri-lineage differentiation to neurons, glia,

and myofibroblasts, compared with only 7.3% of spheres derived from

whisker pad and 3.3% in spheres derived from bone marrow.10 These

results highlight the tissue-dependent differences in the abundance and

self-renewal capacity of adult NClSCs, which may ultimately determine

the suitability for cellular therapies. Furthermore, bone marrow–derived

NCs could be differentiated into SC that showed myelination around

DRG neuronal axons in vitro, indicating their potential for use in periph-

eral nerve regeneration.11

During development, NCs also migrate to the cornea, where their

derivatives remain throughout adulthood. The cornea is a transparent

avascular structure that covers the front of the eye and helps to focus

light on the retina. The cornea consists of three major cellular compo-

nents: a stratified epithelium, a collagenous stroma containing ker-

atocytes, and a layer of endothelium.1 Experiments with chick-quail

chimeras demonstrated that cranial NC cells form the corneal endo-

thelium and keratocytes.12–15 Lineage tracing experiments demon-

strated that upon transplantation from late into early chick embryos

quail NC-derived keratocytes followed normal migratory routes giving

rise to smooth muscle cells, myofibrils, keratocytes, and endothelial

cells but failed to differentiate into neurons or cartilage, suggesting

restricted plasticity of these NC-derived progenitors.16 Another study

however demonstrated differentiation of corneal progenitor cells into

keratocytes, fibroblasts, myofibroblasts, adipocytes, chondrocytes,

and neural cells, indicating similar differentiation potential to NCSC.17

Significance statement

Neural crest (NC) cells have attracted attention for their

multipotent nature and ease of isolation from adult tissues.

This concise review reports the advantages of using NCs for

the treatment of demyelinating disorders and spinal cord

injury (SCI), over other cell sources such as induced pluripo-

tent stem cells and embryonic stem cells. Adult tissue-

derived NCs are easy to expand in vitro and can be derived

from autologous sources. Moreover, differentiation of NCs

to Schwann cells (SC) can be easily achieved without genetic

mutation, making them safe for translation from a laboratory

to a clinical setting. Adult NC-derived SC are functional and

can myelinate neurons in vitro and spinal cord in vivo in

mice. Hence, NCs derived from adult tissue are a promising

cell source for the treatment of demyelinating disorders and

SCI. Furthermore, this technology can also be used for dis-

ease modeling and drug testing, making way for personal-

ized therapeutics for neurological disorders.
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Stem cell derivatives of NC origin persist in the adult rodent gut

from which they can be isolated based on CD49b expression. Sorted

cells showed expression of NC marker genes, such as p75NTR, Sox10,

and Nestin, along with markers specific to enteric glia such as S100B

and glial fibrillary acidic protein.18 Multipotent progenitors from fetal

gut exhibited more plasticity and degree of self-renewal compared

with those derived from adult gut. In addition, upon transplantation

into chick embryos, fetal progenitors gave rise primarily to neurons,

whereas postnatal gut progenitors turned predominantly into glia.19

In vivo grafting experiments suggest therapeutic potential of these

progenitors for the treatment of ENS disorders.20,21

Cardiac NC cells play a role in septation of cardiac outflow tract into

pulmonary and aortic branches.1 In vitro clonal expansion of NCISCs iso-

lated from cardiac tissue suggested that only a small fraction of them

were capable of self-renewal and generation of NC derivatives.22 Stem

cells from neonatal rodent heart demonstrate a “NC-like” behavior, and

when grown as cardiospheres, they could differentiate into PNS neu-

rons, glia, smooth muscle cells, and cardiomyocytes, as well as migrate to

tissues characteristic for NC derivatives in ovo.23 Interestingly, cardiac

resident Nestin+ progenitors migrated to areas damaged by infarction

and contributed to reparative vascularization, indicating their potential

for the treatment of various heart diseases.24

Although the presence of NClSCs in developed tissues provides

evidence of an alternative cell source for cell therapy, most studies of

this type have been limited to rodents, due to inaccessibility of human

NCs in organs such as gut, heart, DRG and spine, as shown in

Figure S1. Interestingly though, NCISCs have also been isolated from

adult human tissues such as skin and dental pulp. The isolation of

NClSCs from skin tissue enhances their therapeutic potential, mostly

because of the accessibility and size of skin tissue that can provide

autologous cells for cell therapies.25–28 Fernandes et al showed that

endogenous adult dermal precursors residing in the papillae of hair

and whisker follicles could give rise to multipotent NClSCs.25 Similarly,

Sieber-Blum et al reported the presence of multipotent NCISCs in the

adult mammalian hair follicle, which could give rise to neurons, mela-

nocytes, smooth muscle cells, SC, and chondrocytes in vitro. These

multipotent cells were termed epidermal neural-crest cells,26 and

when grafted in a mouse model of SCI, they integrated into the host

spinal tissue yielding improvements in touch perception and sensory

connectivity.29

2.2 | Multipotent NClSCs from interfollicular
epidermis

Recently, in our laboratory, Bajpai et al devised a method to reprogram

postnatal human epidermal keratinocytes (KCs) to NClSC (termed KC-

NC) by mimicking signaling events that occur at the neural plate border.

Transcriptomic analysis confirmed that epidermally derived NCISCs

were similar to those generated from human embryonic stem cells (ESCs)

and maintained the multilineage differentiation potential into melano-

cytes, neurons, SC, andmesenchymal cells in vitro and in ovo.30 In a sub-

sequent study, we identified the factors that promote expansion of KC-

NC and maintain the NC phenotype. Specifically, we showed that FGF2

was necessary and sufficient for expression of Sox10, but both FGF2

and IGF1worked synergistically to upregulate FoxD3. In addition, inhibi-

tion of TGF-β1 further enhanced Sox10 expression.31 We also demon-

strated that the same signaling factors can be used to obtain multipotent

and functional NClSCs from cultures of human inter-follicular KC iso-

lated from elderly donors.32 Interestingly, NClSC from older donors

exhibited significantly younger epigenetic age than epidermal KC, per-

haps indicating greater potential for cell therapies. Given the accessibil-

ity, high proliferative capacity, and ease of reprogramming without

genetic modification, KC-NC represent an abundant, autologous source

of functional therapeutic cells for regenerative medicine. They can also

provide an excellent culture system for studying human disease, similar

to induced pluripotent stem cells (iPSCs) but without the need for

geneticmodification or reprogramming to the pluripotent state.

2.3 | Schwann cell precursors contribute to NC
derivatives

Recent evidence suggests that NC cells that become associated with

peripheral nerves acquire a partial glial phenotype, assuming the charac-

teristics of a “Schwann cell precursor” (SCP). Intriguingly, it has been

shown that late embryonic stages, many melanocytes originate from

nerve-associated SCPs.33 This occurs well after NC cells destined to form

melanocytes have emigrated from the neural tube. Similarly, lineage anal-

ysis in mice has shown that cranial parasympathetic ganglia as well as a

subpopulation of enteric neurons arise from this cell population.34–36

This is consistent with the possibility that later NC derivatives may arise

from an SCP population that represents a nascent stem cell population

associated with peripheral nerves. These SCPs express characteristic

marker genes that are different from those expressed by migratory

NCSC but similar to markers expressed by immature SC. For example,

SCPs express genes encoding myelin basic protein (MBP), peripheral

myelin protein 22 (PMP22), desert hedgehog, Cadherin 19, Connexin

29, GAP43, BFABP, and other Schwann cell markers, many of which are

also associated with differentiation into myelinating SC.37–41 However,

rather than being restricted to differentiate into SC, SCPs remain

multipotent and appear to have the ability to contribute to numerous lin-

eages at much later times in embryogenesis than normally associated

with NC migration. In fact, recent studies also suggest that SCPs may

give rise to chromaffin cells of the adrenal medulla, as evidenced by sin-

gle cell RNA sequencing (scRNA-seq) of the developing adrenomedullary

cells in mice.42 This raises the intriguing possibility that these may repre-

sent true stem cells with remarkable multipotency and regenerative

ability.

The transition frommigratory NC cell to SCPs likely occurs when NC

cells approach and/or become associated with peripheral nerves ema-

nating from sensory and autonomic ganglia. At this point, the NC-derived

cells upregulate genes typically associated with SC while downregulating

more typical NC markers, thus assuming a more glial like state.38,43

Although these cells may be biased toward glial lineages, they remain

multipotent and we speculate that perhaps they “dedifferentiate” similar

and give rise to other NC fates similar to radial glia which are neuronal

progenitors in the central nervous system. Whether SCPs maintain their
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multipotency into adulthood and the full range of cell types into which

they can differentiate remain open questions.

3 | GENE REGULATION IN NC CELLS: FATE
ACQUISITION AND MULTIPOTENCY
MAINTENANCE

3.1 | An NC gene regulatory network controls
lineage diversification into neuronal, melanocytic, and
glial, including Schwann cell lineages

The NC is an excellent model system for studying questions of stem

cell biology due to its multipotency, motility, and ability to form a

broad array of derivatives. These are as diverse as neurons and SC of

the peripheral nervous system, craniofacial cartilage, and bone, as well

as skin melanocytes. These inherent stem cell properties have poten-

tially important implications in regenerative medicine to treat disor-

ders like familial dysautonomia, cleft palate, and NC-related heart

conditions such as Persistent Truncus Arteriosus, as well as to under-

stand anomalies in differentiation that lead to cancers such as melano-

mas and Schwannomas.

The recent expansion of molecular biological techniques including

single-cell RNA-seq, ChIP-seq, and ATAC-seq have facilitated the dis-

section of the genetic program controlling NC development. These

genomic approaches have provided important insights into gene regu-

latory mechanisms and uncovered new regulatory factors involved in

control of NC formation and diversification.44,45 It is now clear that an

intricate array of transcription factors and signaling molecules act in

concert to imbue NC cells with its broad multipotency and migratory

ability. These factors have been proposed to act via a multistep NC

gene regulatory network (GRN) that integrates transcriptional inputs

and diverse environmental signals.2,5,46,47 The NC GRN consists of a

series of hierarchically arranged regulatory steps, including induction

of the prospective NC at the neural plate border, specification of

multipotent NC cells within the dorsal neural tube, control of their

delamination via an epithelial to mesenchymal transition to produce a

migratory population, and finally, diversification into distinct cell

lineages.

The NC GRN posits that the process of NC formation is comprised

of a logical series of distinct regulatory steps that flow seamlessly

from one to the other. First, signaling molecules, including Wnts,

FGFs, and BMPs, in the gastrula stage embryo initiate the process of

NC induction by inducing transcription factors like Msx, Pax3/7, Zic1,

and Dlx3/5 at the border between the neural plate and nonneural

ectoderm. The region where these genes are coexpressed defines the

neural plate border—a domain primed to form bona fide NC cells.

These in turn function in combination with signaling molecules to reg-

ulate “NC specifier genes” like Snail/Slug, AP-2, FoxD3, Twist, Id, cMyc,

and Sox8/9/10. The NC GRN itself can be envisioned as a series of

sequential binary decisions leading to differentiation into derivative

fates. Recently Twist1 has been reported to play a critical role as a

regulator of NC fate decision, and it biases NC commitment toward a

mesenchymal fate.45 Conversely, FoxD3 represses the mesenchymal

program of delaminating NCs.48 The postmigratory program begins

following the downregulation of transcription factors associated with

the neural tube program such as Zic3 and Pax8.

Expression of the Sox family genes initiates within the dorsal neu-

ral tube and defines cells with the potential to emigrate from the neu-

ral tube and form migratory NC cells. In particular, the SoxE

transcription factors (Sox8/9/10) are critical regulators of most NC

lineages.5,49,50 Specifically, Sox8 and Sox9 are expressed early in the

newly induced NC, preceding Sox10, which serves as a nearly pan

migratory NC marker. At later developmental stages, Sox9 and Sox10

persist in specific NC subpopulations. Whereas Sox9 is maintained in

NC-derived chondrocytes, Sox10 persists in neuronal, glial, and mela-

nocyte lineages and controls their specification in combination with

different cofactors in each lineage.

Sox10 regulates differentiation of sensory and autonomic lineages

by regulating expression of achaete-scute homolog 1 and the paired

homeodomain (Phox2b) transcription factors that are essential for

neurogenesis in the autonomic lineage.51 In the DRG, transient

expression of Sox10 regulates expression of neurogenin.52 Sox10 also

binds to endothelin receptor-B (EDNRB) to regulate development of

the ENS, and disruption in this binding has been shown to cause

Hirschsprung disease.53 Sox10 also is critical for emergence of the

glial lineage by regulating Oct6 and Krox20 (Egr2) transcription fac-

tors, which are critical for myelination.54–56 Its expression persists

through subsequent stages of terminal differentiation,49 regulating

expression of myelin proteins, including protein zero (P0)57, MBP,

PMP22, and the gap junction protein connexin 32.58

3.2 | Diverse signaling pathways govern NC cell fate
during embryogenesis

Many studies have focused on discovering the regulatory pathways

that control NC fate acquisition in order to better understand cell fate

specification during embryonic development in vivo and develop

bioinspired strategies to differentiate NC into different lineages

in vitro.

After formation of the neural tube, NC cells separate from the

neuroepithelium and migrate to distant anatomic locations, while mak-

ing cell lineage decisions in response to multiple morphogenetic sig-

nals.59,60 However, some NCs remain unspecified and retain their

stemness and multipotency.9,61 In general, there is significant hetero-

geneity with respect to the differentiation capacity of NCs, with some

giving rise to multiple derivatives while others differentiating into a

subset of cell types,62,63 depending on anatomic location and the

presence of fate specifying signals. NCs from all axial levels give rise

to neurons, glia, and pigment cells, but mesenchymal cell specification

depends on axial position. Cranial NCs give rise to skeletal mesen-

chyme; trunk NCs give rise to dorsal fin mesenchyme in amphibians

and fish; and vagal NCs contribute to smooth muscle cells of the car-

diac outflow tract.64,65

One of the earliest NC markers includes the family of receptor

tyrosine kinases (RTK), which plays an important role in cell migration

and survival. The RTK family are critical for development of NC
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derivatives in vivo.66 At migratory stages, the neurotrophin factor NT-

3 binds to the trkC receptor and induces sensory neurogenesis.67

GDNF binds to the RET receptor during ENS development.66 Neu-

regulin binds to receptor ErbB3 and is required for glia formation in

the peripheral nervous system.68 Binding of steel factor to the c-kit

receptor promotes formation of melanocyte precursors,60 whereas

cartilage precursors express platelet-derived growth factor recep-

tor α.69

The timing of NCmigration during development also affects the fate

they attain as cell specific genes are expressed at different times during

migration. Early-migrating cells express transcription factors Brn3 or

neurogenin-2 and commit to sensory neuron lineage.70,71 Late-migrating

cells express melanocytic-specific markers in the migration staging area

after departure of the early-migrating NCs.72 These signals contribute to

themolecular heterogeneity of the premigratoryNCs.

Three main classes of signals, namely Wnts, BMP2/4, and

TGFβ1/2/3, influence NC cell fate during and following migration

(Figure 1).73,74 Their interplay, timing, and relative intensity determine

the proportion of various derivatives generated during development.

Wnts and the downstream β-catenin pathway have been found to pro-

mote pigment cell formation in zebrafish embryo, possibly through acti-

vation of Nacre (Mitfa), a gene necessary and sufficient for pigment cell

formation; conversely, inhibition of Wnt signaling leads to generation of

neurons at the expense of pigment cells.75,76 Conditional deletion of

β-catenin inmice prevented sensory ganglion formation, whereas consti-

tutive activation led to formation of sensory neurons at the expense of

other NC derivatives.77,78 The second class of signaling molecules,

BMP2/4 are known to induce autonomic neurogenesis via expression of

Ascl1 (MASH1), a basic helix-loop-helix transcription factor expressed in

autonomic neuron precursors prior to differentiation. Interestingly,

continuous BMP signaling is required for commitment of NCs to neuro-

nal fate.79 Although BMP2/4 have been identified as factors promoting

specification of NCs to an autonomic lineage, it does not prevent sensory

neurogenesis in NCs prespecified to a sensory fate in vivo.70

The members of TGFβ superfamily—1/2/3 are also able to specify

NC cell fates, through a different mechanism than BMP2/4, since they

signal through a separate receptor complex and have different down-

stream effectors.75 TGFβ1/2/3 were shown to promote cardiac smooth

muscle specification of rat NCs, as evidenced by the expression of

smooth muscle actin.74 TGFβ1/2/3 are also expressed in the developing

heart and thought to be active during the induction of cardiomyogenesis

inNCs, as well as at final stages of cardiac cushion tissue formation.80

The development of SC from NCs results from exposure of NCs to

neuregulin-1 (NRG1, also known as Glial Growth Factor), an inductive

signal of the neuregulin family. NRG1 has been found to suppress neuro-

nal differentiation and specify NCs to a Schwann cell fate.81 Themolecu-

lar mechanisms governing differentiation of NCs to SC are elaborated

later in this review. The interplay of signaling pathways and their effect

on different transcription factors are summarized in Figure 1.

4 | MOLECULAR MECHANISMS
UNDERLYING DIFFERENTIATION OF NC
CELLS TO SC

During development, NCSC) delaminate from the neural tube and

translocate to various regions of the embryo. Some localize adjacent

to the developing nerves, where they differentiate into SCPs, which in

turn give rise to a variety of peripheral glial cells that ultimately per-

form a plethora of functions linked to myelination, neuronal support,

regulation of synaptic connectivity and sensory function. ErbB3/Nrg1

F IGURE 1 Role of Sox10 in differentiation to neural crest (NC)-specific lineages. Sox10 is required for differentiation of NCs to neurons,
melanocytes, and Schwann cells, but downregulated for smooth muscle cell differentiation. Red arrows represent direct binding sites of Sox10 to
lineage specific transcription factors. Dashed red lines indicate no evidence for direct binding of Sox10. Green boxes represent extrinsic signals
during differentiation. Factors that act synergistically with Sox10 are depicted in blue clouds. Downstream targets of gene regulation by Sox10
are depicted in pink boxes
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interactions and the transcription factor Zeb2 are involved in lineage

specification and myelination82–84; however, the precise mechanisms

dictating the fate acquisition from NC to SCP and mature myelinating

or nonmyelinating SC, as well as the role of metabolic pathways in SC

development and myelination, are not yet completely understood.

4.1 | The role of Sox10, Pax3, and HDAC1 in NC
lineage specification to SCP

The transcription factors Sox10 and Pax3 are responsible for mainte-

nance of NC multipotency and for differentiation into SC and melano-

cytes. Although Sox10 is an important NC specifier,85 it is not the sole

transcription factor setting the lineage specification and differentia-

tion mechanisms in motion. Peripheral glial lineage specification is

abolished when HDAC1/2 knockout mice (flanked by LoxP)86 are

crossed with mice expressing Cre recombinase (Cre) under the control

of Wnt1 promoter (Wnt1-Cre).87,88 Furthermore, HDAC1/2 has been

shown to interact with Sox10 and activate two promoters,89,90 the

early lineage marker Myelin Protein Zero (MPZ or P0)61 and Pax3. In

turn, a positive feedback loop is set in motion, where Pax3 and Sox10

activate the Sox10 MCS4 enhancer, to maintain high levels of Sox10

but also upregulate expression of Fabp7, another early SCP

marker.90,91 Interestingly, Sox10 expression precedes neuronal differ-

entiation92,93 but is downregulated during neurogenesis. In addition

to Sox10 and Pax3, another key transcription factor FoxD3 plays a

key role in glial fate acquisition, by biasing migrating NC against alter-

native melanocytic fate.94–96 Considering that Sox10 is also necessary

for melanocytic differentiation and survival, the combined action of

Sox10 and FoxD3 is necessary for commitment of NC to peripheral

glial fate acquisition.

4.2 | Path to myelination—Signaling during radial
axonal sorting dictates lineage specification

Following HDAC1/2-Sox10-Pax3-related signaling events, SCPs

become immature SC, where the process of radial sorting takes place.

Radial sorting refers to the process by which SC choose which axons

to myelinate during development.97 It relies on the establishment of

Schwann cell polarity and cytoskeletal remodeling through Schwann

cell-axon interactions, ultimately resulting in deposition of extracellu-

lar matrix (ECM), terminal Schwann cell differentiation, and myelin

production. As expected, a variety of signals are necessary for these

processes. ECM components like Laminin 211 and 411, Collagen

XV and associated integrins α6β1, α7β1, as well as dystroglycan glyco-

sylation enzymes play a pivotal role in attachment and sorting.98–105

Intracellular signaling regulates cytoskeletal remodeling and radial

sorting through molecules such as ILK, FAK, RhoGTPases, Rac1,

Cdc42, Profilin, Merlin/NF2, and N-WASp106–112, as summarized in

Figure S2.

In addition, cell-cell communications between neurons and SC

regulate axonal myelination. Such interactions are mediated through

Neuregulin 1 (Nrg1) type III on the surface of axons and ErbB2/3 on

the surface of SC.98 Indeed inhibition of the ErbB pathway impaired

axonal sorting in zebrafish nerves,113 strongly suggesting that

ErbB2/3-Nrg1 is necessary for Schwann cell radial sorting.114–116 Fur-

thermore, the Erk/Akt signaling pathways downstream of Nrg1 were

implicated in formation of abnormal Remak bundles containing

unsorted large caliber axons, possibly through the inactivation of

Gab1 (Grb2 associated binder 1), which in turn indirectly decreases

Erk but not Akt phosphorylation.117 Finally, the Wnt/β-catenin signal-

ing has also been implicated in axonal radial sorting,118 as conditional

inactivation of β-catenin resulted in mild radial sorting defects and

impaired lamellipodia formation.119

4.3 | Metabolic signaling pathway networks in
Schwann cell development and myelination

Recent studies revealed an increasingly important role for metabolism

in neuronal and glial biology. Accumulating evidence supports the role

of key metabolic pathways in SCP development120,121; the impor-

tance of metabolic crosstalk between SC and axons122–124; and the

contributions of metabolic abnormalities to the etiology of axonal

degradation and myelin related disorders.125–129 Specifically,

mTORC1, a multiprotein complex and major integrator of several

growth factor (e.g., IGF-1) signaling pathways such as PI3K/AKT and

MAPK,130,131 drives Schwann cell proliferation or myelin production,

in a context-specific manner that depends on developmental stage.

On the one hand, mTORC1 impeded myelin production by promoting

proliferation of immature SC and inhibiting their terminal differentia-

tion and nerve development.132–134 On the other hand, myelin pro-

duction was arrested in mTOR core kinase knockout mice and

mTORC1 was identified as the cause of the deficiency due to its

prime role in lipid formation and protein biosynthesis.135 In addition,

LKB1, a serine threonine kinase upstream of AMPK, a key regulator of

cellular energetics,136–138 plays a pivotal role in myelin production and

axonal sorting in SC, with significant repercussions for PNS mye-

lination. Collectively, these studies shed light on the etiology of mye-

lopathies by providing links between metabolism and signaling during

development, thereby providing valuable insights for development of

therapeutic strategies that may involve the use of NC derived SC for

cellular therapies.139–141

5 | NCSCs: A CELL SOURCE FOR THE
TREATMENT OF DEMYELINATING
DISORDERS

Demyelinating disorders are generally defined as diseases resulting in

loss of myelin from neuronal cells with relative preservation of axons.

These disorders are a result of damage to myelin sheaths or to the cells

that produce them. Demyelinated axons tend to degenerate, resulting in

decrease or loss of neurological function. Demyelinating disorders affect

both the CNS and PNS and can be caused by auto-immunity, certain

infectious agents, or genetic factors.142 Demyelinating diseases affecting

the CNS include in multiple sclerosis (MS), acute-disseminated encepha-

lomyelitis, acute haemorrhagic leucoencephalitis, and progressive

ADULT TISSUE–DERIVED NEURAL CREST-LIKE STEM CELLS 333



multifocal leukoencephalopathy, with MS being the most common dis-

abling neurological illness affecting young and middle-aged adults in

North America and Europe.143 Demyelinating diseases affecting the PNS

include the Guillain-Barré syndrome, Charcot-Marie-Tooth disease, pro-

gressive inflammatory neuropathy, and copper deficiency. These dis-

eases often result from loss of function of cells responsible for

myelination—oligodendrocytes in the CNS or SC in the PNS. Although

the causes and pathology of each of these diseases have been exten-

sively studied, the likelihood of reoccurrence is high and treatment

options are limited. Peripheral nerve injuries are also known to result in

loss ofmyelin in and around the site of injury. The incidence of peripheral

nerve injuries is fairly high, with a conservative estimates placing it

between 13 and 23 per 100,000 people per year.144 Although nerve

grafts have dominated the field of experimental treatment for peripheral

nerve injuries, their use is often limited by technical difficulties, invasive-

ness, andmediocre outcomes.145

The last few decades have seen attempts to use SC expanded in

culture for neural repair.146 SC play a central role in nerve repair—they

become activated after a nerve injury and assume a primitive pheno-

type, upregulating genes encoding for the production of neurotropic

factors and stimulating axonal regeneration. Additionally, once acti-

vated, SC produce ECM molecules such as collagen and laminin creat-

ing guided tunnels for axonal growth and regeneration.145 Various

stem cell sources have been examined for the purpose of generating

SC for the treatment of neurological diseases and peripheral nerve

injury. Here, we provide a brief review of the therapeutic potential of

these stem cells and discuss NCISC as an alternate cell source for

Schwann cell engineering.

5.1 | Stem cells for generation of autologous SC

Multipotent stem cells isolated from various adult sources may serve

as an autologous source of SC. Multipotent mesenchymal stem cells

(MSCs) have dominated this field, given their abundance and accessi-

bility via minimally invasive procedures. Adipose tissue has been

shown to be a rich source of MSCs that could be coaxed to generate

SC in vitro and myelinate axons in the spinal cord in vivo.147–152 How-

ever, these cells have limited in vitro expansion capacity, which hin-

ders their clinical usefulness. Adult neural stem cells isolated from the

brain have been shown to differentiate to S100/p75NTR positive SC

and improve axonal regeneration in mouse models of peripheral nerve

injury.153,154 However, neural tissue may not be an ideal source of

stem cells due to its limited accessibility, invasive procurement, and

frequent contamination with fibroblasts that may overpopulate the

cultures upon cell expansion in vitro.155 Moreover, the potency and

regenerative potential of neural stem cells may be affected by the

neurodegenerative disease affecting the patient, calling the effective-

ness of this cell source into question.

Since the discovery of the reprograming factors by Yamanaka

et al,156 the focus of cell engineering has drastically shifted to repro-

gramming patient-specific somatic cells to pluripotent stem cells).

These iPSCs can then be coaxed to differentiate to any cell type by

exposing them to signals that mimic embryonic development. In this

regard, iPSCs have been considered as a potentially unlimited source

of SC,157–159 which have been shown to induce axonal regrowth and

facilitate myelination in mouse models of SCI.160,161 ESCs derived

from blastocyst stage embryos can also be used to produce SC, but

significant ethical concerns are plaguing their clinical use. Clinical

cases with patients undergoing cell-based therapies for SCI have been

evaluated in detail by Harrop et al.162 Though there has been consid-

erable progress in the treatment of SCI and other neurodegenerative

diseases, there clearly is a need of more accessible and easily expand-

able adult stem cell sources for derivation of myelinating SC.

5.2 | Adult tissue–derived NCISCs for Schwann cell
therapy

NC cells give rise to SC in vivo during development, thus making them

one of the most suitable candidates as an autologous cell source of

SC. ESCs and iPSCs go through an intermediate NC fate when coaxed

to differentiate into SC, and some of these studies were discussed

previously.157 Although most studies establish differentiation of plu-

ripotent cells to mature SC, as evidenced by expression of S100β and

MBP, few have demonstrated Schwann cell function in vivo.

As discussed above, several adult human tissues can also serve as

potential sources of NCISCs. In one of the first studies, adult skin-

derived precursor cells (SKPs) were shown to have the potential to

generate SC. SKPs are multipotent cells that are present in the skin

dermis and express NC markers including Pax3, Snail, Slug, and

NGFR.28 However, SKPs do not express the key NC transcription fac-

tors, SOX10 and FOXD3, and they have not been reported to give rise

to melanocytes, chondrocytes, or osteocytes, all cells known to be

derived from NCs. More recently, lineage tracing studies showed that

murine SKPs are of mesodermal origin, in contrast to NCSC that origi-

nate from the ectoderm. Nevertheless, mesodermal SKPs gave rise to

myelinating SC in the presence of signaling cues such as heregulin β,

FGF, and forskolin, suggesting plasticity of developmentally defined

lineage boundaries163 (Table 1). Furthermore, SKP-derived SC were

shown to myelinate axons as efficiently as CNS-derived precursors,

thus establishing them as a potent cell source for the treatment of

SCI.169 Similarly, rat-derived SKP-SCs aided sensory,171 motor,175,176

and behavioral recovery,172 and enhanced peripheral nerve regenera-

tion compared with acellular nerve grafts.174,177 Finally, SC generated

from SKPs were used successfully for the treatment of incomplete

cervical SCI.170,175,178

Recently, NCISCs were isolated from the bulge of hair follicles and

coaxed to differentiate into SC, a process that required NRG1 and

micro-RNA miR-21.165 These SC expressed SOX10, p75NTR (NGFR),

KROX20, MBP, and S100β and interacted with axons in a DRG

coculture model, thus providing evidence of their functionality. Dental

pulp stem cells derived from human wisdom teeth have also been

shown to resemble NCSC and were capable of differentiating into

S100β-expressing SC.166 Finally, human and rat bone marrow–derived

NC-like cells were also capable of differentiating into SC in vitro.11,167

Recently, our laboratory showed that cultures of KC from inter-

follicular epidermis could be the source of NClSCs (termed KC-NC),
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after induction with specific chemical cues.30 KC-derived NCISCs

could be coaxed to differentiate into functional neurons, SC, melano-

cytes, osteocytes, chondrocytes, adipocytes, and smooth muscle cells

in vitro. Most notably, upon transplantation into chick embryos, KC-

NCs migrated along stereotypical pathways and gave rise to multiple

NC derivatives, providing strong support of their NC-like phenotype.

Specifically, these cells gave rise to BLBP+ glial cells in ovo and were

localized around the axon bundles. Interestingly, KC-NC from aged

donors maintained the same differentiation potential in vitro and in

ovo,32 indicating the potential of adult epidermis as a source of KC-

NC for the treatment of neurodegenerative diseases. Current studies

in our laboratory employ the hypomyelinating Shiverer/Rag2−/−

mouse—a model of congenital hypomyelinating disease that has

become the gold standard for the assessment of myelinating cell

preparations—to examine whether KC-NC or SC derived from them

can be used to myelinate axons and rescue the shiverer phenotype.

Table 1 depicts studies describing differentiation of adult tissue–

derived NClSCs to SC.

6 | CONCLUSION AND FUTURE
PERSPECTIVES

NC cells have attracted great interest due to their ability to differenti-

ate into multiple cell types.156 Although NC stem cells are a transient

cell population in developing embryos, multiple investigators have iso-

lated cells with NC-like characteristics, including transcriptional profile

and differentiation potential, from a variety of adult tissues like DRG,

bone marrow, skin, carotid body, whisker pad, heart, gut, and cranial

tissues like cornea, iris, hard palate, dental pulp, and oral mucosa.1

Regardless of source, NC-like cells have been coaxed to differentiate

into SC, neurons, chondrocytes, smooth muscle cells, and even

cardiomyocytes,2,179,180 providing a multipotent stem cell source for

the treatment of demyelinating and other neurodegenerative disor-

ders. Patient-derived NCISCs harboring mutations for neurogenic dis-

eases may also be used to study disease pathogenesis as well as

provide a platform for drug screening further increasing their clinical

potential.1

The use of SC derived from adult tissue–derived NClSCs for the

treatment of SCI has gained momentum in recent years, after demon-

stration of successful myelination of axons in vitro and in vivo.

Though these results are very promising, most studies use cells

derived from mice or rats, which are implanted in a mouse contusion

model of SCI. However, the potential of these cells for the treatment

of demyelinating disease in large animal models or humans has yet to

be established. Furthermore, most studies have focused on mye-

lination after SCI and not treatment of demyelinating disorders of the

CNS or PNS, leaving the field fairly unexplored in this domain. Finally,

isolation of NCISCs from patients suffering from neurodegenerative

disorders and their differentiation to SC and neurons may help iden-

tify abnormalities in myelin production and nerve conduction, aiding

in better disease diagnosis and development of patient-specific

therapies.T
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