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Abstract
A widespread biogeographic pattern in nature is that population abundance is not uniform

across the geographic range of species: most occurrence sites have relatively low numbers,

whereas a few places contain orders of magnitude more individuals. The Bolson tortoise

Gopherus flavomarginatus is endemic to a small region of the Chihuahuan Desert in

Mexico, where habitat deterioration threatens this species with extinction. In this study we

combined field burrows counts and the approach for modeling species abundance based

on calculating the distance to the niche centroid to obtain range-wide abundance estimates.

For the Bolson tortoise, we found a robust, negative relationship between observed burrows

abundance and distance to the niche centroid, with a predictive capacity of 71%. Based on

these results we identified four priority areas for the conservation of this microendemic and

threatened tortoise. We conclude that this approach may be a useful approximation for iden-

tifying key areas for sampling and conservation efforts in elusive and rare species.

Introduction
Spatial variation in abundance across species’ geographic ranges has been a topic of interest for
decades (e.g., Brown [1]; Brown et al. [2]; Gaston et al. [3]; Guo et al. [4]; Pearce & Ferrier [5]).
A widespread pattern across taxonomic groups is that in most occurrence sites within species’
ranges population numbers are generally low, whereas a few sites have orders of magnitude
more individuals [6]. Abundance does not often follow a spatial radial pattern, in which maxi-
mum abundance is held towards the geographic center of species’ range and decreases towards
the edges [7,8]. Spatial patterns of abundance in nature are more complex than this simple rule
and several factors seem to have an influence [9].
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First, the processes driving the distribution-abundance relationship operate at different spa-
tial and temporal scales (e.g., local resource availability, environmental suitability of the land-
scape, dispersal capacity of the species) [10]. Second, spatial patterns are strongly
autocorrelated (i.e., nearby sites tend to have more similar abundances than sites that are far
apart [1]); therefore, the stronger the spatial autocorrelation, the smaller the changes in popula-
tion size from site to site across the species’ range [11]. According to Brown and collaborators
[2], population abundance is determined by two main factors: (i) the degree to which local con-
ditions fulfill the niche requirements of species, and (ii) the interactions between abiotic and
biotic variables. Therefore, spatial variation in abundance depends on the number and nature
of niche variables and the way these vary across space.

Abundance is a key parameter for conservation purposes, since it is frequently used as one
of the criteria for deciding whether a species is rare or common: for rare species there are few
individuals per sample, and thus low absolute variation among samples [2,12,13]. In spite of its
importance, abundance is seldom measured across the geographic range of the species because
it is time-consuming and requires a great deal of effort, and resources. Species abundance is
usually estimated based on data from a handful of sites [14,15].

Methods for estimating the spatial distribution of abundance include the fractal method
[16] and the negative binomial distribution [17]. A recent study [18] has proposed an alterna-
tive approach, namely the distance to the niche centroid (DNC) method. This is based on
Hutchinson’s [19] theory of the multidimensional ecological niche and a further theoretical
development, which suggests that abundance, is determined by the internal structure of the
niche. The optimal conditions (i.e., where birth rate is maximal and death rate is minimal and
thus abundance is highest) occur toward the geometric centroid of the niche in ecological
space, and abundance decreases with distance from the centroid [20]. This ecological centrality
principle would thus manifest in different geographic patterns across the landscape, depending
on the eco-spatial structure [18]. The DNC method fits a curve for the relationship between
known abundance samples across the species’ geographic range and the distance to the ecologi-
cal niche centroid to make range-wide estimates of the species’ abundance. It has proven robust
in different geographic contexts and at different scales [21].

Gopherus flavomarginatus (the Bolson tortoise) is endemic to a portion of the Mapimí
Basin, in the Chihuahuan Desert, Mexico (Fig 1). Widespread until the Pleistocene when it ran-
ged from southern USA to central Mexico [22], several factors have brought the Bolson tortoise
to the verge of extinction: climate changes in the Pleistocene-Holocene transition, recent
anthropogenic activities, including habitat destruction due to overgrazing and agriculture,
overexploitation for wildlife trade [23–26], and low genetic variation [27].

Limiting factors in the distribution of the Bolson tortoise include very specific habitat
requirements, such as soft slopes and the presence of dry lake beds for nesting [28]. The only
previous study in which abundance was estimated reported a mean density of 10 tortoises/
Km2, and an area of occupancy covering 6,090 Km2 [29]. Based on field surveys and niche
modeling, in this study we estimated the geographic and ecological distribution of the Bolson
tortoise, as well as its range-wide abundance with the DNC method. These data helped us to
identify critical areas for concentrating future fieldwork and conservation efforts.

Materials and Methods

Ethics statement
The current study was carried out across the whole distribution of Gopherus flavomarginatus,
including the Mapimí Biosphere Reserve. Nonetheless, special permits were not required. This
study did not involve any sort of tortoise or habitat manipulation. In addition to the Mapimí
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Fig 1. Geographic distribution ofGopherus flavomarginatus. The thick black line delineates the polygon
of the Mapimí Biosphere Reserve, whereas the state borders are mark by the thin black lines. Red dots
pinpoint the sites where the abundance data for the Bolson tortoises was recorded. The star indicates the
location of the Mapimí field station.

doi:10.1371/journal.pone.0131452.g001
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Biosphere Reserve we obtained access to private properties Rancho Americanos, Rancho La
Mena, Rancho Cerros Emilio, Rancho La Parva, Rancho Los Remedios, Rancho San Miguel;
and some Ejidos, including Las Flores, Lagunetas, Emiliano Zapata, and Ejido Vicente Guer-
rero. If needed, the authors can be contacted to provide further details from the respective own-
ers or legal representatives.

Study area
The current known distribution of Gopherus flavomarginatus occupies the central part of the
Chihuahuan Desert, in the Bolsón de Mapimí, which covers parts of the states of Chihuahua,
Coahuila and Durango (Fig 1). The Bolsón de Mapimí is an endoreic basin composed of a
series of small sub-basins intermixed with valleys, but is generally flat with a mean altitude of
1,150 m.a.s.l. Climate is of the type “continental tropical arid” with a mean annual temperature
of 20.8°C and an annual precipitation of 264.2 mm [30]. The main vegetation type is desert
shrubland [31] and the Bolsón has the richest herpetofauna of the whole Chihuahuan Desert
with several endemic species, including the Bolson tortoise [32].

Field surveys
We gathered two types of the tortoise presence information: occurrence and abundance data.
Occurrence data were drawn from electronic databases (www.gbif.org and http://www.
conabio.gob.mx/remib/doctos/remib_esp.html) and the literature [29,33]. Based on that infor-
mation we went to the field to record the presence of the species across its distribution range
from April 2008 to May 2010. The occurrence data were used to build a niche model for the
Bolson tortoise via Mahalanobis distances (see below). Whereas, the abundance data were
gathered in 22 independent ~1 km2 plots randomly distributed across the distribution range of
the species. In each plot we counted all active and inactive adult burrows, excluding all aban-
doned or destroyed ones. Active burrows were identified by the presence of tortoise footprints
and food leftovers (e.g., grass, leaves), whereas other animals such as owls and snakes usually
inhabit the abandoned ones. Abundance data were used to calibrate and validate our abun-
dance model (see below).

Ecological Niche Modeling and distances to the centroid
We assembled a data matrix with the 19 bioclimate variables from the WorldClim database
[34], and three topographic variables from the Hydro 1k database [35] (Table 1). All variables
were under the geographic coordinate system (WGS84 Datum), and pixel size was 30 arc-sec-
onds (~1 km2).

Currently, there are many algorithms to produce niche-based distribution models, and their
performance capacity varies depending on the type, amount and bias of the biological data
[36]. Due to the collinearity observed in the environmental variables, for this study we imple-
mented the Mahalanobis Distance method. Fieldwork yielded a total of 241 confirmed pres-
ence points. These points were used to infer the species ecological niche by obtaining the
particular values for each environmental variable (Table 1). Then, these values were used to cal-
culate a multidimensional environmental mean (i.e., the niche centroid), then, Mahalanobis
distances were calculated from the niche centroid to each occurrence point. We considered as
the potential distribution of the Bolson tortoise in environmental space the climate envelope
generated around the 241 occurrence points with a radius equal to the distance observed from
the niche centroid to the farthest of such points. Finally, Mahalanobis distances were calculated
for all pixels in the study area where the potential distribution of the species in geographic space
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thus encompassed all pixels with distance values equal to or lower than the maximum distance
to the occurrence points.

Relationship between the distance to the centroid and abundance, and
the generation of the abundance map
We performed regression analyses between the distance to the centroid and the observed abun-
dance of the Bolson tortoise to find the best fit using the Statistical Package SPSS Ver. 19 (IBM).
Then, using the best-fit model we generated the estimated abundance map of the Bolson tor-
toise across its entire potential distribution range in ArcGis v.10.0 (ESRI, Redlands, CA, USA).

Abundance Model validation and Uncertainty Map
The predictive capacity of the abundance model (i.e., best-fit model) was assessed applying a
regression procedure using a random 70/30 data split for training/validation. We re-estimated
the best-fit model using the 70% fraction of the data, and the resulting function was used to
predict the abundance of the remaining 30% points. Then, we performed a simple linear
regression between the expected and the observed abundance of the 30% data fraction. The R2

of this second regression is proportional to the predictive power of the inferred model. We
repeated this procedure ten times to observe the standard deviation of R2.

Alternatively, we applied a bootstrap procedure consisting of generating 1000 estimates of
abundance using a random 65/35 data split for training/validation. We calculated the 95%
regression confidence intervals for the iterations, and counted the number of points that fell

Table 1. Climate and topographic variables used for inferring the ecological niche and abundance
models of the Bolson tortoise.

Name Variable

BIO 01 Mean Annual Temperature

BIO 02 Diurnal Temperature Range

BIO 03 Isothermality

BIO 04 Temperature Seasonality

BIO 05 Max Temperature of the Warmest Month

BIO 06 Min Temperature of the Coldest Month

BIO 07 Temperature Annual Range

BIO 08 Mean Temperature of the Wettest Quarter

BIO 09 Mean Temperature of the Driest Quarter

BIO 10 Mean Temperature of the Warmest Quarter

BIO 11 Mean Temperature of the Coldest Quarter

BIO 12 Annual Precipitation

BIO 13 Precipitation of the Wettest Month

BIO 14 Precipitation of the Driest Month

BIO 15 Precipitation Seasonality

BIO 16 Precipitation Wettest

BIO 17 Precipitation of the Driest Quarter

BIO 18 Precipitation of the Warmest Quarter

BIO 19 Precipitation of the Coldest Month

CTI Compound Topographic Index (or Wettest Index)

ALT Altitude

SLOPE Slope

doi:10.1371/journal.pone.0131452.t001
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within them. In this way, we obtained a percentage that reflects the predictive capacity of the
model. Finally, we generated an uncertainty map using the confidence intervals [21]. The boot-
strap was implemented in R-v.2.15.1 software (R Development Core Team).

Results
The potential distribution of the Bolson tortoise, inferred with the Mahalanobis distance
method, match well with its known distribution [29] (Fig 2A). Most of the predicted area corre-
sponds to flat lands. The map, however, include a few sites with steep slopes from which the
species is known to be absent. Those areas, therefore, were removed from the potential
distribution.

All the regression functions that we explored found a significant relationship between the
observed abundance and the distance to the ecological niche centroid (Table 2). The best-fit
model, nonetheless, was the Inverse Regression explaining more of the variation in the rela-
tionship between the Mahalanobis distance to the centroid and the abundance (adjusted R2 =
0.681, P< 0.001). As expected, the observed abundance drops drastically when the environ-
mental conditions depart from those found nearby the ecological niche centroid. Our field data
showed that the abundance value drops nearly two thirds once the Mahalanobis distance to the
niche centroid increase beyond 20 units (Fig 3).

The highest estimated abundance of the Bolson tortoise is recovered mainly towards the
center of the potential distribution area predicted by the Mahalanobis distance method (Fig
2A). This putative rich section is encompassed within the polygon of the Mapimí Biosphere
Reserve. However, several other potentially rich areas are predicted outside of officially

Fig 2. Maps showing the potential distribution and abundance ofGopherus flavomarginatus. (A) Inferred abundance for the Bolson tortoise (burrows/
Km2); red dots pinpoint the sites where the abundance data for the Bolson tortoises was recorded. (B) Standard deviation of abundance.

doi:10.1371/journal.pone.0131452.g002
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protected lands. Two of those areas are located in remote isolated regions. One is north of
Sierra del Diablo Mountains, in the state of Chihuahua, whereas the other is east of Sierra
Mojada Mountains, in the state of Coahuila. Nonetheless, other unprotected areas with high
abundance are close to populated zones and are accessible by dirt roads.

According to the validation procedure, the predictive capacity of the best-fit model averaged
an R2 of 0.712 (p = 0.023, standard deviation = 0.127; Table 3). Abundance estimates are within
reasonable ranges (1 to 20 burrows/km2), and coincide with our observed field data (Table 4).
The uncertainty map, generated with the bootstrap procedure, shows that the inferred abun-
dance has a standard deviation between 0 and 1.35 (Fig 2B).

Discussion
An abundance estimate of the Bolson tortoise is key to establishing the conservation status of
the species. This is the first range-wide study in which abundance is estimated at the regional

Table 2. Goodness-of-fit of the regression models between Mahalanobis distance to the ENC and bur-
row abundance ofGopherus flavomarginatus.

Model regular R2 adjusted R2 P-value

Inverse 0.696 0.681 < 0.001

Logaritmic 0.677 0.660 < 0.001

Cubic 0.707 0.658 < 0.001

Quadratic 0.680 0.647 < 0.001

Power 0.628 0.609 < 0.001

Growth 0.545 0.522 < 0.001

Exponential 0.545 0.522 < 0.001

Logistic 0.545 0.522 < 0.001

Lineal 0.540 0.517 < 0.001

SAR 0.685 125.9231 < 0.001

1 Results inferred from Akaike Information Criterion (AIC)

doi:10.1371/journal.pone.0131452.t002

Fig 3. Relationship between the observed abundance (burrows/Km2) ofGopherus flavomarginatus
and the distance to the species´ ecological niche centroid.

doi:10.1371/journal.pone.0131452.g003
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Table 3. Validation for the Inverse Regression Model between Mahalanobis distance to the ENC and
burrow abundance.

Trial R R2 P-value

1 0.779 0.638 0.031

2 0.843 0.653 0.017

3 0.812 0.660 0.026

4 0.669 0.447 0.101

5 0.886 0.785 0.008

6 0.887 0.787 0.008

7 0.923 0.852 0.003

8 0.927 0.858 0.003

9 0.805 0.648 0.029

10 0.891 0.794 0.007

Mean 0.844 0.712 0.023

Standard deviation 0.078 0.127 0.029

Minimum 0.669 0.447 0.003

Maximum 0.927 0.858 0.101

doi:10.1371/journal.pone.0131452.t003

Table 4. Recorded abundance ofGopherus flavomarginatus expressed as the number of burrows/
Km2.

Sampling Locality District Abundance

Americanos I: Los Americanos, Coahuila 8

Las Flores I: Los Americanos, Coahuila 2

Lagunetas I: Los Americanos, Coahuila 4

La Mena I: Los Americanos, Coahuila 3

Cerros Emilio II: Sierra del Diablo, Chihuahua 8

Ejido Emiliano Zapata II: Sierra del Diablo, Chihuahua 2

La Parva II: Sierra del Diablo, Chihuahua 2

Los Remedios VI: Sierra de los Remedios, Chihuahua 1

San Miguel III: Rancho Diana, Chihuahua 4

Ejido Vicente Guerrero III: Rancho Diana, Chihuahua 2

El Pujo V: MCR1, Durango-Coahuila-Chihuahua2 11

Tortugas V: MCR1, Durango-Coahuila-Chihuahua2 10

La Flor (Brecha) V: MCR1, Durango-Coahuila-Chihuahua2 13

Las Lolas V: MCR1, Durango-Coahuila-Chihuahua2 18

Cajones V: MCR1, Durango-Coahuila-Chihuahua2 20

La Flor (Bebedero) V: MCR1, Durango-Coahuila-Chihuahua2 17

La Flor (Joyita) V: MCR1, Durango-Coahuila-Chihuahua2 17

San Ignacio Yermo V: MCR1, Durango-Coahuila-Chihuahua2 11

Laboratory MBR North V: MCR1, Durango-Coahuila-Chihuahua2 8

Laboratory MBR South V: MCR1, Durango-Coahuila-Chihuahua2 11

La Soledad V: MCR1, Durango-Coahuila-Chihuahua2 3

San Carlos V: MCR1, Durango-Coahuila-Chihuahua2 5

Roman numerals before the district name correspond to the designation assigned by Bury et al. [29].
1 MCR = Mapimí Central Region
2 District V was modified and we included the state of Chihuahua because several sites lie within this

region.

doi:10.1371/journal.pone.0131452.t004
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scale; thus, it has potentially important implications for further conservation and management
actions.

Ecological niche modeling has been a helpful approach for predicting species distributions
with conservation purposes, particularly when data are limited [37–41]. Interestingly, niche
model outcome probabilities (or similar results) are frequently interpreted as a measure of hab-
itat suitability, thus it is implicitly thought that they somehow provide information about pop-
ulation potential performance [42]; however, this assumption has seldom been tested, mainly
due to a lack of information on performance parameters across the whole species range, but
when such suitability has been compared with the abundance of species, the results are incon-
clusive, but generally indicate that this relationship is weak [43–46].

In this study we implemented the Mahalanobis distance to the niche centroid approach to
estimate the abundance of the Bolson tortoise across its geographic range [18]. This method is
data demanding, which may be a potential pitfall. Several tens of occurrences are needed to
obtain a reliable estimation of the species’ niche.

We found a significant relationship suggesting that the abundance of G. flavomarginatus is
strongly determined by the internal structure of the species’ niche throughout its geographic
range [20]. Interestingly, we observed that its abundance distribution followed a centralized
pattern both in the ecological and geographic spaces, where abundance tends to be highest
toward the center of these spaces and decrease toward the boundaries [2,47]. Although irregu-
lar and containing unoccupied areas, the shape of the species range is roughly circular, so the
centralized pattern found in both ecological and geographic spaces is not surprising [18].

Our results were similar to those reported for the Spotted Turtle (Clemmys guttata), in terms
of the form of the function and the explanatory power of abundance by the distance to the niche
centroid [18]. Interestingly, these authors found that for 9 out of the 10 species analyzed in their
study, the relationship between the distance to the centroid and abundance was not inverse,
such as in our study, but rather logarithmic or exponential [18]. This has implications in the
demography of species, since the reduction in the population size of the chelonids with increas-
ing distance from the niche centroid is abrupt and not, monotonic as in the other species.

On the other hand, the relationship that we found was not as strong as that reported for the
White-tailed Deer (Odocoileus virginianus; R2 = 0.902 and R2 = 0.761) [21]. If the hypothesis
that the centriod of the ecological niche encompasses the optimal conditions for the species is
correct, differences in the predicting power of the model might be due to environmental or eco-
logical variables that were not taken into account [48]. The Bolson tortoise, for instance, is an
herbivore that inhabits “sabaneta” (Pleuraphis mutica) grassland borders and biotopes with soft
slopes, fine-texture soils with a mixture of shrubs (Larrea divaricata, Prosopis juliflora, Parthe-
nium incanum, and Fluorensia cernua) and halophilic grasses [26], where cattle also feed. There-
fore, the cattle may be interfering with tortoises, directly or indirectly [49]. Studies for other
Gopherus species have reported that young individuals are frequently kicked or stepped on by
cattle [50,51]. Also, the Bolson tortoise is illegally exploited for meat and sold as a pet [26,52,53];
however, there is no hard data to evaluate the impact of these activities on the demography of
the species. In addition, the Bolson tortoise has a very low dispersal rate, which may cause low
population numbers in suitable habitats, as might be the lack of field surveys in several areas.
Therefore, besides abiotic variables, biotic interactions are important factors that also drive spe-
cies’ distributions [54–56]; and ultimately might influence the species’ abundance [47,57].

The distance to the centroid method is a static approach that does not capture the spatio-
temporal dynamics of populations [21]. The method assumes unimodality and centrality of
abundance in relation to all environmental variables (i.e., that optimal conditions are always
close to the mean values for all variables). This, may not necessarily hold true, because for
some variables optimal conditions might actually be closer to the extreme values. Despite these
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shortcomings, the distance to the centroid approach represented the abundance distribution
patterns of the Bolson tortoise fairly well.

Other approaches have been developed to obtain spatial estimates of abundance, like the
fractal model [16] and the negative binomial distribution method [17]. This negative binomial
distribution approach is the most popular (e.g., Tosh, Reyers & van Jaarsveld [58]; Figueiredo &
Grelle [59]), but is strongly dependent on spatial scale [60]. Unfortunately, these methods can-
not be directly compared to our implementation of the distance to the niche centroid because
their performance is not measured via a determination coefficient. Our approach (i.e., DNC) is
more flexible because the results are inferred from presence-absence data, instead of presence-
only data as in other methods. Furthermore, for good-fit models the distance to the centroid
alone can be a good approximation of the suitability of the environment to the species.

Previous field studies on the abundance of G. flavomarginatus in some areas of its geo-
graphic range reported a marked contrast in tortoise density across its range (5–44 burrows/0.5
km2; [29]). Our results suggest that after three decades the abundance of the Bolson tortoise
seems to be declining, in some areas by as much as 91%. For instance, Bury et al. [29] reported
the presence of 88 individual of this species in Cerros Emilio, in Chihuahua, whereas we only
recorded 8 different individuals (Table 4). The largest colonies of tortoise that we found are in
the Mapimí Biosphere Reserve, with up to 20 individuals/Km2. Previous reports suggest that
the abundance of the species has decreased by 25% in the sites for which historical data is avail-
able. In 1988 a total of 25 individuals were reported at Las Lolas [29]; but during the two years
that our field survey lasted we only observed 18 tortoises at the exact same locality (Table 4).
Anecdotal information also suggests that populations seem to be smaller today than a couple
of decades ago, particularly at the distributional limits of the species (G. Aguirre, pers. comm.).
This trend seems to be a consequence of the expansion of the railroad network, cattle ranching
and agriculture in the Chihuahuan Desert during the 20th century [25,33].

Based on our results we identified four high-abundance areas, contiguous to the Mapimí
Biosphere Reserve polygon, worthy of considering for legal protection (Fig 4). According to our
results, the most convenient sites for this purpose are Areas III (236 Km2; 26.88°N, -103.59°W)
and IV (291 Km2; 26.68°N, -103.44°W) in the state of Coahuila because these two areas hold
very low human population and road densities, especially Area III. Area I (528 Km2; 26.79° N,
-104.29°W), and II (575 Km2; 27.01° N, -103.98° W) in Chihuahua are the largest, but they are
the most populated and intensively used areas for human activities, given its closeness to Lake
Palomas. Additionally, Sierra del Diablo (27.63° N, -104.15°W), and Sierra Mojada (27.37° N,
-103.11°W), located in the states of Chihuahua and Coahuila respectively, represent important
regions in terms of the expected abundance. Currently, these regions are not subjected to any
type of protection; however they might be considered of least concern because they are rela-
tively isolated, and human population density is very low (and currently is declining).

Protection of the four areas proposed would add 1,279 Km2 to the 3,423.88 Km2 currently
under protection within the Mapimí Biosphere Reserve polygon for the Bolson tortoise. Accord-
ing to previous studies [61,62], a fifth potential area for the tortoise protection is the Sierra del
Diablo District (20 Km2 surrounding Cerros Emilio 27.42°N, 103.97°W), in Chihuahua. This
area has high levels of abundance according to our model; however, it is located at the northern
distribution edge of the species and is similar in area and characteristics to Area IV. Therefore, a
carefully thought out strategy would be necessary to create a multi-polygon protected area taking
into account the management systems of local land resources. The conservation of the Bolson
tortoise is of the highest priority; decisions should be made with the best information available
and this study aims to provide relevant information in this regard. The results presented here
can be used as a first and simple approach for inferring abundance patterns in space. Such infor-
mation is important for making management, or conservation decisions for any species.
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Conclusions
This study aims to contribute to the conservation of the Bolson tortoise by providing new
insights about the abundance distribution of the species at the range-wide scale. First, the
aggregated nature of the distribution of the species across the landscape should be taken into
account for conservation strategies. Compared to the other areas where the Bolson tortoise is
distributed, the Mapimí Biosphere Reserve successfully protects some of its populations [61]
because it holds the largest colonies and actively prohibits their exploitation. Even there, how-
ever, the population is still declining. Moreover, given the restricted distribution of the species
and the lack of protection in other areas, top priority must be given to including most-if not
all- of this species’ range under a protection scheme.

Fig 4. Proposed key sites (yellow polygons) for the conservation of the Bolson tortoise, Gopherus flavomarginatus. The red line delineates the
current protected polygon of the Mapimí Biosphere Reserve. Sierra del Diablo (A) and Sierra Mojada (B) represent putative high abundance sites;
nonetheless, these are low priority areas due to their natural isolation and low human population density.

doi:10.1371/journal.pone.0131452.g004
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