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Intervertebral disc (IVD) degeneration is a major contributing factor to chronic low back pain

and disability, leading to imbalance between anabolic and catabolic processes, altered extracellu-

lar matrix composition, loss of tissue hydration, inflammation, and impaired mechanical function-

ality. Current treatments aim to manage symptoms rather than treat underlying pathology.

Therefore, IVD degeneration is a target for regenerative medicine strategies. Research has

focused on understanding the molecular process of degeneration and the identification of vari-

ous factors that may have the ability to halt and even reverse the degenerative process. One

such family of growth factors, the growth differentiation factor (GDF) family, have shown partic-

ular promise for disc regeneration in in vitro and in vivo models of IVD degeneration. This review

outlines our current understanding of IVD degeneration, and in this context, aims to discuss

recent advancements in the use of GDF family members as anabolic factors for disc regenera-

tion. An increasing body of evidence indicates that GDF family members are central to IVD

homeostatic processes and are able to upregulate healthy nucleus pulposus cell marker genes in

degenerative cells, induce mesenchymal stem cells to differentiate into nucleus pulposus cells

and even act as chemotactic signals mobilizing resident cell populations during disc injury repair.

The understanding of GDF signaling and its interplay with inflammatory and catabolic processes

may be critical for the future development of effective IVD regeneration therapies.
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1 | INTRODUCTION

Low back pain places a significant socioeconomic burden on society,

with ~632 million people affected globally.1 Approximately, 84% of

people will experience low back pain during their lifetime, leading to

associated annual expenditure of £12 billion in the United Kingdom,

with similar costs reported in other developed countries (eg, $85.9 bil-

lion in the United States and €16.5-50 billion in Germany).2,3 This cost

arises from direct medical expenses, work absences and wage com-

pensation1,4,5 and surpasses that of many other causes of disability,

including arthritis.6,7 The incidence of low back pain and associated

cost are rising dramatically as the current global demographic shifts

toward an increasingly aged population.8

Although low back pain is multifactorial and complex in etiology,

intervertebral disc (IVD) degeneration has long been identified as a

major underlying cause.9–11 The IVDs are fibrocartilaginous tissues

positioned between the vertebrae, contributing to about one-third of

total spinal length.12 Functionally IVDs are crucial structural compo-

nents responsible for conferring mechanical strength and flexibility to

the vertebral column.13,14 IVD degeneration is thought to arise from

cell driven changes to the extracellular matrix (ECM) of the central

portion of the disc, the nucleus pulposus (NP), which results in

mechanical failure of the NP and annulus fibrosus (AF; a collagenous

tissue circumferentially enclosing the NP), progressive AF fissure for-

mation and eventual NP herniation.15 This process is concurrent with

an in-growth of blood vessels and nociceptive nerve fibers into the

inflamed disc, facilitating immune cell infiltration and increasing asso-

ciated pain.16,17 The progressive obstruction of the IVDs ability to

absorb and disperse spinal loads through the motion segment (the

structural unit comprising the IVD, facet joints and adjacent vertebral

bodies) in degeneration is secondarily linked with facet joint arthritis,

spur/osteophyte formation, and vertebral body deformation. These

have been associated with degenerative spinal conditions such as spi-

nal cord stenosis, spondylolysthesis, degenerative scoliosis, and other

painful pathologies resulting from nerve compression, such as sciat-

ica.9,18 IVD degeneration can be exacerbated by excessive manual

labour, underlying genetic factors, and the aging process.6

As a natural phenomenon of aging, some aspects of IVD degener-

ation may be difficult to prevent.10,19 Indeed, the majority of adults

over 30 years show some form of structural IVD degeneration with-

out any accompanying symptoms or pain.6 This makes diagnosis and

effective early intervention in cases of emerging pathogenic degener-

ation a priority. Current treatment options are limited and provide

predominately symptomatic relief without addressing the underlying

pathology. These can be broadly grouped into, first, conservative

treatments, ranging from painkillers and anti-inflammatory medication

to physiotherapy, and second, surgical interventional. Surgery is uti-

lized as a last resort, with procedures such as discectomy and spinal

fusion costly to perform and resulting frequently in suboptimal healing

outcomes and recurrence.

Therefore, there is great demand for a biological treatment aimed

at restoring IVD homeostasis and regenerating damaged tissue. Of

importance to such strategies is the restoration of both structure and

function of the NP and AF tissues. To this end, biological therapies

have shown promise in preclinical studies. These could include cellular

and acellular therapies delivered with and without instructive bioma-

terials and in conjunction with bioactive molecules or growth factors

(see20 for recent in-depth review). One such family of factors, growth

differentiation factors (GDFs), appear to be an exciting prospect due

to their crucial role in chondrogenesis (including differentiation to NP

cells, namely, discogenesis) and cartilaginous tissue homeostasis.21–24

As such, the focus of this review is directed on the continuing devel-

opment of regenerative strategies for IVD repair employing GDF fam-

ily members and the potential therapeutic role of GDF6.

2 | IVD STRUCTURE, FUNCTION AND
DEGENERATION

The IVD can be described as three distinct regions—the NP, AF, and

cartilaginous endplates (CEPs)—making up the largest avascular struc-

ture in the human body. The properties and functionality of the IVD

are dependent on the specific microstructures of its component tissue

regions, which in turn are produced by distinct cell populations.

The NP is characterized by an ECM that is rich in anionic proteo-

glycans (PGs), predominately aggrecan. These are arranged within an

irregular type II collagen lattice and are present at a ratio of 27:1

(aggrecan: collagen).18,25 Additional matrix components consist of

small amounts of other collagen types (I, VI, IX, and XI) along with

other hydrophilic aggregating PGs, such as versican, and nonaggregat-

ing small leucine-rich PGs such as biglycan, decorin, fibromodulin, ker-

atocan, and lumican.26–30 The high density of negatively charged PG

molecules draws in and retains water allowing the NP to resist com-

pressive loads.

Circumferentially, the NP is enclosed by the AF, a ligamentous

structure composed of highly organized collagen fibers arranged in

concentric lamellae, with superior and inferior fiber ends rigidly

anchored in the CEPs.31 The AF is composed of more than 2/3 collagen

and unlike the NP has a small PG component.32,33 More than 95% of

the collagen in the outer AF is type I, decreasing in an almost linear

fashion to less than 5% with proximity to the NP. An opposing gradi-

ent exists for type II collagen going from the center of the NP to the

outer AF.34 In successive lamellae, type I collagen fibers are obliquely

oriented at angles of approximately 62 to 47 to the spinal axis, pre-

venting IVD deformation under load.35

The CEPs physically confine the NP and AF to their anatomical

boundaries and act as semipermeable barriers, supporting nutrient

and fluid exchange. The anchorage of AF fibers to the CEPs superiorly

and inferiorly is also critical to the integrity of the motion segment

and is strengthened by fiber bundle splitting to increase force

distribution.36–39

During IVD degeneration, type II collagen synthesis by the NP

cells is gradually replaced by type I collagen, while PG synthesis is

decreased resulting in the boundaries between the NP and AF becom-

ing less distinct. The high PG content is central to healthy NP func-

tion, and the ratio of PG-to-collagen is one of the defining features

sets NP cells apart from chondrocytes. This is important to note for

regeneration of the NP, where implantation of chondrocytes rather

than NP cells may result in a cartilage-like matrix with insufficient PG
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concentrations.40 Deficient water-retention by the NP results in a

decrease in disc height, which in turn leads to a loss of ability to uni-

formly distribute compressive forces to the AF, creating areas of high

pressure.

The cells of the NP are highly specialized, now recognized

through detailed transcription profiling and murine cell tracing studies

to be developmentally and phenotypically distinct from

chondrocytes.41–50 The Spine Research Interest Group of the Ortho-

pedic Research Society recently defined the NP phenotype to include

stabilized expression of hypoxia inducible factor HIF-1α, the glucose

transporter glut-1, the PG aggrecan (ACAN), type II collagen (COL2A),

the signaling factor sonic hedgehog (SHH), the transcription factor

Brachyury [T], the keratins KRT18, KRT19, the carbonic anhydrase

CA12, and CD24.42

Degenerative NP and AF produce numerous proinflammatory fac-

tors including interleukins (IL) −1α, −1β, −2, −4, −6, −8, −10,

interferon-γ, tumor necrosis factor alpha (TNF-α) and prostaglandin

E2.
51–58 Later, chemokine secretion drives specific recruitment and

activation of immune cells to the degenerative IVD (eg, CCL5—macro-

phage/eosinophil recruitment, CCL2—monocyte recruitment, CCL3

and CCL4—macrophage recruitment.51,59). Recent work has also impli-

cated mast cell infiltration and proinflammatory action in a similar way

as has been observed in other chronic degenerative diseases such as

osteoarthritis.60,61 Wiet et al demonstrated that mast cells were

increased in painful discs and induced inflammatory catabolic

responses in NP cells and CEP cells but not in AF cells. This may indi-

cate that the degenerative process provides a means for mast cell

infiltration to the NP where they actively promote degeneration, mak-

ing them and this mechanism a potential therapeutic target.62

This environment elicits a range of pathological responses from

NP and AF cells including dysregulation of NP-marker genes such as

ACAN and COL2A1 as well as more general processes such as autop-

hagy, senescence, and apoptosis.6,12,55,63–65 Concurrently, degenera-

tive NP and AF cells increase the expression of matrix degrading

enzymes including matrix metalloproteinases (MMPs) −1, −3, −7, −9,

−10 −13 and a disintegrin and MMP with thrombospondin motifs

(ADAMTS) −1, −4, −5, −9, and −15.52,55,65–71 This further accelerates

loss of type II collagen and PG rich ECM and replacement with fibrous,

type I collagen scar-like tissue.

Targeting the cells of the IVD, in particular the NP, to halt the

degenerative process and restore healthy ECM production, reverse

catabolic processes and reduce inflammatory response is the focus of

novel regenerative strategies that have the potential to compliment or

replace conventional approaches.

3 | CURRENT THERAPIES AND
DEVELOPMENT OF REGENERATION
STRATEGIES

Conservative treatment of degeneration, such as physiotherapy, may

indirectly facilitate self-repair of mildly degenerated IVDs.72 These

therapies can have positive effects on the lives of patients but do not

halt the progression of IVD degeneration and may even mask indica-

tors of further damage requiring more rigorous intervention. When

conservative treatments have failed, surgery is used as a final option.

As all surgical procedures are invasive and irreversible, they are uti-

lized in less than 2% of symptomatic patients59 and are associated

with long-term issues. Where herniation of the IVD has occurred,

microdiscectomy remains the gold standard surgical treatment.73 Spi-

nal fusion has been extensively used and shown variable success rates

of 32% to 98%.74 Despite good short-term outcomes, fusion may

result in an accelerated degeneration of the IVDs adjacent to the

fusion site due to adjusted load bearing in the spine.75–77 Alterna-

tively, to take load off the AF a nucleoplasty can be performed, allow-

ing the IVD to return to a normal size and decreasing pressure on

symptomatic nerve endings by NP tissue removal. However, this tech-

nique is frequently linked to subsequent IVD instability.78

In short, the current available surgical treatment options lack the

ability to interrupt and correct the degenerative cascade and inflam-

matory milieu of the degenerative IVD at the necessary cellular and

molecular level. Limited use of biologicals in the clinic to enhance sur-

gical procedures such as fusions serve to highlight the potential of

these approaches but fall short of providing the regenerative stimulus

they may be capable of. The advancement of molecular cell biology

and biomaterial science has made the development of effective bio-

logic therapies for IVD regeneration a tangible reality. As our under-

standing of the biology of the IVD and likewise the pathobiology of

degeneration has improved, the number of proposed strategies and

molecular targets has grown. These include implantation of cellular

and acellular biomaterials, signaling protein-based strategies such as

growth factor delivery and gene therapy. At present, the simplest and

most cost-effective to apply clinically would be local delivery of a bio-

active molecule, such as growth factors, morphogens, anticatabolic

factors, small molecule inhibitors, cytokines, or chemokines. For exam-

ple, platelet-rich plasma, which represents a complex milieu of bioac-

tive factors, has shown promising results both in vitro79 and in an

in vivo rabbit model where it was injected into degenerated IVDs in

gelatin hydrogel microspheres.80 However, given the potential vari-

ability and unpredictability of using complex mixtures of bioactive fac-

tors, research has focused on the identification of single biomolecules

with therapeutic potential, with several having have been evaluated in

animal models or clinical trials (Table 1). The most commonly investi-

gated candidate molecules are anticatabolic/proanabolic proteins,

which aim to restore a healthy balance to the IVD and, in particular,

the NP. Anticatabolic factors include small molecule inhibitors of

inflammatory signaling, including TNF-α and IL-1 receptor antagonists,

which have been shown to attenuate the phenotypic changes in IVD

cells associated with degeneration.93,94 Numerous growth factors

have also been investigated, including transforming growth factor

(TGF)β3, insulin growth factor (IGF)-1, and epidermal growth factor-

1.95–98 Most notably, however, a range of members of the bone mor-

phogenetic protein (BMP) family have been investigated due to their

roles in skeletal tissue development and repair.

Despite its role in osteogenesis, BMP2 has been shown to

increase ECM production in rat, bovine, and human IVD cells in vitro

without increasing osteogenic marker expression.99–102 Similarly,

BMP7 was shown to enhance PG synthesis and cell proliferation in

human NP and AF cells,103 with others reporting similar results in rat

and rabbit IVD cells.104,105 However, in human cells, BMP7 was found
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to be less effective at increasing ECM secretion at similar doses than

in rabbit and bovine NP and AF cells.104,106 In a recent in vitro and

organ culture model, BMP2/7 was also shown to increase glycosami-

noglycan (GAG) synthesis in bovine NP cells without increasing osteo-

genic markers.107 However, the majority of these studies failed to

investigate NP-specific or AF-specific marker genes, often used mixed

IVD cell populations and frequently employed only single-gene analy-

sis to determine osteogenic response. Thus, while they demonstrate

the potential of BMP-based approaches the findings suggest that

responses may be cell type specific and be influenced by species,

model system, or even local microenvironment, which is further sup-

ported by contradictory evidence from in vivo studies. In a rabbit

model of degeneration, both BMP2 (adenoviral vector injection) and

BMP7 (100-μg protein injection)-based therapies demonstrated posi-

tive regenerative effects.108–110 However, a large animal study in

goats comparing the efficacy of BMP2, BMP7, and BMP2/7 (1-5 μg)

conjugated to a fibrin/hyaluronic acid carrier showed no evidence of

IVD regeneration.111 Similarly, in a canine study of spontaneous IVD

degeneration, up to 250-μg BMP7 was injected per IVD but no regen-

eration was observed.112 Such data further suggest that species, cell

type, and microenvironment may be important factors in growth

factor-based, particular BMP-based, regenerative approaches. Con-

cerns also exist with the use of extreme supraphysiological doses of

BMPs, for example, up to 12 mg BMP2, which has been linked to

adverse effects including heterotopic ossification and increased risk of

malignancy113,114 meaning a more sophisticated solution combining

TABLE 1 Biomolecules evaluated for IVD regeneration in clinical trial or preclinical animal models

Drug/material Product name

Development stage Outcomes/mode of action

ReferencePreclinical study Clinical trial Available on market

GDF-based biological therapies

GDF-5 rhGDF5 ✓ (Phase 1 and 2a
completed) n = 40

• Increased disc height.
• No significant increase in proteoglycan

content.
• No increase NP cell number, increased AF

cell number.

NCT011589
Wei et al24

GDF-6 ✓ (sheep) • Halted histological evidence of degeneration.
• Increased NP cell number.
• Increased NP hydration.

Wei et al81

GDF-6 ✓ (rat)
(rabbit)

• Decreased degeneration-associated IL-6,
tumor necrosis factor alpha, VEGF, NGF and
prostaglandin-endoperoxide synthase
2 expression.

• Partial restoration of disc height.
• Decreased allodynia and evidence supporting

nerve cell signaling decrease in rat DRGs in a
xenograft NP herniation model.

Miyazaki et al82

Other biological therapies

BMP-7 Osteogenic
protein-1

✓ (rabbit) ✓ (Phase 1) ✓ An et al83

HGF ✓ (rat) • Increased NP water content.
• Decreased histological score.

Zou et al84

IL-6R mAb Tocilizumab;
Actemra;
RoActemra

✓ (Phase 1) n = 31 ✓ • Decreased calcitonin gene-related peptide
expression in DRG.

• May be promising analgesic.

Sainoh et al85

Link-N ✓ (rabbit) • Significant increase in aggrecan expression
and decrease in proteinase gene expression.

Mwale et al86

Hyaluronate
hydrogel

✓ (rabbit) • Increased safranin-O staining. Nakashima et al87

Chondroitin
sulfate
hydrogel

✓ (rabbit) • Increased safranin-O staining. Nakashima et al87

Simvastatin Zocor ✓ (rat) ✓ • Increased aggrecan and collagen II
expression.

• Improved histological grades.

Than et al88

Lovastatin Mevacor ✓ (rat) ✓ • Increased aggrecan, sox9 and collagen II
expression.

• Decreased collagen I expression.
• Increased glycosaminoglycan staining.

Hu et al89

Glucocorticoid Hydrocortancyl
(Prednisolone)

✓ (Phase 4) n = 137 ✓ • A single glucocorticoid injection reduces LBP
at 1 month but not at 12 months.

NCT00804531
Nguyen et al90

Celecoxib Celebrex ✓ (dog) ✓ • No substantial negative effects from gel
injection.

Willems et al91

Gefitinib (EGFR
inhibitor)

Gefitinib ✓ (rat) ✓ (case series) ✓ • Slowed histological evidence of IVD
degeneration in patients.

Pan et al92

Abbreviations: DRG, dorsal root ganglion; GDF, growth differentiation factor; IL, interleukins; IVD, intervertebral disc; NGF, Nerve growth factor; NP,
nucleus pulposus; sox9, sex determining region Y-Box9; VEGF, vascular endothelial growth factor.
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biomaterial technology or cell-mediated secretion may be required to

enable lower doses and sustained bioactivity to be achieved.

In addition to BMPs 2 and 7, other BMP family members have

been investigated, with recent data suggesting that members of the

GDF family (which includes GDF5 [BMP14, cartilage derived morpho-

genetic protein 1 (CDMP-1)], GDF6 [BMP-13, CDMP-2], and GDF7

[BMP-12]) may be ideal molecules for IVD regeneration (Figure 1). Not

only do GDFs stimulate anabolic ECM gene expression in IVD cells but

have specialized and critical roles in IVD development and homeostasis.

4 | GDFS IN IVD DEVELOPMENT,
HOMEOSTASIS AND POTENTIAL FOR
REGENERATION

GDFs were first identified as components of bovine cartilage115 and

are members of the BMP family. GDF family members share 80% to

86% amino acid homology with each other and around 50% with the

wider BMP family.116–118 BMP family members have been subdivided,

on the basis of similarities in protein structure and amino acid

sequence, into the BMP2/4 group, BMP-5/6/7/8 group (OP-1 [osteo-

genic protein-1] group), BMP-9/10, and the GDF5/6/7 group. Impor-

tantly, while most BMP members such as the BMP-2/4, BMP-7 (OP-

1), and BMP-9/10 show strong bone-inductive activity, GDF5/6/7

induce the formation of cartilage and tendon-like but not bone-like

tissue.119

As with other BMP family members, GDF signaling occurs via het-

eromeric transmembrane serine-threonine kinase receptor complexes

containing both type I and type II receptor molecules.120,121 GDF5

and GDF6 act through the type I receptors bone morphogenetic pro-

tein receptor type 1A (BMPR-1A) and -1B and the type II receptors

bone morphogenetic protein receptor 2 (BMPR2), activin A receptor

type IIA (ACVRIIA), and activin A receptor type IIB (ACVRIIB)122–124

FIGURE 1 Potential GDF-based therapeutic cycle for IVD degeneration. A, In the healthy IVD anabolic and catabolic processes are in

homeostatic equilibrium. B, In the degenerate IVD cell-mediated changes, caused by increased inflammatory signaling, shift tissue remodeling
processes toward catabolism whilst concomitantly altering ECM production, increasing type I collagen and decreasing proteoglycan production. C,
If this process is allowed to proceed, NP herniation can result, causing pain and loss of function. D, Therapeutic intervention involving either
injection of GDF, delivery of controlled release GDF microparticles, or combined delivery of GDF with cells has shown promise for readdressing
the balance between catabolic and anabolic processes in the degenerate IVD. E, With exogenous GDF delivery the expression of phenotypic and
anabolic genes is increased in degenerative NP cells and/or implanted cell populations, thereby restoring disc matrix integrity and function, and
reducing pain. F, Summary of GDF signaling pathway through bone morphogenetic protein receptors and smad 1/5/8 which drive anabolic gene
expression and inhibit proinflammatory signaling. ECM, extracellular matrix; GDF, growth differentiation factor; IVD, intervertebral disc; MMP,
matrix metalloproteinase; NP, nucleus pulposus
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On receptor binding, GDFs can recruit and activate SMAD1/5/8.

Some BMP molecules are also able to signal through non-Smad kinase

cascades; specifically, p38 mitogen-activated protein kinase (MAPK),

Erk1/2 (extracellular related-signal kinase), and JNK1/2 (c-JUN N-

terminal kinase) (Figure 1). Interestingly, these pathways are also

linked with inflammatory cytokine signaling and mechanical signaling

through integrin activation. Recent evidence has demonstrated that

GDFs are also able to activate these non-Smad pathways, in particular

Erk1/2.125 These noncanonical BMP receptor signaling pathways pro-

vide mechanisms linking the anabolic action of factors such as GDF6

and the catabolic proinflammatory signaling, which is a feature of IVD

degeneration.

This potential interaction of GDFs and proinflammatory mole-

cules hints at the presence of a natural equilibrium that is dysregu-

lated during degeneration, though this relationship appears to be

complex. In vitro, GDF6 increases ECM production in degenerate NP

cells,126 while in vivo GDF6 treatment prevented ECM degradation in

a sheep model.81 GDF5 has been shown to directly inhibit the expres-

sion of MMP-13 and ADAMTS4 in human chondrocytes127 and

expression of other proinflammatory markers such as TNF-α, IL-1β,

and prostaglandinE2 (PGE2) in murine NP cells.128 Meanwhile, IL-1β

and TNF-α were both found to downregulate GDF5 expression signif-

icantly in human AF cells in 3D culture.129 In a mouse model, plasma

levels of inflammatory factors were downregulated by overexpression

of human GDF6.130 This indicates an indirect role in the decrease of

catabolic enzyme production linked to cellular response to proinflam-

matory cytokine signaling.

GDF5, 6, and 7 play crucial roles in the development of bones,

limb joints, the skull, and axial skeleton66 and are expressed in devel-

oping cartilage, tendons, and ligaments, as well as in the nervous

system.21,131–134 In xenopus and zebrafish embryos, GDF6 is

expressed in the ectoderm and acts as an epidermal inducer and a

neural inhibitor.135,136 In skeletal tissue, GDF family members have a

role independent of alkaline phosphatase expression.122,137,138

GDF6-knockout mice display fusions between specific bones in the

wrists and ankles, corresponding with major sites of GDF6 expression.

Strikingly, in GDF5/6-knockouts, the vertebral column shows severe

lateral curvature, which develops after birth. Alcian blue staining of

the IVDs in these mice shows reduced staining indicating lower PG

ECM content, despite chondrocyte-like cells being present.21,22 These

results suggest that GDF5 and GDF6 are required for normal develop-

ment and maintenance of the IVD in mice, and correct ECM produc-

tion by IVD cells. In humans, genomic mutations in the GDF5 gene

result in various chondrogenic dysplasias, while polymorphisms in the

gene are associated with osteoarthritis.139–142 Similarly, mutations at

the GDF6 gene locus on chromosome 8 are known to cause both

familial and sporadic cases of Klippel-Feil syndrome (KFS) leading to

similar carpal, tarsal and vertebral fusions as seen in mice GDF5/6

knockouts.23 The incomplete nature of these carpal and tarsal fusions

in GDF6 knockout mice and in some familial cases of KFS in humans

indicates a degree of redundancy in GDF signaling. While variability in

spinal fusions between regions of the spine, individuals and species

may indicate that GDF6 requirements for complete vertebral segmen-

tation may vary, particularly between different regions of the

developing spine.23 A recent related report provides evidence that

GDF6 is an antiaging factor secreted by young bone marrow-derived

mesenchymal stem cells (MSCs) and its expression can be regulated

by miR-17, a microRNA known to decline with age.130 This could have

important implications for the progression of IVD degeneration, which

is closely associated with the aging process.

During development, cellular secretion of GDFs forms directional

morphogenetic gradients.143–147 Recently, the expression and locali-

zation of GDF6 in developing spinal column of human fetus have been

examined.24 The strong expression of GDF6 is especially shown

throughout cartilaginous region of vertebrae at early developing

period (8-13 weeks of gestation) and in the developing IVDs (between

8 and 19 weeks of gestation) and is diminished from ossification

areas. GDF6 expression is localized to the NP and inner AF, but could

not be detected in the outer AF by immunohistochemical staining.24

In adults, GDF5 and GDF6 are detectable in the inner and outer AF129

but are most strongly expressed in the NP.148 The precise role of GDF

family members in adult IVD homeostasis is unresolved, though there

is strong evidence of their importance for anabolic gene expression.

5 | THE EFFECT OF SUPPLEMENTATION
WITH GDFS ON DISC CELLS AND
CHONDROCYTES IN VITRO

Aside from driving cell differentiation, GDFs have been shown to have

an anabolic effect on IVD cells (Table 2), in particular on NP cells, and

chondrocytes in vitro. This indicates a homeostatic or protective role

in the IVD, which may be dysregulated during degenerative disc dis-

ease. In reported in vitro cultures, GDF5 and GDF6 have similar

effects on cells. Recombinant GDF5 stimulation of human NP cells in

culture increases aggrecan and type II collagen gene expression and

PG production148 with similar, dose-dependent results reported using

mouse IVD cells,151 and bovine NP and AF cells in culture.150 In the

latter study, while GDF5 upregulated PG and collagen production in

both AF and NP cells, NP cells were the most responsive, especially in

terms of PG production (+138% in NP, +24% in AF). In pellet culture,

GDF5 was also shown to reduce the expression of catabolic enzyme

MMP13 in human chondrocytes through dickkopf 1 inhibition of Wnt

signaling.127

Through adenoviral-mediated overexpression studies, Zhang et al

compared the effects overexpressing various BMP family molecules

on ECM accumulation in bovine AF cells and demonstrated GDF6

overexpression induced one of the most significant PG and collagen

production responses.74 In 3D alginate bead cultures of human NP

and AF cells, GDF6 supplementation increased both PG and collagen

production.126 Interestingly, at high concentrations (800 ng/mL)

GDF6 was also shown to act as a potent chemoattractant for NP cells

with similar responses observed to potent chemoattractants, such as

fetal calf serum (FCS).126,152 This result supports evidence that GDF6

can also act as a chemoattractant to chondrocytes.153 In a recent RNA

sequencing study investigating regulatory networks controlling ECM

synthesis in the human, IVD, GDF6, and GDF5 were identified as

important human NP (but not AF) coregulatory gene networks.154

GDF6 supplementation also induces aggrecan expression and PG
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production in articular chondrocytes155 and human chondrocyte cell

line C28/I2.153

Taken together, these results indicate a direct anabolic signaling

role for GDF5 and GDF6 in NP and AF cells. Cellular responses and

RNAseq data point toward this role being greatest for correct NP cell

ECM production. Although AF cells remain responsive to GDF5 and

GDF6, their upregulation of PG and collagen production may be a

contributory affect, which in vivo supports NP cells to create a

functional ECM.

6 | THE EFFECT OF GDFS ON THE
DIFFERENTIATION OF MSCS TOWARD AN
NP-LIKE PHENOTYPE

Numerous growth factors have been investigated as inducers of NP-

like differentiation in MSCs including TGFβ, IGF-1, fibroblast growth

factor 2 (FGF-2), and platelet derived growth factor (PDGF).156,157

However, these studies focus on general chondrogenic markers rather

than those markers now associated with specific NP differentiation.

Both GDF5 and GDF6 have also been shown to induce the expression

of general chondrogenic genes (Sex determining region Y-Box9

(SOX9); type II collagen; ACAN) and, importantly, to also induce NP-

specific genes (KRT18, KRT19, CA12, Brachyury (T), CD24, HIF1α,

Glut-1 and SHH) in MSCs and adipose-derived stem cells (ASCs)

(Table 3). When GDF5 is added as a media supplement to high-density

cultures of MSCs or ASCs, chondrogenic differentiation is increased;

however, several reports also note a significant increase in markers of

hypertrophy and ossification including alkaline phosphatase, collagen

types I and X, and osteopontin.151,158–163 These characteristics indi-

cate a progression in expression reflective of chondrogenic hypertro-

phy toward endochondral ossification, which is undesirable for NP

populations. However, limited evidence of a similar response to GDF5

exists in reports investigating NP cells, meaning at present the implica-

tions of this observed hypertrophy in stem cell populations for the

use of GDF5 for direct application to degenerative discs are unclear

and further in vitro and crucially in vivo investigation is required.

In comparative studies, GDF6 promotes greater expression of

NP-marker genes and stimulates greater PG production than TGFβ3

and GDF5 in both human MSCs and ASCs.161,164 This increased ratio

in PG composition of ECM in comparison to collagenous matrix is a

central property of NP tissue and is required for correct functionality.

Importantly, reports to date indicate no increase in collagen X produc-

tion in GDF6 stimulated cultures as seen with other chondrogenic fac-

tors.165 This finding is supported further in a study by Nochi et al

using adenoviral delivery of a GDF6 construct in mesenchymal pro-

genitors (C3H10T1/2 cells). In this study, GDF6 supported chondro-

genic differentiation but not terminal differentiation into hypertrophic

chondrocytes.166 This lack of hypertrophy and progression toward

endochondral ossification when using GDF6, coupled with the

enhanced expression of NP markers, PG production and the higher

aggrecan to type II collagen ratio observed in comparison to GDF5

strongly suggests that GDF6 is the most promising candidate to pro-

duce implantable NP cell phenotypes from MSCs or particularly ASCs.

7 | IN VIVO EFFECTS OF GDFS ON IVD
REGENERATION AND DELIVERY METHODS

In preclinical animal models of IVD degeneration treatment with

GDF5 and GDF6 have shown promising results. Initial studies investi-

gated delivery of GDF5 and GDF6 through intradiscal injection into

models of IVD degeneration. For example, in murine models, IVD

recovery after application of static compression was improved with a

single GDF5 injection.167 After 4 weeks, a significant increase in disc

height and cell number was observed in the NP and inner AF, with

cells expressing both aggrecan and type II collagen. Similarly, in stab

models of degeneration in mouse168 and rabbit150 delivery of GDF5

improved disc height and histological appearance. Interestingly, GDF5

was found to colocalize with proliferating cells adjacent to the epiphy-

seal plate in a rabbit model.169 Similarly, in an ovine model of annular

injury, GDF6 was found to improve defect healing in the AF and

improve the hydration and cellularity of the NP.81 Recently, Miyazaki

and coworkers reported the development and use of a novel rat xeno-

graft radiculopathy model, where rabbit NP tissue was transplanted

TABLE 2 Effect of GDF family members on intervertebral disc cells in culture

Cell population
GDF family
member/concentration

Culture
conditions

Culture
duration Outcomes Reference

hNP GDF5 (10 ng/mL) 3D alginate bead
culture

Up to
14 Days

i) Significantly increased GAG production.
ii) Significantly increased collagen II and

aggrecan production.

Le Maitre
et al148

Mouse GDF5−/−

NP
GDF5 (1-100 ng/mL) 3D alginate bead

culture
Up to

9 Days
i) Dose-dependent upregulation of collagen II

and aggrecan expression.
Li et al149

Bovine nucleus
pulposus

GDF5 (100-200 ng/mL) 3D alginate bead
culture

Up to
21 days

i) 200 ng/mL increased cell proliferation,
collagen synthesis and GAG production.

Chujo
et al150

hNP GDF6 (200-400 ng/mL) 3D alginate bead
culture

7 days i) Significantly increased PG production,
collagen synthesis and cell migration.
400 ng/mL most effective concentration.

Gulati
et al126

bAF GDF6 (adenoviral
transfection)

2D Up to
6 days

i) Significantly increased collagen production,
PG secretion and cell proliferation.

Zhang
et al74

hAF GDF6 3D alginate bead
culture

7 Days i) Significantly increased PG production,
collagen synthesis and cell migration.
400 ng/mL most effective concentration.

Gulati
et al126

Abbreviations: bAF, bovine annulus fibrosus; GAG, glycosaminoglycan; hAF, human annulus fibrosus; hNP, human nucleus pulposus; PG, proteoglycan.
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TABLE 3 Effect of GDF family members on MSCs in culture

Cell Population

GDF Family
Member/
Concentration

Culture
Conditions Culture Duration Outcomes Ref.

hMSCs GDF5 Pellet i) Significantly increased sGAG
and type II collagen
production.

ii) Increased alkaline phosphatase,
types I and X collagen and
osteopontin secretion.

Bai et al151

hMSCs GDF5
(50-500 ng/mL)

Pellet 21 Days i) Significantly upregulated
collagen II.

ii) Potential synergistic
relationship with TGFβ1 in
driving chondrogenic
differentiation.

iii) No effect on cell proliferation.
iv) Concentration of 300 ng/mL

found to be most effective.

Coleman et al158

Murine Limb bud
(E10) + C3H10T1/2

GDF5
(10-500 ng/mL)

Pellet Up to 4 Days i) Significantly increased collagen
II and Sox9 expression

ii) Significantly increased cell
proliferation (after 24 hours).

iii) Increased condensation of
limb bud cells at
100-500 ng/mL, stained
positively with alcian blue after
3 days culture.

Hatakeyama
et al159

hMSCs GDF5
(10-100 ng/mL)

Woven 3D PLGA
scaffolds

12 Days i) Significantly increased scaffold
cellularity.

ii) Did not increased collagen
production.

Jenner et al160

hMSCs and hASCs GDF5
(10-1000 ng/mL)

Pellet, 3D
collagen I
scaffold

14 Days i) Significantly upregulated
collagen II, sox9 and aggrecan
expression. Upregulated
NP-specific marker genes
(Keratins 8, 18, 19) though not
as dramatically.

ii) 100 ng/mL most effective.
iii) ASCs more responsive than

MSCs, some NP-specific genes
not upregulated (CAXII,
Brachyury)

Clarke et al161

hMSCs GDF5 (100 ng/mL) Pellet, followed
by agarose
mold

7 Days, followed by up to
28 Days cartilage
formation

i) Significantly increased aggrecan
expression but not collagen II
or Sox9.

ii) No evidence of hypertrophic
marker expression.

iii) Evidence of synergy with
TGFβ1 to promote
chondrogenic differentiation.

Murphy et al162

Rabbit ASCs GDF5
(10-200 ng/mL)

2D and 3D
collagen I
sponge

21 Days 2D/ 28 Days 3D i) In 2D, 100 ng/mL induced
collagen II, aggrecan and
collagen I expression. 100 to
200 ng/mL most effective.

ii) Collagen X expression
observed after 21 days.

iii) In 3D, GDF5 significantly
increased collagen II and
aggrecan but also collagen I
and X. 3D inducti.on was more
potent than 2D

Han et al163

hMSCs GDF5 (100 ng/mL) 3D alginate bead Up to 18 Days i) Significantly upregulated
aggrecan, collagen II.

ii) Promoted high expression of
aggrecan in relation to
collagen.

Gantenbein-Ritter
et al164

hMSCs and hASCs GDF6
(10-1000 ng/mL)

Pellet, 3D
collagen I
scaffold

14 Days i) Significantly upregulated
collagen II, sox9 and aggrecan
expression. Upregulated
NP-specific marker genes
(Keratins 8, 18, 19, CAXII,

Clarke et al161
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adjacent to the dorsal root ganglia of nude rats.82 The transplanted

NP tissue was obtained from annular-puncture models of degenera-

tion treated either with phosphate buffered saline (PBS) or GDF6

injection. GDF6 injection decreased gene expression, particularly in

NP tissue, of proinflammatory factors IL-6 and TNF-α (with a trend

for decreased IL-1β) and pain-associated molecules VEGF, prostaglan-

din-endoperoxide synthase 2 (PTGS2), and Nerve growth factor

(NGF). More notably, when GDF6-treated NP was transplanted,

transplant-associated allodynia was significantly reduced. A corre-

sponding decrease in the pain-related molecules calcium-binding

adaptor molecule-1 and the nociceptive neuropeptide calcitonin

gene-related peptide in the GDF6-treated NP associated dorsal root

ganglions (DRGs) was also observed.

One potentially interesting role for GDF6 is as a chemotactic fac-

tor for stem/progenitor cell populations adjacent or resident in the

NP. This could be relevant either as a homeostatic tissue maintenance

process or during repair. Other related BMP family members, such as

BMP2, have been demonstrated to act as chemotactic signals for mes-

enchymal progenitor cells170 and as mentioned above GDF6 acts as a

chemoattractant to NP cells in vitro.126 Populations of IVD progeni-

tors have been identified in inner AF region of rabbit discs,171–173 and

in both human nondegenerate scoliotic AF174 and degenerate AF tis-

sues.175 This hypothetical mechanism is also supported by the animal

studies referred to above, where cells were observed to migrate from

the endplates toward the AF and NP injury site. However, the identity

and characteristics of these cells, including their secretory profile,

remains to be defined.

Injection of supraphysiological doses of growth factors is unlikely

to be effective for the long-term treatment of degenerative IVD dis-

ease. This is due to the short half-life of these growth factors in vivo,

while the large doses delivered raise safety concerns due to off-target

effects. Furthermore, repeated injection of the IVD may compromise

its mechanical integrity and has been shown to cause an inflammatory

reaction at the injection site.167 Thus, the development of alternative

GDF delivery methods is desirable. These could include delivery of

the GDF gene through adenoviral or plasmid vectors, delivery of siR-

NAs to block pathways that may downregulate GDF signaling, miRNA

delivery/ inhibition or gene editing techniques such as clustered regu-

larly inter spaced short palindromic repeats (CRISPR). Other methods

might rely on the controlled delivery of GDF protein, such as micro-

sphere encapsulation and tethering/presentation of GDF coupled

with a biomaterial. These options could be used either to manipulate

the endogenous cell populations or be coupled with a cellular implant,

such as MSCs or ASCs (Figure 1).

In a proof of principle mouse annulus needle puncture model of

IVD degeneration, Liang et al injected an adenoviral vector carrying

the GDF5 gene into lumbar discs.168 The study demonstrated that the

GDF5 gene was successfully expressed and active GDF5 produced,

which leads to significant restoration of disc height, histology, and

improved disc hydration as assessed through magnetic resonance

imaging.168 Adenoviral transduction of murine mesenchymal progeni-

tors was also shown to be feasible for the expression of human GDF6,

where GDF6 induced expression of chondrogenic genes and

increased PG production without expression of hypertrophic

genes.166

Nonviral transfection of GDFs into NP cells or MSCs is perhaps a

more attractive option through reduction of safety concerns associ-

ated with the use of viral vectors. Nonviral transfection of GDF5 into

electroporated MSCs was shown to result in efficient GDF5 expres-

sion up to 21 days in culture, upregulate NP-gene expression and par-

tially recover the GAG/DNA ratio in a bovine IVD degeneration organ

culture model.176 In principle, nonviral transfection of primary IVD

cells has recently been demonstrated by May et al using the Neon

Transfection System to achieve transfections efficiencies ≥47%.177

Alternatively, a controlled GDF delivery system would allow pro-

longed delivery of GDFs to the degenerate IVD through prevention of

degradation, allow the use of lower GDF concentrations, and localize

delivery. Encapsulation in polymer microspheres is a commonly used

method to control release of growth factors. In a rat needle puncture

disc degeneration model, GDF5 encapsulated in poly (lactic-co-

TABLE 3 (Continued)

Cell Population

GDF Family
Member/
Concentration

Culture
Conditions Culture Duration Outcomes Ref.

Brachyury) in MSCs and ASCs
and to greater extent than
TGFβ1 GDF5.

ii) 100 ng/mL most effective.
iii) Increased sGAG secretion and

NP-like proteoglycan: collagen
ratio.

hMSCs GDF6 (10 ng/mL) 3D collagen I gels,
PLA constructs

Up to 14 Days i) No evidence of collagen X or
collagen II response to GDF6
stimulus.

Ii) No MMP expression response.

Heckmann et al165

C3H10T1/2 GDF6 (adenoviral
transfection)

2D Up to 21 Days i) Stimulated proliferation.
ii) Significantly upregulated

collagen II, aggrecan but not
collagen X or osteocalcin.

iii) 2-fold increase in GAG
secretion vs controls.

Nochi et al166

Abbreviations: GDF, growth differentiation factor; hASCs, human adipose-derived mesenchymal stem cells; hMSCs, human bone marrow-derived mesen-
chymal stem cells; PLGA, poly (lactic-co-glycolicacid); sGAG, sulphated glycosaminoglycan; sox9, sex determining region Y-Box9.
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glycolicacid) (PLGA) microspheres and delivery was sustained over

42 days, which resulted in GAG increases and restoration of disc

height.178

These studies indicate an anabolic role for GDF5 and GDF6 in the

IVD. Although as mentioned above, GDF5 and GDF6 are present in

the degenerate IVD, it is clear that GDF effector signaling is dysregu-

lated, resulting in decreased anabolic gene and protein expression. In

these in vivo studies providing an excess of GDF6 can recover this

anabolic expression, suggesting a rebalancing of an equilibrium

between inflammatory catabolic signaling and GDFs. Indeed, evidence

of noncanonical GDF signal transduction supports the direct interac-

tion of these processes. A successful GDF treatment therefore may

involve a GDF delivery or overexpression system in concert with an

inhibitor of inflammatory response. Delivery period and dosage must

be determined through in vivo experiments and perhaps can be tai-

lored with patient specificity through more accurate diagnostic pro-

cesses. Similarly, whether a cellular or acellular approach is required is

dependent on patient-specific degeneration phase. The stimulation of

endogenous cell populations to either increase GDF production or

delivery of GDF may only be possible if degeneration remains in the

early stages. In this way, IVD regeneration would benefit greatly from

a stratified approach to treatment design. Fortunately, hydrogels in

combination with microparticle controlled delivery, for example, with

or without cells, lend themselves to this kind of modular adaptation

for treatment. GDFs, in particular GDF6 with its highly NP-specific

responses and lack of hypertrophic gene expression, are exciting pros-

pects for IVD regeneration.

8 | CONCLUSION AND FUTURE DIRECTION

Small molecule therapy, especially in combination with cell implanta-

tion, holds promise for the treatment of degenerative disc diseases.

The link between ECM composition and tissue functionality in the NP

means that it is critical to select the correct bioactive molecule, or

combination of molecules. GDF family members have shown great

promise both as direct anabolic factors when delivered to NP cells

and as NP-specific differentiation-stimuli when delivered to MSCs or

ASCs. In either case, GDF6 has been shown to increase GAG produc-

tion relative to type II collagen and upregulate healthy NP-specific

marker gene expression, and critically, to do so to a greater extent

than other previously defined chondrogenic factors. Future work will

focus on the delivery and controlled release of GDF family members

to the disc. The combination of GDF with cell therapy should also be

a focus going forward, with work underway to determine optimal cell

populations for therapy. In vivo data hinting at a role for GDF6 in

modulation of degeneration-associated pain and the mobilization and

localisation of tissue resident stem cells during healing of artificially

induced degeneration is exciting. The precise nature of these interac-

tions should be explored in more detail but perhaps they offer a

potential avenue for effective cell-free delivery of GDF family mem-

bers. Given the proinflammatory environment of the degenerative

IVD and the convergence of noncanonical GDF and cytokine signaling

on kinase cascades, further research is needed to determine the

nature of this interaction, which will likely lead to the identification of

novel therapeutic targets that may optimize GDF therapy.
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