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The fact that seeing with two eyes is universal among vertebrates raises a problem

that has long challenged vision scientists: how do animals with overlapping visual fields

combine non-identical right and left eye images to achieve fusion and the perception

of depth that follows? Most theories address this problem in terms of matching

corresponding images on the right and left retinas. Here we suggest an alternative

theory of binocular vision based on anatomical correspondence that circumvents the

correspondence problem and provides a rationale for ocular dominance.
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INTRODUCTION

Many animals that are preyed upon sacrifice the advantages of fusion and stereopsis for the
benefits of a wider field of view; in contrast, many predators sacrifice a more extensive view for
the advantages of stereovision. For animals in the latter category, understanding vision therefore
requires an explanation how information provided by the right and left eyes is brought together
by the visual system. Particular challenges have been understanding (1) how information from
the right and left eyes in animals with overlapping fields is fused; (2) how fusion generates
stereopsis; and (3) why ocular dominance is characteristic in such animals. These puzzles have often
been approached independently, primarily because no unifying scheme for this phenomenology
has emerged. Here we outline a theory of binocularity that addresses these challenges based on
anatomically corresponding points on the two retinas rather than corresponding image points.

Models of Binocular Combination
That animals with overlapping visual fields take advantage of slight differences in the right and left
eye images to generate an accurate sense of depth has been accepted since Charles Wheatstone’s
seminal experiments in the nineteenth century (Wheatstone, 1838, 1852). Fusion requires that
inputs arising from the two eyes be combined by binocular neurons in the primary visual cortex.
Although binocular cortical neurons have been thoroughly studied over the last 50 years (Hubel and
Wiesel, 1962; Barlow et al., 1967; Nikara et al., 1968; Poggio and Fischer, 1977; Poggio et al., 1988;
Poggio, 1995), how the visual system combines the right and left retinal inputs remains unclear.

Theories that address stereopsis are generally based on the assumption that image points in one
eye must be matched with corresponding image points in the other eye (Figure 1). A difficulty in
this formulation, however, is explaining how left and right eye retinal neurons responding to the
same physical point in space are linked, a challenge referred to as the “correspondence problem”
[i.e., a mechanism that could match the anatomically unrelated points (p) and (q) and points (m)
and (n) in Figures 1B,C]. As evidenced by physiology, somemodels seek to resolve this problem by
limiting the relevant search space over multiple spatial scales (Marr and Poggio, 1979; Nishihara,
1984; Li and Atick, 1994a). Other models have been based on facilitation and inhibition (Dev,
1975; Nelson, 1975; Marr and Poggio, 1979; Mayhew and Frisby, 1980; Grossberg and Marshall,
1989). Inhibition is also featured in models that explain the related phenomenon of binocular
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rivalry (Lehky, 1988; Mueller, 1990; Dayan, 1998; Stollenwerk
and Bode, 2003; Wilson, 2003; Freeman, 2005; Moreno-
Bote et al., 2010). Said and Heeger (2013) have recently
united these observations by incorporating elements of the
stereoscopic model proposed by Li and Atick (1994b) to explain
rivalry. Yet other models explain how the eyes could combine
imbalanced but similar images; for example, by quadratic
contrast summation (Legge, 1984) or interocular gain control
that is in proportion to contrast energy (Ding and Sperling, 2006;
Ding et al., 2013; Zhou et al., 2014).

Most salient, however, has been the so called spatio-temporal
energy model proposed about 30 years ago (Ohzawa et al., 1990,
1997), which was adapted from an earlier model developed to
address the “motion correspondence problem” (Adelson and
Bergen, 1985). “Energy” refers to outputs of cells that are taken
to compute a localized Fourier transform using two Cartesian
coordinates and a temporal axis to account for motion. The
model entails two stages. The first describes how monocular
contrast is computed in simple cells related to one eye or
the other; the second describes how matching monocular
information is combined in complex binocular neurons (Ohzawa
et al., 1990; Qian, 1997; Qian and Zhu, 1997). Since image
differences in the two eyes vary with distance from the observer,
binocular neurons could represent depth as the difference
between left and right eye receptive field position and phase
that give rise to the maximum binocular cross-correlation.
Additional modifications have since been made to explain more
recent observations (Read et al., 2002; Tanaka and Ohzawa,
2006; Haefner and Cumming, 2008; Tanabe and Cumming,
2008; Allenmark and Read, 2011), but there is still substantial
support for cross-correlation being a major component of
binocular processing.

Much of the evidence for cross correlation models has come
from studies using random dot stimuli (Cisarik and Harwerth,
2008; Doi et al., 2011; Henriksen et al., 2016a,b; Goncalves and
Welchman, 2017; Read and Cumming, 2019). Random dots are
useful in that they offer no monocular cues to depth, yet enable
control of the degree of correlation between stereo-images. Taken
together with non-linear neuronal properties, the consensus has
been that stereoscopic performance improves with greater inter-
ocular correlation. Conversely, anti-correlated stimuli evoke
small, oppositely tuned physiological responses (Cumming and
Parker, 1997; Neri et al., 1999) but not psychophysical depth
percepts (Cumming et al., 1998). More recently, these findings
have been confirmed using noise stimuli (Reynaud and Hess,
2018) and natural images (Goncalves and Welchman, 2017).

An Alternative Theory Based on
Anatomical Correspondence
Regardless of the type of stimuli used, contrast edges are
essential for disparities to be perceived (i.e., there is no depth
perception in a featureless field). The alternative theory we
consider here is that binocular vision depends on differences in
neuronal activity generated by contrast edges at anatomically
corresponding retinal points (i.e., points a and a’, b and b’, p
and p’, and m and m’ in Figure 1). The basis for this alternative
scenario is that retinal disparity as a function of depth causes the

distribution of light falling on corresponding anatomical points
on the two retinas to differ routinely as shown in Figure 2.

Figure 2A shows how a far object within the disparity
gradient limit in the left visual field projects onto anatomically
corresponding points on the two retinas. Figure 2B shows the
different activity of four pairs of neurons with corresponding
receptive fields (black bars linked by gray dotted lines) as
examples. These four pairs are illustrated because they represent
neurons that detect the contrast edges to varying degrees. The
relative activity of these pairs of anatomically corresponding
neurons falls into two groups: (1) neurons in which the activity of
the contralateral neuron is greater than the activity of ipsilateral
neuron when the edge is formed by a near object at the foveal
side of the receptive field and a far one at the eccentric side
of the field; and (2) neurons in which the activity of ipsilateral
neuron is greater than the activity of the contralateral neuron
when stimulated by the opposite (edge formed by far object at the
foveal side of the receptive field and near object at the eccentric
end; Figure 2C). As a result, the relative activity at anatomically
correspondence can convey information about depth at specific
retinotopic points. Note that in this alternative theory the image
correspondence problem does not arise. Planar image resolution
can also be maintained without loss of spatial pooling across
position or phase shifts.

METHODS

To examine the circuitry that would be required to implement
this theory of binocularity, we created a simple, simulated
environment where artificial neural networks were trained on the
basis of information arising from anatomical rather than image
correspondence (Figure 3).

Environment
The simulated environment comprised two uniformly
illuminated fronto-parallel contrast boundaries (400 cd·m−2

against a 1 cd·m−2 background). One contrast boundary
included the point of fixation along the midline; the other was
0.3◦ to the left and varied in depth along the line of sight of the
fused stimulus (see Figures 3A,B). The surfaces were projected
through pinholes onto a pair of 2-dimensional sensor arrays as
shown in Figure 3B. Each array was 200 × 40 pixels, spanning
2◦ horizontally and 0.4◦ vertically. The vertical boundary at the
midline including the fixation point spanned 0.3 × 0.4◦ whereas
the size of the other surface varied with its depth. Thus, stimuli
generated by the environment gave rise to contrast boundaries
that fell at different locations on the receptor array.

Network
The sensor arrays comprised pixels 0.01× 0.01◦ and represented
photoreceptors that received images projected from the
environment. The sensors activated two pairs of anatomically
corresponding monocular neurons whose center-surround
receptive fields were 0.3◦ apart. The receptive field properties of
these monocular neurons were pre-set according to Morgenstern
et al. (2014) (Figure 3C). One pair of corresponding neurons
received luminance signals from the temporal edge at fixation
(gray arrowheads in Figure 3D), while the other pair received
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FIGURE 1 | Diagram comparing corresponding anatomical points on the retinas and corresponding image points (Purves and Lotto, 2011). (A) The horopter is

defined by all the points in visual space that fall on corresponding retinal loci (a and a’ and b ad b’) whether the points are considered from the perspective of images

or retinal anatomy. Points f and f’ are the foveal centers and thus the point of binocular fixation. (B) A light ray arising from a point nearer than the horopter (blue dot)

projects onto point (p) in the left eye but onto point (q) in the right eye whose locus differs from the location of the anatomically corresponding point (p’). (C) Similarly, a

light ray arising from a point more distant than the point of fixation falls on point (m) in the left eye but on point (n) in the right eye that also differs from the anatomically

corresponding point (m’). Thus, image correspondence and anatomical correspondence are fundamentally different aspects of retinal disparity, and both could convey

information about the depth of points in visual space relative to the horopter.

luminance signals from the contrast boundary of the surface that
varied in depth (blue arrowheads). Since the stimuli presented
a positive contrast boundary with respect to the background,
the monocular neurons in the network were modeled as ON-
center surrounded by eight OFF-center sub-regions. The entire
receptive field spanned 36 × 36 pixels on the sensor (i.e., the
“photoreceptors”) equivalent to 0.36◦ visual angle. The receptive
field centers were 0.12◦ in diameter (12 × 12 pixels) surrounded
by eight 0.12◦ inhibitory sub-regions. Hence each receptive
field can be thought as a quantized Gabor function. Each
sub-region transformed the average luminance that fell within
it using the different sigmoidal connection parameters specified
in Figure 3C and Morgenstern et al. (2014). A final sigmoid
with parameters (A: 0.9771, B: 5.7152, C: 1.7300) compiled
the sum of these individual transformations as the output of
the network’s monocular neurons. Other than these pre-set
monocular parameters, all other downstream connections
were evolvable.

The outputs of the network’s monocular neurons provided
inputs to second order binocular neurons via evolvable synaptic
connections (Figure 3D). Networks were initialized with weak
but fully connected feedforward connections. Depending on
functionality, any of these connections could be lost during
evolution, or become excitatory or inhibitory with different
strengths on the basis of the equation

Post =
±A

(1+ e−B×Pre+C)
(1)

Thus parameters A, B and C were freely evolving parameters as
in (Ng et al., 2013). “Pre” is the input to the sigmoid and “Post” is

the result of each sigmoidal transformation. The summed effect
of all these connections represented the second order neuron’s
activity as

Binoc =

4
∑

c=1

Post (2)

where “Binoc” is the activity that signifies the depth of the
contrast boundary; “c” represents the connections from each
of the four monocular neurons in the network, and Post the
summed effect. At the end of evolution, the second order
binocular neurons reported whether the contrast boundaries
were nearer or farther than the horopter and by how much (i.e.,
absolute disparity).

The second order binocular neurons were cloned at a further
0.3◦ eccentric to the original position (i.e., 0.6◦ in total from
the fixation point). The position of these clones was called
the “reference position” and the originally evolved position the
“target position.” An additional layer of third order binocular
neurons was also added (Figure 3E). All second order neurons
at both target and reference positions were fully connected to the
third order neurons with evolvable sigmoids as described above.
These third order binocular neurons evolved in turn to report the
relative disparity of the object at the target position (0.3◦ from the
fixation point) with respect to the object at the reference position
(0.6◦ from the fixation point), based on the absolute disparity
reported by the second order neurons.

Evolution
Binocular stimuli were presented to 20 populations of 500
individually evolving networks. Two hundred stimuli were

Frontiers in Computational Neuroscience | www.frontiersin.org 3 October 2019 | Volume 13 | Article 71

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ng and Purves An Alternative Theory of Binocularity

FIGURE 2 | Different levels of neuronal activation based on anatomical correspondence. (A) Projection of an object farther than the horopter onto neurons at

corresponding anatomical loci. The contralateral projection is displaced eccentrically, while the ipsilateral projection is displaced foveally. (B) The activity of

(Continued)

Frontiers in Computational Neuroscience | www.frontiersin.org 4 October 2019 | Volume 13 | Article 71

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ng and Purves An Alternative Theory of Binocularity

FIGURE 2 | neurons at anatomically corresponding receptive fields (black bars) differs. Except for projections of points in visual space that lie on the horopter,

anatomically corresponding neurons in the two retinas will have different levels of activity (thickness of the black bars denote relative activity). (C) Difference in activity

between contralateral and ipsilateral conveys whether the contrast boundary was formed by a near object on the foveal side of the receptive field (“F” denotes foveal

half of the receptive field; “E” denotes eccentric half of the receptive field). Contralateral activity is less than ipsilateral activity when the eccentric side of the

corresponding receptive field receives far stimuli. Conversely, ipsilateral activity is greater than contralateral when the eccentric side of the corresponding receptive field

receives near stimuli.

presented to each network in an evolving population during the
network’s “lifetime.”

The success of the second order neurons wasmeasured by how
well its output approximated the absolute disparity of the object
surface relative to the fixation point using the formula

Successk =

(

∑

n

∣

∣Responsek − Disparityk
∣

∣

)

−
(
∣

∣Responsei − Disparityi
∣

∣

)

(3)

where “k” represents the kth individual in the population and
“i” the i-th trial presented to each network. “Response” denotes
the network’s response on a given trial; “Disparity” is the absolute
disparity in degrees of visual angle from the object boundary to
the fixation point, and “Pop” the population size. Networks that
discriminated near surfaces were evolved separately from those
that discriminated far objects.

Second order neurons were evolved separately and prior to
the third order neurons, their evolved outputs serving as inputs
to third order neurons. The success of the evolving third order
neurons was evaluated in the same way except that “Disparity”
was now the relative disparity of the contrast boundary at the
target position with respect to the boundary at reference position.

At the end of each generation all the networks in a population
were ranked in order of their success determined by Equation
(3). Each network was assigned a sector on a roulette wheel
with a size proportional to its success score. The wheel was
then spun 500 times to choose the networks that populated the
next generation. Accordingly the more successful networks were
selected often and the less successful networks only occasionally.
The connection parameters of each individual in the new
population had an 80% chance of being randomly exchanged
with those of another network to introduce novelty and diversity
(Ng et al., 2013; Morgenstern et al., 2014). Performance was then
calculated again, and the process repeated for 2,500 generations.
All simulations were performed using the Genetic Algorithm in
the Matlab Global Optimization Toolbox.

RESULTS

Implications for Visual Circuitry
After 2,500 generations the output of the second order
neurons had learned to specify whether a stimulus boundary
was nearer or farther than the horopter and by how much
(Figure 4). Networks that identified contrast boundaries
farther than the horopter evolved a strong excitatory
connection from the contralateral monocular neuron, but
not from the ipsilateral neuron (Figure 4A). Conversely,
networks that discriminated stimuli arising from boundaries

nearer the horopter evolved a strong excitatory connection
from the ipsilateral neuron, but not from the contralateral
neuron (Figure 4B). In both instances the other monocular
input to the second order neuron was inhibitory. In a
control simulation to test the importance of retinotopy,
networks were free to evolve depth responses to stimuli
placed anywhere within the visual field. Such networks
failed to evolve (Supplementary Figure 1), showing that
responses to disparity had to be tied to specific locations
in the visual field sampled by the relevant anatomically
corresponding neurons.

The connectivity of the two-layer network after training
could not, however, distinguish the relative disparity of two
contrast boundaries both of which were closer or farther than
the horopter, or that straddled the horopter (Figure 5A). To
address this further challenge, an additional (third) layer in
the network was tasked with making these further distinctions
(see Methods and Figure 3D). Given this addition, networks
using the responses generated by the two-layer network in
Figure 3 successfully reported relative depth (Figures 5B,C).
The complete network after training is shown in Figure 6. The
relevant monocular neurons at the target position are shown
in Panel A, labeled as A.I and A.II. These fed into the second-
order absolute disparity units the evolved at the target position
(Panel B; neurons labeled as B.I and B.II), which along with
those at the reference position, were inputs to the third order
relative-disparity neurons (Panel C; neurons C.I and C.II).
Throughout the network, the evolved mechanism underlying
successful evolution was antagonistic connections (blue and red
lines). Thus, the third order relative far-tuned neurons were
excited by the contralateral neurons at the target position, as
well as the by the ipsilateral neuron at the reference position.
These relative far neurons were also inhibited by the ipsilateral
and contralateral neurons at the respective positions (Figure 6C,
left). In contrast, relative near-tuned neurons were excited by the
ipsilateral neuron of the target and the contralateral neuron of
the reference, but inhibited by the target’s contralateral and the
other ipsilateral neurons (Figure 6C, right). These excitatory and
inhibitory connections had almost equal effects on the relative
disparity neurons (Supplementary Table 2), and signals in the
third order neurons were brought about by differences in the
activity of the second order neurons. This arrangement thus
reported not only relative disparity magnitudes, but also the
comparative retinotopic positions.

Ocular Dominance
Ocular dominance refers to the fact that most binocular neurons
in the primary visual cortex of carnivores and primates are more
strongly driven by one eye or the other. Despite its discovery
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FIGURE 3 | Artificial neural network trained on the basis of anatomical rather than image correspondence. (A) The environment. The fixation point is a locus on a

contrast boundary in the midline (gray arrowhead) at a constant distance; another contrast boundary (blue arrowhead) varied in depth along a particular line of sight to

the left of the fixation point. (B) The stimuli falling on the two retinas in this arrangement. (C) Parameters of the monocular receptive field. (A–C) are pre-evolved

(Continued)
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FIGURE 3 | sub-region specific parameters (Morgenstern et al., 2014). The input to the sigmoid in each subregion is the average luminance within a grid. (D) The

network used for evolving the functionality of second order neurons. The projection of the contrast boundary at the point of fixation is indicated by the gray

arrowheads; the blue arrowheads indicate the projection of the contrast boundary in depth. The corresponding monocular neurons have receptive fields at identical

“anatomical” positions on the left and right sensor arrays. The outputs of the monocular neurons provided the inputs to a second order neuron to could evolve to

either report far- or near-absolute disparities. Evolvable connections are shown by dotted lines. (E) Network used to evolve third order neurons. The evolved network

that could successfully report absolute disparities was cloned at the reference position. Dotted lines indicate evolvable connections from the second order to the third

order neurons.

FIGURE 4 | Diagram of connections after the networks had learned to correctly report differences in stimulus strength at anatomically corresponding loci on the input

arrays. (A) Top left: Evolution of networks trained to respond to contrast boundaries farther than the horopter. Black line is the average error across all the populations

tested; the gray overlay shows the absolute deviation from the mean. (Top right): Responses before (gray) and after (black) evolution. Bottom: Average connectivity of

the evolved networks. The strength of the connections is indicated by the thickness of the lines; solid lines with arrowheads represent excitatory connections and

dotted lines connections with little or no effect. Inhibitory connections are denoted by the end-stopped lines. (B) Evolution and average evolved connectivity of

networks trained to respond to contrast boundaries nearer than the horopter. Evolved parameters are given in Supplementary Table 1.

more than 50 years ago, a rationale for ocular dominance has
never been specified. Although dominance has been widely used
in experimental animals as an index of cortical connectivity
during development (Hubel and Wiesel, 1962, 1965, 1970) or to
better understand and treat strabismus in clinical ophthalmology
(Horton, 1992), its purpose in vision, if any, has remained
unclear. The association of ocular dominance and binocular
vision is nonetheless obvious, leading some investigators to
speculate that it must play some role in binocular vision (Hubel
and Wiesel, 1962; Gardner and Raiten, 1986; LeVay and Voigt,
1988). Nevertheless, the consensus more recently has been that
ocular dominance and its anatomical expression as cortical
columns or stripes in carnivores and primates have no particular
function (Purves et al., 1992; Read and Cumming, 2004; Horton
and Adams, 2005).

In the present theory ocular dominance arises naturally from
binocularity based on anatomical correspondence. Thus, after
training, the second order binocular neurons were more strongly
driven by one eye or the other, as shown in Figure 4. Being
excited by either contralateral or ipsilateral input and inhibited

by the other input, the evolved units resembled early stage V1
neurons. Moreover, these second order units would have been
organized into groups if tiled across the whole visual field. The
anatomical model also accords with physiological observation
that disparity tuned cells tend to be dominated by one eye or the
other (Poggio and Fischer, 1977; Ferster, 1981; LeVay and Voigt,
1988) whereas non-disparity tuned cells tend to be equally driven
by both eyes (Gardner and Raiten, 1986). Much as we observed
in the evolved networks, far disparities in experimental animals
are associated with contralateral dominance and near disparities
with ipsilateral dominance (LeVay and Voigt, 1988).

In contrast to the second order binocular neurons, the third
order binocular neurons showed little or no correlation between
depth tuning and ocular dominance (r = 2.3 × 10−3, p > 0.05
for far-tuned neurons; r = 4.2 × 10−3, p > 0.05 for the near-
tuned neurons). In short, ocular dominance only arises as a
consequence of low-level absolute disparity computations but not
computations of relative disparity. This finding is also in line
with balanced ocularity apparent higher in the visual pathway of
experimental animals.
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FIGURE 5 | Distinguishing relative depth. (A) Stimuli that entail relative distances in depth for two contrast boundaries that (1) are both farther than the horopter;

(2) straddle the horopter; or (3) are both nearer than the horopter. All three instances make up the stimulus pool in training relative disparity discrimination. In the

examples shown, one boundary is relatively nearer than the other (left panel) or relatively farther away (right panel). As in Figure 3, gray arrowheads indicate the

contrast boundary at fixation; the blue arrowheads indicate the original target contrast boundary in Figure 3D while the green arrowheads indicate an additional

reference contrast boundary to which the depth of the original stimulus is compared (see Figure 3E). (B) Networks that evolved to report relative disparities that were

farther than the object at reference position. (C) Networks that evolved to report relative disparities that were nearer than the object at reference position. Each

connection was comparable in strength, as indicated by the similar thickness of the arrows. The evolved parameters are shown in Supplementary Table 2.

Further Comparisons With Physiology
Many studies have related the disparity tuning curves of
biological neurons to receptive field sizes (Marr and Poggio,
1979; Tsao et al., 2003; Nienborg et al., 2004). There is also
psychophysical evidence from the size-disparity correlation
(Richards and Kaye, 1974; Schor andWood, 1983; Smallman and
McLeod, 1994). Marr and Poggio in particular have pointed out
a simple mechanism that avoids false matches if the disparity
range is within half of the receptive field width. In keeping with
these results, we observed that the second order units evolved
to follow this rule (the upper disparity limit being ∼±0.14◦

compared to 0.36◦ receptive field size), also in agreement with the
π phase limit of macque V1 neurons (Prince et al., 2002). Since
third order neurons combined both near and far disparities, the
upper disparity limit was twice that of the second order neurons
(Figures 5B,C). The receptive field size of third order neurons
was also bigger (0.66◦) because of spatial pooling. Hence, the
upper disparity limit was still approximately half of the receptive
field size.

The monocular (Figures 6A.I,II), as well as the evolved
second order units (Figures 6B.I,II) also display phase
dependency characteristic of simple cells. Moreover, phase
dependency was not observed in the third order units
(Figures 6C.I,II), analogous to visual neurons further on in the
binocular processing hierarchy (Supplementary Figure 2).

Finally, we presented anti-correlated input patterns to see if
the networks showed the disparity tuning reversals evident in
binocular neurons in the primary visual cortex (Cumming and
Parker, 1997; Neri et al., 1999). In agreement with physiological
observations, our networks showed small, reversed tuning
when presented with anti-correlated luminance profiles. These
reversals were apparent at both the level of the absolute disparity
neurons and the relative disparity neurons. Figure 7A shows
the tuning function of the evolved absolute far (left panel) and
absolute near (right panel) neurons. In both cases, responses to
conventional stereograms are plotted in gray and show much
greater dynamic ranges (between 0 and 0.15) than responses
to anti-correlated stereograms (0.02 to −0.03). Most responses
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FIGURE 6 | A fully evolved network. Shaded neurons indicate adjacent units at the reference position that were included in the architecture, but whose responses

were not considered in the analyses because their receptive fields were not at the relevant target position. Neurons at the target position (0.3◦ from the fixation) are

outlined in bold and their evolved connections shown in color. Blue arrows are excitatory connections; red end-stopped lines indicate inhibitory connections. (A) Three

corresponding pairs of monocular neurons receiving visual information. The outputs of neurons A.I and A.II contributed to the evolved responses of the absolute

disparity neurons B.I and B.II. (B) Second order absolute disparity neurons at the target (B.I and B.II) and reference positions. Outputs of these neurons contributed to

the relative disparity neurons C.I and C.II. (C) Third order relative disparity neurons at the target position. These neurons reported how far or near the target was, with

respect to the reference object. Graphs in Figure 7 and Supplementary Figure 2 show the detailed responses from the neurons here.

to anti-correlated stereograms were also negative and hence
inhibitory for the same disparity range, rising only slightly above
the null point toward zero disparity and the opposite depth
polarities (i.e., near disparities for far-tuned neurons and vice
versa). These reversals were also evident for the evolved third
order neurons (Figure 7B). Here, multiple responses could have
resulted from a single relative disparity (many ordinate points
for one abscissa reading in Figure 7B; see figure legend). Like
the second order absolute disparity neurons, responses to anti-
correlated stereograms were also small (0.02 to−0.06) compared
to conventional stereograms (0–0.2; insets in Figure 7B), largely
inhibitory, and only rose to become slightly excitatory when
disparities tended toward the opposite polarities.

DISCUSSION

Limitations
The theory we outline here has obvious limitations that would
need to be examined before it could compete with or even replace
existing theories and models. Some of these limitations are:

1. The minimal stimuli we used. The theory would
have to be tested with more complex (and eventually
natural) images.

2. Although the correspondence problem is resolved by the
present anatomical theory the problem of “false matches”
would also need to be explored.

3. Themodel we outline would eventually have to be tested using
random dots stereograms.

The anatomically grounded mechanism we propose is not
necessarily in conflict with cross-correlational theories. Disparity
signals from cross-correlation could combine with or be
supplemented by information from anatomical correspondence.

Relevance to Visual Perception
Binocular visual phenomena (e.g., summation, rivalry, and
stereoscopic depth) are perceptions. An important question,
therefore, is how the present theory aligns with understanding of
the perception of other visual qualities, such as luminance, color,
geometry and motion. In the case of these basic qualities recent
work has indicated that perceptions arise from accumulated
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FIGURE 7 | Responses to anti-correlated patterns. (A) Responses at the level of absolute disparity neurons in Figures 6B.I,II. Gray traces are responses to

conventional stereograms as a function of disparity; black traces are responses to anti-correlated patterns. Each point indicates the average response across all 20

populations tested; error bars are standard deviations. (B) Responses to anti-correlated stereograms at the level of relative disparity neurons (Figures 6C.I,II). Each

point represents an average response from 20 populations to a particular absolute disparity combination. Each relative disparity could have been obtained from many

combinations of absolute disparities; hence there are multiple points for each position on the abscissa. Insets show responses to regular stereograms.

experience (Purves and Lotto, 2011; Ng et al., 2013; Purves et al.,
2014; Purves, 2019). In each of these categories, experience gives
rise to empirical “scales” that determine what is actually seen,
suggesting that the same framework may underlie binocular
phenomenology. For example, the explanation of stereopsis
in terms of anatomical correspondence may be empirically
generated associations that link differences in the levels of activity
at the same retinotopic loci with differences in perceived depth
relative to the horopter. Similar to other visual percepts, fusion
and perceived depth may follow from experience with different
levels of activity at corresponding retinal points.

CONCLUSION

With the exception of points on the horopter, the frontal eyes
of carnivores and primates require that loci in visual space

project to different anatomically corresponding points on the
right and left hemi-retinas. In consequence, unequal monocular
activity arises in neurons at retinotopically corresponding loci
whenever the generative physical points are nearer or farther
than the horopter. When conveyed to binocular neurons,
this differential activation can specify the magnitude and
direction of both absolute and relative depth. This alternative
theory is consistent with observations in experimental animals,
circumvents the image correspondence problem andmay explain
why ocular dominance is only apparent in animals with
stereo vision.
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