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Abstract

Objective: Current Clinical Decision Support Systems (CDSSs) generate medication alerts that are of limited clinical value, causing alert fatigue.
Artificial Intelligence (Al)-based methods may help in optimizing medication alerts. Therefore, we conducted a scoping review on the current
state of the use of Al to optimize medication alerts in a hospital setting. Specifically, we aimed to identify the applied Al methods used together
with their performance measures and main outcome measures.

Materials and Methods: \We searched Medline, Embase, and Cochrane Library database on May 25, 2023 for studies of any quantitative
design, in which the use of Al-based methods was investigated to optimize medication alerts generated by CDSSs in a hospital setting. The
screening process was supported by ASReview software.

Results: Out of 5625 citations screened for eligibility, 10 studies were included. Three studies (30%) reported on both statistical performance
and clinical outcomes. The most often reported performance measure was positive predictive value ranging from 9% to 100%. Regarding main
outcome measures, alerts optimized using Al-based methods resulted in a decreased alert burden, increased identification of inappropriate or
atypical prescriptions, and enabled prediction of user responses. In only 2 studies the Al-based alerts were implemented in hospital practice,
and none of the studies conducted external validation.

Discussion and Conclusion: Al-based methods can be used to optimize medication alerts in a hospital setting. However, reporting on models’
development and validation should be improved, and external validation and implementation in hospital practice should be encouraged.
Key words: artificial intelligence; clinical decision support systems; medication safety; medication alerts.

Background and significance CDSSs generate medication alerts when the content of the
electronic hospital record (EHR) of a patient matches with
pre-defined rules in a knowledge database upon which CDSSs
operate. The alerts are primarily shown during the medica-
tion prescribing phase. The goal of these alerts is to support
healthcare providers in checking dosages, drug-drug interac-
tions, contra-indications, duplicate therapy, drug allergies,
and intolerances, and by doing so reducing the ADE risk of
hospitalized patients. However, current CDSSs generate a
high alert volume containing medication alerts with no or
limited clinical relevance, resulting in alert fatigue and over-
ride rates as high as 96%. This alert fatigue is concerning as

Preventing adverse drug events (ADEs) is an essential part of
medication safety efforts worldwide.! ADEs can lead to seri-
ous harm and even death and contribute to excess health-
care costs.”™* A recent retrospective cohort study in 11
hospitals in the United States showed that ADEs, despite
various medication safety efforts, are still the most frequent
(39.0%) type of adverse events patients encounter during
their hospital stay, and are often deemed preventable
(26.8%).> Among the most broadly deployed tools to pre-
vent ADEs in hospitalized patients, are clinical decision sup-
port systems (CDSSs).°
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it may result in missing clinically significant alerts, which
compromises patient safety.” !

This is mainly caused by the fact that the current medication
alerts fail to account for the complexity of care and patient spe-
cific variables.'®'%13 In the past years, several attempts have
been made to improve appropriateness and clinical value of
medication alerts. A recent scoping review of Ledger et al iden-
tified 6 types of interventions for medication alerts in hospitals:
alert inactivation, alert severity reclassification, information
provision, use of contextual information, threshold adjustment,
and encounter suppression.'* A study by Bakker et al showed
the effect of alert inactivation and severity reclassification; only
drug-drug interaction alerts assessed as clinically relevant in the
intensive care setting were turned on, which resulted in 12%
decrease in the number of high-risk combinations.'® Selecting
the alerts to be inactivated by employing a multidisciplinary
committee has shown to be an effective approach.'® A way to
use contextual information to optimize alerts is by designing
computerized decision tree rules, to context-dependently sup-
press irrelevant drug-drug interaction alerts, which has been
shown to result in less alerts and a higher positive predictive
value (PPV).'” However, given the high number of medication
alerts and high override rates, room for improvement remains.
Medication alerts should be more specific, for example by tar-
geting only high risk contraindications, or by tailoring the
alerts to specific medical specialties.'®"?

Artificial Intelligence (AI) methods may contribute to further
optimization of medication alerts generated by CDSSs, eg, by
predicting physician responses, generating Al-based medica-
tion alerts, or by developing a triage system. In contrast to
rigid and simple decision tree like logic upon which current
CDSSs operate, Al-based methods can take into account large
amounts of EHR data, recognize complex patterns, and pro-
vide individualized predictions.”’ In medicine, the most often
used Al-based methods are machine learning (ML), deep learn-
ing (DL), and natural language processing (NLP).>' ML and
DL can be applied to structured data, whereas NLP can be
used on unstructured data. In ML data analytical algorithms
are developed to extract features from data, which can be used
to cluster patients characteristics or predict the probability of
disease outcomes. DL is an extension of ML, which can be
described as networks with a large number of layers, conse-
quently leading to the ability to explore more complex non-
linear patterns in the data. In NLP, information is extracted
from unstructured data, such as clinical notes from physicians,
to supplement and enrich medical data.**

Use of these methods to create new or optimize existing
medication alerts may help to reduce alert fatigue, for exam-
ple by prioritizing the alerts based on appropriateness and
usefulness, but also in preventing ADEs which are currently
missed by the existing CDSSs.'* Several literature reviews
have already been performed on Al and CDSS in specific
domains such as in oncology, dentistry, or infectious dis-
ease.”>2° However, none of these reviews focused on medi-
cation alerts generated by CDSS in hospitalized patients.

Therefore, the aim of this scoping review was to provide a
comprehensive overview of the current state of applying Al-
based methods to optimize medication alerts generated by
CDSS in a hospital setting. By synthesizing the available evi-
dence, this review aims to inform on the potential Al offers
for improvement of CDSS and to identify opportunities for
future research.

Methods
Approach

The proposed scoping review was conducted in accordance
with the Joanna Briggs Institute (JBI) methodology for scop-
ing reviews”® and reported according to the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews (PRISMA-ScR).?” The proto-
col was registered in the Open Science Framework.*®

Information sources and search strategy

A preliminary search of Medline and Embase databases was
conducted on May 10, 2023 before conducting this scoping
review and no systematic or scoping reviews were identified
on the specific topic of this review. Furthermore, at that time,
no registered research protocols were found in the Open Sci-
ence Framework or PROSPERO on this specific topic.

The literature search was conducted in Medline, Embase,
and Cochrane Library (reviews and trials) databases on May
25, 2023 using the definite search strategy. No filters were
applied with regard to publication year and country. The
search was limited to the English language. The search strat-
egy consisted of 3 segments: 1 related to Al-based methods, 1
related to pharmacotherapy, and 1 related to CDSS. The
exact search strategies for each database can be found in Sup-
plement Appendix S1. Additionally, the references of relevant
studies were screened to identify possible other relevant stud-
ies. Forward citation was performed in Web of Science and in
Scopus to identify additional relevant studies, using the stud-
ies initially labeled relevant during the title/abstract screening
phase. If the studies identified via these additional searches
were not already identified via the primary search strategy,
the search strategy was reviewed and adjusted if needed to be
able to include all relevant studies.

Eligibility criteria

This scoping review aimed to include all studies that explore
the use of Al-based methods to optimize medication alerts
generated by CDSS in a hospital setting. We included a wide
range of Al-based methods including supervised and unsuper-
vised ML, NLP, and DL methods. Quantitative and mixed-
method studies of any observational or interventional design
(including but not limited to cohort studies, randomized con-
trolled trials, and controlled trials) were eligible for inclusion.
Scoping and systematic reviews or meta-analyses that met the
inclusion criteria were not included but their references lists
were screened for relevant studies. Qualitative studies, case
reports, abstracts of congresses, expert opinions, editorials,
and narrative reviews were excluded.

This review focusses on optimization of medication alerts
generated by CDSSs. Optimization of medication alerts by
applying Al can be achieved in different ways, eg, by predict-
ing physicians responses, generating Al-based medication
alerts, or developing a triage system. Regarding the type of
medication alerts included, we considered alerts generated at
prescribing and monitoring stages as we were interested in
medication alerts for prescribers and pharmacists. Further-
more, these 2 stages hold the highest risk for ADEs.*”*
These alerts could warn for various risks, such as over- and
underdosing, drug-drug interactions, contra-indications
(including pregnancy and lactation), duplicate therapy, and
drug intolerances and -allergies.
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Regarding the use of Al-based methods, studies that did
not report any performance measures or clinical outcomes
were excluded. No restrictions were made to the type of per-
formance measures or clinical outcomes used.

Data extraction and synthesis

The titles and abstracts of the studies generated by the search
strategy were collected and uploaded into Endnote© citation
manager to remove duplicates. The first reviewer (J.G.) screened
the titles and abstracts using ASReview version 1.0.>! ASReview
is a tool designed to accelerate the screening of large numbers of
literature references using active learning, a type of ML, with
the main principle to achieve higher accuracy with fewer train-
ing data if the algorithm can choose the data from which it
learns.>>*3 The algorithm does not choose the included studies
but merely presents the studies to the researchers in order of
probability of relevance based on prior knowledge. It does not
influence the search, but only uses the results of the search.
ASReview requires researchers to specify relevant and irrel-
evant papers related to a specific research question as prior
knowledge, to train its algorithm. In this study, a total of 10
relevant and 10 irrelevant studies (as assessed by J.G.) were
used to train the algorithm. Based on this prior knowledge
the algorithm predicted a ranking of the relevance of all
papers uploaded in the tool. Thereafter the screening of the
title and abstract of the studies could start. van de Schoot et
al reported that the number of relevant abstracts found after

reading 10% of the abstracts ranges from 70% to 100%.
Furthermore, 8% to 33% of all abstracts have to be screened
to find 95% of the relevant studies.>® Following these find-
ings, it was decided that after screening at least 10% of the
abstracts and titles and 50 studies were consecutively identi-
fied as irrelevant based on the ranking of ASReview, the title
and abstract screening process will be terminated (ie, stop-
ping rule).

The results using ASReview ranking algorithm were veri-
fied by a second reviewer (R.M.) by manually screening a
sample of the studies included through ASReview’s screening
process, comprising 5% of the total number of studies and
including the prior knowledge, to confirm that they would be
included. Furthermore, the first and second reviewer (J.G.
and J.M.) verified the results using ASReview by manually
screening a random sample (comprising 5% of the total num-
ber of studies) of the studies excluded through ASReview’s
screening process to confirm that they would be excluded.
The process of the title and abstract screening is visualized in
Figure 1.

At least 80% of the findings from the first and second
reviewer had to be identical to validate the abstract screening
and start the full text screening. If this was not the case, the
first and second author had to screen another 10%. Subse-
quently, discrepancies in the findings were discussed to reach
consensus and the inclusion criteria were reviewed and
adjusted for clarification if needed.

Train ASReview with 10 relevant & 10 irrelevant articles

1st reviewer: screens with ASReview starting with highest probability for inclusion based on
algorithm, untill stopping rule is met
Stopping rule: 210% of total number of articles & 50 consecutive irrelevant articles

2nd reviewer: validate ASReview screening by hand
Random sample of articles screened with ASReview and prior knowledge,
comprising of 5% of total number of articles, with high probability of inclusion

1st and 2nd reviewer: validate ASReview screening by hand
Random sample of articles not screened with ASReview, comprising
of 5% of total number of articles, with low probability of inclusion

1st and 2nd reviewer discuss discrepancies and
establish relevant articles based on title/abstract

Figure 1. Process of title and abstract screening using ASReview software.
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Thereafter the full text screening and data extraction could
start. The full-text review was done manually. Two reviewers
(J.G., R.M.) screened 10% of the studies included in the full
text screening to establish information to extract from the
studies. The remaining studies for full-text screening were
divided equally between these 2 reviewers. In case of doubrt,
the 2 reviewers tried to reach consensus. If this was not possi-
ble, third reviewer (P.v.d.B.) decided. All decisions were
documented.

The information extracted from the included studies con-
sisted of basic characteristics of the studies (title, author,
affiliations, year of publication, journal, and country of ori-
gin), the study aims, study setting (eg, oncology, cardiology,
intensive care, pediatrics, emergency), study methods, medi-
cation alerts characteristics (eg, drug-drug interactions, dos-
ages, allergies alerts), Al-based methods used and their
statistical performance, CDSS characteristics (eg, developer,
targeted at physicians, pharmacist, or other healthcare pro-
fessional), clinical outcomes studied and the findings, as well
as most important conclusions. The extracted data were
recorded in an Excel version 2307 (Microsoft, Redmond,
WA, United States).

Results
Selection of included studies

The flowchart of the selection process is shown in Figure 2.
In total, 7553 citations were identified. After removal of
1928 duplicates, 5625 citations were left to be screened based
on the title and abstract. After screening 10% of all citations
in ASReview by the first reviewer, the stopping rule was
reached since 126 subsequent irrelevant citations were found.
The title and abstract screening eventually resulted in inclu-
sion of 64 studies for full-text screening. Of these, 10 studies
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met the inclusion criteria and were included for data-
extraction and analysis. No additional relevant studies were
identified by checking references of relevant studies and for-
ward citation in Web of Science and Scopus.

Main characteristics of the included studies

In Table 1, a summary of the main characteristics of the 10
included studies is provided. The studies were published
between 2013 and 2022. Nine studies (90%) were conducted
in an academic or university hospital.>*** Four studies
(40%) stated the medical specialty studied.***%*%%2 Segal et
al included data from the internal medicine department** and
Lee et al from the pediatric department.*® Beaudoin et al
focused on (inappropriate) antimicrobial prescriptions, in
specific piperacillin-tazobactam prescriptions.>* Hogue et al
included data from 7 different departments: obstetrics-
gynecology and nursery, general pediatrics, surgery, oncol-
ogy, specialized pediatrics, neonatal intensive care unit, and
pediatric intensive care unit.*® The remaining 6 studies
(60%) did not explicitly state the clinical domain or patient
type studied.®*—37*?*1:%3 However, Kawazoe et al did men-
tion including data from the 8 medicines most frequently
causing alerts: ursodeoxycholic acid, carvedilol, sennoside,
loxoprofen, brotizolam, nifedipine, famotidine, and
pravastatin.’’

Types of alerts optimized

Several types of medication alerts were generated by the
CDSSs studied; over- and underdosing, drug-drug interac-
tions, contra-indications (including pregnancy and lactation),
duplicate therapy, and drug intolerances and -allergies.
Except for the study by Kawazoe et al, where specifically dos-
ing alerts were targeted, all others focused on optimizing the
process related to the medication alerts. The study by

Citations identified from databases
n=7593 Duplicate citations
- Pubmed n=2624 g -
- Embase n=4541 b
- Cochrane library n=388
Y
Title/abstract screening = Cltatloonn;t?gglgstfsc?ased
n=5625 i n=5561
Citations excluded based on eligibility criteria
A n=54
. - No Al was applied n=13
Full text articles screened - Not focusing on CDSS n=17
n=64 - Not focusing on medication n=14
+ |- Not focusing on prescribing or monitoring n=1
”|Other:
- No full tekst available n=3
v - Article not in English n=3
- Ongoing trial without published results n=2
Articles included in review - Wrong publication type n=1
n=10 - No performance measures or outcomes reported n=0

Figure 2. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram.
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Kawazoe et al specifically focused on optimizing dosing alerts
by trying to identify appropriate dosing thresholds for the
alerts.>

The approach for optimizing medication alerts varied
between the studies. In 4 studies, the goal was to identify and
prevent prescription errors.>®>%*%42 Liy et al, Poly et al, and
Corny et al pursued similar objectives regarding refining the
relevance of alerts; focusing on predicting physician’s
responses®”**! or prioritizing prescription checks.*® Balestra
et al developed a model based on past recommendations,
focusing on designing a model for identifying medication
orders requiring an intervention.>” Similarly, Beaudoin et al
developed a model using past recommendations, evaluating a
CDSSs consisting of a knowledge database linked to a model
that extracts classification rules for alerts of inappropriate
prescriptions.®*

CDSS used

In 2 studies a commercial system called Medaware® (Raa-
nana, Israel) was used.>”** Corny et al tested the accuracy of
Lumio Medication®, developed by Lumio Medical (Paris,
France).*? Seven studies reported developing or validating a
model themselves without explicitly naming the model
(Table 2),3%3537-41

Five studies reported targeting the physicians and
4 targeting pharmacists.***%*%* Liu et al aimed at filtering
out alerts from the user’s view, without specifically mention-
ing who they were targeting as end-user.*'

Four studies developed or studied a model to generate
alerts that were normally not generated by the CDSS, which
implies that the developed model is used on top of the regular
CDSS.>*3%% Four other studies developed a model aimed to
be incorporated into the CDSS, by predicting user responses,
by serving as a triage system or by filtering medication alerts
generated by the regular CDSS.?”7***! The 2 remaining stud-
ies developed a hybrid system linking an ML model to the
regular CDSS.*%*

35-37,40,42

Al-based methods used, their statistical
performance, and outcomes

Nine studies reported using ML models (Table 3). Of these
studies, 5 reported wusing supervised learning ML
methods,>*3%374%% Hogue et al reported using an unsuper-
vised ML method,*® and 3 studies did not state whether they
applied supervised or unsupervised ML.**?*! One study
reported developing DL models based on supervised learn-
ing.*® None of the studies mentioned using NLP. The choice
for these Al models and methods was not explicitly stated in
the studies, but this generally depends on the specific require-
ments of the problem, the nature of the data, and the avail-
able computational resources. However, none of the included
studies mentioned who chose the method of optimization nor
was the field of expertise of the study team described.

Only 2 of the included studies reported implementing the
developed Al-based model in daily practice (Table 3).*%**
Segal et al integrated Medaware into an existing EHR system
in 1 university hospital in Israel. Initially, the system operated
in a “silent mode” for several months.*' During this period
analyses and monitoring were performed. Once the perform-
ance level was acceptable, the system switched to live mode
in a single internal medicine department and the physicians
started receiving alerts in the EHR system and could respond
to them. The model by Lee et al was deployed in 1 university

hospital in Korea, targeting pediatric outpatients and a
selected number of medications.*”

Seven studies reported outcomes, with the most often
studied outcome (5 studies, 50%) being alert burden compared
to the regular CDSS (Table 4).35*%*3 In these studies the alert
burden was decreased by 14%-90%. Seven studies report stat-
istical performance measures, in which a high variation is
shown.”**”*1:%3 The most often used performance measure
was PPV broadly ranging from 9% to 100%. Lower PPV’s
were reported in the studies of Hogue et al, Liu et al, and
Balestra et al*****! ranging from 9% to 49%, and higher
PPV’s were reported in the studies of Lee et al, Poly et al,
Corny et al, and Beaudoin et al ranging from 73% to
100%.3%437:49%3 Fyrthermore, the highest sensitivity and spe-
cificity of included studies were reported in the studies from
Hogue et al (looking at the pharmacological profiles) and Poly
et al ranging from 57% to 100%.3”%% Only 4 studies reported
both statistical performance and outcomes,***%:#1:43

Discussion

Main findings

This scoping review provides a comprehensive overview of
currently available evidence on the use of Al-based methods
to optimize medication alerts generated by CDSS in the hos-
pital setting. A decrease in alert burden was the most often
studied outcome, varying from 14% to 90% in the included
studies. Seven studies reported PPV as a performance meas-
ures, which broadly ranged from 9% to 100%. The highest
PPV’s were reported in the studies of Lee et al, Poly et al,
Corny et al, and Beaudoin et al ranging from 73% to 100%.
These results indicate that Al-based methods have the poten-
tial to optimize medication alerts, but at the same time the
results also show that there is substantial room for further
improvement in application of these methods for this goal
and reporting about such applications. Also, given the lack of
external validation, the generalizability of the models and
potential for implementation in hospital practice is limited.

To the best of our knowledge, this is the first review on the
use of Al-based methods to optimize medication alerts gener-
ated by CDSS in the hospital setting. Several studies have
been performed on Al in decision support systems in health-
care, but studies on medication alerts specifically are lacking.
Furthermore, this review demonstrates that Al represents a
novel approach to optimizing medication alerts. A recent
scoping review of Ledger et al identified 6 types of interven-
tions for optimization of medication alerts in hospitals; alert
inactivation, alert severity reclassification, information provi-
sion, use of contextual information, threshold adjustment,
and encounter suppression.'* Al is particularly well-suited
for conducting these interventions, as is also shown by the
studies included in this review.

The developed Al-based models have shown to decrease
the alert burden and help identify more inappropriate or
atypical prescriptions, compared to the regular CDSSs, subse-
quently leading to a decreased alert fatigue.'” In general,
when more alerts are shown to physicians, they are less likely
to intervene on these alerts.** However, for Al-based medica-
tion alerts to be effective and safe, the models generating
these alerts must have an optimal balance between sensitivity
and specificity.** The higher the specificity of the models, the
less false alerts will be shown, leading to less alert fatigue.
The higher the sensitivity, the better the models’ ability to
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Table 2. Type of alerts or process optimized and CDSS used.
Author Type of alerts targeted Prediction of Name of CDSS End-user Type of model
Segal et al*? NA Prescription errors Medaware system Physician Model is used on top of reg-
ular CDSS
Schiff et al*® NA Prescription errors Medaware system Physician Model is used on top of reg-
ular CDSS
Hogue et al*® NA Atypical drug orders and Not stated Pharmacist ~ Model is incorporated in
pharmacological profiles CDSS
Lee et al** NA Prescription errors Not stated Physician Hybrid system linking
model to regular CDSS
Kawazoe et al®>  Dosing alerts NA Not stated Physician Model is used on top of reg-
ular CDSS
Liu et al*! NA User responses Not stated Notstated ~ Model is incorporated in
CDSS
Poly et al®” NA User responses Not stated Physician Model is incorporated in
CDSS
Corny et al*? NA Prescription errors Lumio Medication Pharmacist ~ Hybrid system linking
System model to regular CDSS
Balestra et al*’ NA Medication orders requiring ~ Not stated Pharmacist ~ Model is incorporated in
interventions CDSS
Beaudoin et al**  NA Prescription errors Not stated Pharmacist ~ Model is used on top of reg-
ular CDSS
Abbreviation: NA = not applicable.
Table 3. Al-based methods used, implementation, and validation.
Author Al-based method used SL? or UL® Implemented in practice Validation
Segal et al*? ML SL Yes Internal
Schiff et al®® ML SL No Not performed
Hogue et al®® ML: GANomaly UL No Internal
Lee et al*” DL: deep NN°€ (eg, SL Yes Internal
autoencoder)
Kawazoe et al* ML: bagging, CARTY, RF¢ Not stated No Internal
Liu et al*! ML: GBT' (eg, Light GBM), Not stated No Internal
NNF€ (eg, autoencoder),
RF¢, SVM?®
Poly et al®” ML: GBT', NN€ (eg, SL No Internal
autoencoder), RF¢, NB"
Corny et al*? ML SL No Internal
Balestra et al*’ ML: GBT! (eg, LightGBM) Not stated No Internal
Beaudoin et al** ML SL No Internal

a

; SL, supervised learning.

UL, unsupervised learning.

NN, neural network.

CART, classification and regression trees.
RF, random forest.

GBT, gradient boosted trees.

SVM, support vector machine.

NB, naive Bayes.

@ o0 oo o6

produce alerts which warn about events with high probability
of patient harm. None of the studies showed a sensitivity and
specificity higher than 90%. This shows that optimizing med-
ication alerts in the vast array of all prescriptions and medica-
tion alerts is a challenging task, also for Al-based methods.
Despite the promising results showing a decreased alert
burden and high PPV values, in most studies the scope is lim-
ited as the study was conducted in a single hospital>®-37-?=%3
and/or with a focus on specific medication or depart-
ments.*>** Furthermore, in only 2 studies, the optimized
alerts or alert process were implemented in practice.
Although not explicitly stated in the included studies, lack of
alignment between the needs from hospital practice with Al-
based efforts, and insufficient gains in terms of clinical out-
comes may explain low uptake in hospital practice.*®*” Also,

before an Al-based model can be adopted in hospital practice,
extensive validation has to be performed, internally and
externally. However, in most studies, the Al algorithm was
developed using a limited dataset of only 1 hospital and none
of the studies mention conducting external validation. Suc-
cessful implementation may be achieved when more focus is
given on the process of implementation in practice, rather
than focusing solely on statistical performance measures.****
Also, the integration of the Al-based models into EHR sys-
tems to generate optimized medication alerts is challenging
due to interoperability issues that often arise with such inte-
grations,*¢:*8-50

None of the included studies mentioned information about
model development and validation. This limits transparency
and replicability of the research and makes it difficult to
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assess the risk of bias and potential usefulness of the predic-
tion model. This reflects a wider trend in reporting of clinical
prediction model studies which has already been recognized
for several years.’! Additionally, none of the included studies
reported applying reporting guidelines such as Transparent
reporting of a multivariable prediction model for individual
prognosis or diagnosis (TRIPOD) Statement,’* which may
explain why the relevant information about models develop-
ment and validation was often missing. Adhering to the TRI-
POD statement would ensure that enough information is
provided for the reader to fully understand how the model
was developed and validated. This transparency would sup-
port further research in the use of Al to improve CDSSs.

Strengths, limitations, and future perspectives

Strengths of this scoping review include the comprehensive
search in different electronic databases and the screening of
the references of relevant studies together with forward cita-
tion. Furthermore, the title and abstract screening was vali-
dated by a second screener, to maintain consistency in the
inclusion of studies. Additionally, the methodology and exe-
cution of this scoping review was structurally assessed since it
was conducted in accordance with the JBI methodology for
scoping review and the PRISMA-ScR.>**7

Limitations include the restriction to only include peer-
reviewed studies. Non peer-reviewed studies may provide a
more recent overview of the current state of Al-based meth-
ods for optimization of medication alerts generated by CDSS.
On the other hand, novel methods for CDSSs in clinical set-
tings must be assessed via rigorously peer-reviewed studies.
Another limitation is the lack of critical appraisal of the
included studies, but this is in accordance with the guidelines
on scoping reviews we used.”>?” Also, given the high hetero-
geneity of studies included in terms of setting, methods and
outcomes studies, a critical appraisal is of limited value. Fur-
thermore, the utilization of ASReview may have resulted in
missing relevant studies. Nonetheless, the inherent techniques
of ASReview and the applied methodologies as described
have mitigated this likelihood to a minimum. Additionally,
these potentially missed studies were expected to be identified
by forward citation. Finally, important contributions from
Non-English speaking countries may have been missed.

Future studies on Al-based methods for optimization of
medication alerts generated by CDSS in hospital settings
should include larger datasets, to be able to extensively vali-
date the models internally and externally. Prior to and during
the development of CDSS using Al-based methods, it is essen-
tial to ensure sufficient support and collaboration with
healthcare professionals, to facilitate trust, clinical value, and
the implementation of the models in hospital practice. More-
over, such studies should use reporting guidelines, such as the
upcoming ML focused TRIPOD (TRIPOD-ML) to enable
critical appraisal of the results presented.’® Once the models
are developed and validated, adequate attention must be
given to their implementation into hospital practice.

Conclusions

This scoping review provides an overview of the use of Al-
based methods for optimizing medication alerts generated by
CDSS in hospital setting. The then studies included show that
Al has the capacity to adequately reduce alert burden and
identify inappropriate prescriptions, but the datasets used

were relatively small and the models lack formal validation.
Most have not been implemented in hospital practice. Future
studies should focus on validation and implementation of Al-
based methods, and use reporting guidelines such as the TRI-
POD Statement to report their work.
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