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Abstract 
Objective: Current Clinical Decision Support Systems (CDSSs) generate medication alerts that are of limited clinical value, causing alert fatigue. 
Artificial Intelligence (AI)-based methods may help in optimizing medication alerts. Therefore, we conducted a scoping review on the current 
state of the use of AI to optimize medication alerts in a hospital setting. Specifically, we aimed to identify the applied AI methods used together 
with their performance measures and main outcome measures.
Materials and Methods: We searched Medline, Embase, and Cochrane Library database on May 25, 2023 for studies of any quantitative 
design, in which the use of AI-based methods was investigated to optimize medication alerts generated by CDSSs in a hospital setting. The 
screening process was supported by ASReview software.
Results: Out of 5625 citations screened for eligibility, 10 studies were included. Three studies (30%) reported on both statistical performance 
and clinical outcomes. The most often reported performance measure was positive predictive value ranging from 9% to 100%. Regarding main 
outcome measures, alerts optimized using AI-based methods resulted in a decreased alert burden, increased identification of inappropriate or 
atypical prescriptions, and enabled prediction of user responses. In only 2 studies the AI-based alerts were implemented in hospital practice, 
and none of the studies conducted external validation.
Discussion and Conclusion: AI-based methods can be used to optimize medication alerts in a hospital setting. However, reporting on models’ 
development and validation should be improved, and external validation and implementation in hospital practice should be encouraged.
Key words: artificial intelligence; clinical decision support systems; medication safety; medication alerts. 

Background and significance
Preventing adverse drug events (ADEs) is an essential part of 
medication safety efforts worldwide.1 ADEs can lead to seri
ous harm and even death and contribute to excess health
care costs.2–4 A recent retrospective cohort study in 11 
hospitals in the United States showed that ADEs, despite 
various medication safety efforts, are still the most frequent 
(39.0%) type of adverse events patients encounter during 
their hospital stay, and are often deemed preventable 
(26.8%).5 Among the most broadly deployed tools to pre
vent ADEs in hospitalized patients, are clinical decision sup
port systems (CDSSs).6

CDSSs generate medication alerts when the content of the 
electronic hospital record (EHR) of a patient matches with 
pre-defined rules in a knowledge database upon which CDSSs 
operate. The alerts are primarily shown during the medica
tion prescribing phase. The goal of these alerts is to support 
healthcare providers in checking dosages, drug-drug interac
tions, contra-indications, duplicate therapy, drug allergies, 
and intolerances, and by doing so reducing the ADE risk of 
hospitalized patients. However, current CDSSs generate a 
high alert volume containing medication alerts with no or 
limited clinical relevance, resulting in alert fatigue and over
ride rates as high as 96%. This alert fatigue is concerning as 
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it may result in missing clinically significant alerts, which 
compromises patient safety.7–11

This is mainly caused by the fact that the current medication 
alerts fail to account for the complexity of care and patient spe
cific variables.10,12,13 In the past years, several attempts have 
been made to improve appropriateness and clinical value of 
medication alerts. A recent scoping review of Ledger et al iden
tified 6 types of interventions for medication alerts in hospitals: 
alert inactivation, alert severity reclassification, information 
provision, use of contextual information, threshold adjustment, 
and encounter suppression.14 A study by Bakker et al showed 
the effect of alert inactivation and severity reclassification; only 
drug-drug interaction alerts assessed as clinically relevant in the 
intensive care setting were turned on, which resulted in 12% 
decrease in the number of high-risk combinations.15 Selecting 
the alerts to be inactivated by employing a multidisciplinary 
committee has shown to be an effective approach.16 A way to 
use contextual information to optimize alerts is by designing 
computerized decision tree rules, to context-dependently sup
press irrelevant drug-drug interaction alerts, which has been 
shown to result in less alerts and a higher positive predictive 
value (PPV).17 However, given the high number of medication 
alerts and high override rates, room for improvement remains. 
Medication alerts should be more specific, for example by tar
geting only high risk contraindications, or by tailoring the 
alerts to specific medical specialties.18,19

Artificial Intelligence (AI) methods may contribute to further 
optimization of medication alerts generated by CDSSs, eg, by 
predicting physician responses, generating AI-based medica
tion alerts, or by developing a triage system. In contrast to 
rigid and simple decision tree like logic upon which current 
CDSSs operate, AI-based methods can take into account large 
amounts of EHR data, recognize complex patterns, and pro
vide individualized predictions.20 In medicine, the most often 
used AI-based methods are machine learning (ML), deep learn
ing (DL), and natural language processing (NLP).21 ML and 
DL can be applied to structured data, whereas NLP can be 
used on unstructured data. In ML data analytical algorithms 
are developed to extract features from data, which can be used 
to cluster patients characteristics or predict the probability of 
disease outcomes. DL is an extension of ML, which can be 
described as networks with a large number of layers, conse
quently leading to the ability to explore more complex non- 
linear patterns in the data. In NLP, information is extracted 
from unstructured data, such as clinical notes from physicians, 
to supplement and enrich medical data.22

Use of these methods to create new or optimize existing 
medication alerts may help to reduce alert fatigue, for exam
ple by prioritizing the alerts based on appropriateness and 
usefulness, but also in preventing ADEs which are currently 
missed by the existing CDSSs.12 Several literature reviews 
have already been performed on AI and CDSS in specific 
domains such as in oncology, dentistry, or infectious dis
ease.23–25 However, none of these reviews focused on medi
cation alerts generated by CDSS in hospitalized patients.

Therefore, the aim of this scoping review was to provide a 
comprehensive overview of the current state of applying AI- 
based methods to optimize medication alerts generated by 
CDSS in a hospital setting. By synthesizing the available evi
dence, this review aims to inform on the potential AI offers 
for improvement of CDSS and to identify opportunities for 
future research.

Methods
Approach
The proposed scoping review was conducted in accordance 
with the Joanna Briggs Institute (JBI) methodology for scop
ing reviews26 and reported according to the Preferred Report
ing Items for Systematic Reviews and Meta-Analyses 
extension for Scoping Reviews (PRISMA-ScR).27 The proto
col was registered in the Open Science Framework.28

Information sources and search strategy
A preliminary search of Medline and Embase databases was 
conducted on May 10, 2023 before conducting this scoping 
review and no systematic or scoping reviews were identified 
on the specific topic of this review. Furthermore, at that time, 
no registered research protocols were found in the Open Sci
ence Framework or PROSPERO on this specific topic.

The literature search was conducted in Medline, Embase, 
and Cochrane Library (reviews and trials) databases on May 
25, 2023 using the definite search strategy. No filters were 
applied with regard to publication year and country. The 
search was limited to the English language. The search strat
egy consisted of 3 segments: 1 related to AI-based methods, 1 
related to pharmacotherapy, and 1 related to CDSS. The 
exact search strategies for each database can be found in Sup
plement Appendix S1. Additionally, the references of relevant 
studies were screened to identify possible other relevant stud
ies. Forward citation was performed in Web of Science and in 
Scopus to identify additional relevant studies, using the stud
ies initially labeled relevant during the title/abstract screening 
phase. If the studies identified via these additional searches 
were not already identified via the primary search strategy, 
the search strategy was reviewed and adjusted if needed to be 
able to include all relevant studies.

Eligibility criteria
This scoping review aimed to include all studies that explore 
the use of AI-based methods to optimize medication alerts 
generated by CDSS in a hospital setting. We included a wide 
range of AI-based methods including supervised and unsuper
vised ML, NLP, and DL methods. Quantitative and mixed- 
method studies of any observational or interventional design 
(including but not limited to cohort studies, randomized con
trolled trials, and controlled trials) were eligible for inclusion. 
Scoping and systematic reviews or meta-analyses that met the 
inclusion criteria were not included but their references lists 
were screened for relevant studies. Qualitative studies, case 
reports, abstracts of congresses, expert opinions, editorials, 
and narrative reviews were excluded.

This review focusses on optimization of medication alerts 
generated by CDSSs. Optimization of medication alerts by 
applying AI can be achieved in different ways, eg, by predict
ing physicians responses, generating AI-based medication 
alerts, or developing a triage system. Regarding the type of 
medication alerts included, we considered alerts generated at 
prescribing and monitoring stages as we were interested in 
medication alerts for prescribers and pharmacists. Further
more, these 2 stages hold the highest risk for ADEs.29,30

These alerts could warn for various risks, such as over- and 
underdosing, drug-drug interactions, contra-indications 
(including pregnancy and lactation), duplicate therapy, and 
drug intolerances and -allergies.
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Regarding the use of AI-based methods, studies that did 
not report any performance measures or clinical outcomes 
were excluded. No restrictions were made to the type of per
formance measures or clinical outcomes used.

Data extraction and synthesis
The titles and abstracts of the studies generated by the search 
strategy were collected and uploaded into Endnote# citation 
manager to remove duplicates. The first reviewer (J.G.) screened 
the titles and abstracts using ASReview version 1.0.31 ASReview 
is a tool designed to accelerate the screening of large numbers of 
literature references using active learning, a type of ML, with 
the main principle to achieve higher accuracy with fewer train
ing data if the algorithm can choose the data from which it 
learns.32,33 The algorithm does not choose the included studies 
but merely presents the studies to the researchers in order of 
probability of relevance based on prior knowledge. It does not 
influence the search, but only uses the results of the search.

ASReview requires researchers to specify relevant and irrel
evant papers related to a specific research question as prior 
knowledge, to train its algorithm. In this study, a total of 10 
relevant and 10 irrelevant studies (as assessed by J.G.) were 
used to train the algorithm. Based on this prior knowledge 
the algorithm predicted a ranking of the relevance of all 
papers uploaded in the tool. Thereafter the screening of the 
title and abstract of the studies could start. van de Schoot et 
al reported that the number of relevant abstracts found after 

reading 10% of the abstracts ranges from 70% to 100%. 
Furthermore, 8% to 33% of all abstracts have to be screened 
to find 95% of the relevant studies.30 Following these find
ings, it was decided that after screening at least 10% of the 
abstracts and titles and 50 studies were consecutively identi
fied as irrelevant based on the ranking of ASReview, the title 
and abstract screening process will be terminated (ie, stop
ping rule).

The results using ASReview ranking algorithm were veri
fied by a second reviewer (R.M.) by manually screening a 
sample of the studies included through ASReview’s screening 
process, comprising 5% of the total number of studies and 
including the prior knowledge, to confirm that they would be 
included. Furthermore, the first and second reviewer (J.G. 
and J.M.) verified the results using ASReview by manually 
screening a random sample (comprising 5% of the total num
ber of studies) of the studies excluded through ASReview’s 
screening process to confirm that they would be excluded. 
The process of the title and abstract screening is visualized in  
Figure 1.

At least 80% of the findings from the first and second 
reviewer had to be identical to validate the abstract screening 
and start the full text screening. If this was not the case, the 
first and second author had to screen another 10%. Subse
quently, discrepancies in the findings were discussed to reach 
consensus and the inclusion criteria were reviewed and 
adjusted for clarification if needed.

Figure 1. Process of title and abstract screening using ASReview software.
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Thereafter the full text screening and data extraction could 
start. The full-text review was done manually. Two reviewers 
(J.G., R.M.) screened 10% of the studies included in the full 
text screening to establish information to extract from the 
studies. The remaining studies for full-text screening were 
divided equally between these 2 reviewers. In case of doubt, 
the 2 reviewers tried to reach consensus. If this was not possi
ble, third reviewer (P.v.d.B.) decided. All decisions were 
documented.

The information extracted from the included studies con
sisted of basic characteristics of the studies (title, author, 
affiliations, year of publication, journal, and country of ori
gin), the study aims, study setting (eg, oncology, cardiology, 
intensive care, pediatrics, emergency), study methods, medi
cation alerts characteristics (eg, drug-drug interactions, dos
ages, allergies alerts), AI-based methods used and their 
statistical performance, CDSS characteristics (eg, developer, 
targeted at physicians, pharmacist, or other healthcare pro
fessional), clinical outcomes studied and the findings, as well 
as most important conclusions. The extracted data were 
recorded in an Excel version 2307 (Microsoft, Redmond, 
WA, United States).

Results
Selection of included studies
The flowchart of the selection process is shown in Figure 2. 
In total, 7553 citations were identified. After removal of 
1928 duplicates, 5625 citations were left to be screened based 
on the title and abstract. After screening 10% of all citations 
in ASReview by the first reviewer, the stopping rule was 
reached since 126 subsequent irrelevant citations were found. 
The title and abstract screening eventually resulted in inclu
sion of 64 studies for full-text screening. Of these, 10 studies 

met the inclusion criteria and were included for data- 
extraction and analysis. No additional relevant studies were 
identified by checking references of relevant studies and for
ward citation in Web of Science and Scopus.

Main characteristics of the included studies
In Table 1, a summary of the main characteristics of the 10 
included studies is provided. The studies were published 
between 2013 and 2022. Nine studies (90%) were conducted 
in an academic or university hospital.34–42 Four studies 
(40%) stated the medical specialty studied.34,38,40,42 Segal et 
al included data from the internal medicine department42 and 
Lee et al from the pediatric department.40 Beaudoin et al 
focused on (inappropriate) antimicrobial prescriptions, in 
specific piperacillin-tazobactam prescriptions.34 Hogue et al 
included data from 7 different departments: obstetrics- 
gynecology and nursery, general pediatrics, surgery, oncol
ogy, specialized pediatrics, neonatal intensive care unit, and 
pediatric intensive care unit.38 The remaining 6 studies 
(60%) did not explicitly state the clinical domain or patient 
type studied.35–37,39,41,43 However, Kawazoe et al did men
tion including data from the 8 medicines most frequently 
causing alerts: ursodeoxycholic acid, carvedilol, sennoside, 
loxoprofen, brotizolam, nifedipine, famotidine, and 
pravastatin.35

Types of alerts optimized
Several types of medication alerts were generated by the 
CDSSs studied; over- and underdosing, drug-drug interac
tions, contra-indications (including pregnancy and lactation), 
duplicate therapy, and drug intolerances and -allergies. 
Except for the study by Kawazoe et al, where specifically dos
ing alerts were targeted, all others focused on optimizing the 
process related to the medication alerts. The study by 

Figure 2. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram.
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Kawazoe et al specifically focused on optimizing dosing alerts 
by trying to identify appropriate dosing thresholds for the 
alerts.35

The approach for optimizing medication alerts varied 
between the studies. In 4 studies, the goal was to identify and 
prevent prescription errors.36,38,40,42 Liu et al, Poly et al, and 
Corny et al pursued similar objectives regarding refining the 
relevance of alerts; focusing on predicting physician’s 
responses37,41 or prioritizing prescription checks.43 Balestra 
et al developed a model based on past recommendations, 
focusing on designing a model for identifying medication 
orders requiring an intervention.39 Similarly, Beaudoin et al 
developed a model using past recommendations, evaluating a 
CDSSs consisting of a knowledge database linked to a model 
that extracts classification rules for alerts of inappropriate 
prescriptions.34

CDSS used
In 2 studies a commercial system called Medaware® (Raa
nana, Israel) was used.37,42 Corny et al tested the accuracy of 
Lumio Medication®, developed by Lumio Medical (Paris, 
France).43 Seven studies reported developing or validating a 
model themselves without explicitly naming the model 
(Table 2).34,35,37–41

Five studies reported targeting the physicians35–37,40,42 and 
4 targeting pharmacists.34,38,39,43 Liu et al aimed at filtering 
out alerts from the user’s view, without specifically mention
ing who they were targeting as end-user.41

Four studies developed or studied a model to generate 
alerts that were normally not generated by the CDSS, which 
implies that the developed model is used on top of the regular 
CDSS.34–36,42 Four other studies developed a model aimed to 
be incorporated into the CDSS, by predicting user responses, 
by serving as a triage system or by filtering medication alerts 
generated by the regular CDSS.37–39,41 The 2 remaining stud
ies developed a hybrid system linking an ML model to the 
regular CDSS.40,43

AI-based methods used, their statistical 
performance, and outcomes
Nine studies reported using ML models (Table 3). Of these 
studies, 5 reported using supervised learning ML 
methods,34,36,37,42,43 Hogue et al reported using an unsuper
vised ML method,38 and 3 studies did not state whether they 
applied supervised or unsupervised ML.35,39,41 One study 
reported developing DL models based on supervised learn
ing.40 None of the studies mentioned using NLP. The choice 
for these AI models and methods was not explicitly stated in 
the studies, but this generally depends on the specific require
ments of the problem, the nature of the data, and the avail
able computational resources. However, none of the included 
studies mentioned who chose the method of optimization nor 
was the field of expertise of the study team described.

Only 2 of the included studies reported implementing the 
developed AI-based model in daily practice (Table 3).40,42

Segal et al integrated Medaware into an existing EHR system 
in 1 university hospital in Israel. Initially, the system operated 
in a “silent mode” for several months.41 During this period 
analyses and monitoring were performed. Once the perform
ance level was acceptable, the system switched to live mode 
in a single internal medicine department and the physicians 
started receiving alerts in the EHR system and could respond 
to them. The model by Lee et al was deployed in 1 university 

hospital in Korea, targeting pediatric outpatients and a 
selected number of medications.40

Seven studies reported outcomes, with the most often 
studied outcome (5 studies, 50%) being alert burden compared 
to the regular CDSS (Table 4).35,40–43 In these studies the alert 
burden was decreased by 14%-90%. Seven studies report stat
istical performance measures, in which a high variation is 
shown.34,37–41,43 The most often used performance measure 
was PPV broadly ranging from 9% to 100%. Lower PPV’s 
were reported in the studies of Hogue et al, Liu et al, and 
Balestra et al38,39,41 ranging from 9% to 49%, and higher 
PPV’s were reported in the studies of Lee et al, Poly et al, 
Corny et al, and Beaudoin et al ranging from 73% to 
100%.34,37,40,43 Furthermore, the highest sensitivity and spe
cificity of included studies were reported in the studies from 
Hogue et al (looking at the pharmacological profiles) and Poly 
et al ranging from 57% to 100%.37,38 Only 4 studies reported 
both statistical performance and outcomes.34,40,41,43

Discussion
Main findings
This scoping review provides a comprehensive overview of 
currently available evidence on the use of AI-based methods 
to optimize medication alerts generated by CDSS in the hos
pital setting. A decrease in alert burden was the most often 
studied outcome, varying from 14% to 90% in the included 
studies. Seven studies reported PPV as a performance meas
ures, which broadly ranged from 9% to 100%. The highest 
PPV’s were reported in the studies of Lee et al, Poly et al, 
Corny et al, and Beaudoin et al ranging from 73% to 100%. 
These results indicate that AI-based methods have the poten
tial to optimize medication alerts, but at the same time the 
results also show that there is substantial room for further 
improvement in application of these methods for this goal 
and reporting about such applications. Also, given the lack of 
external validation, the generalizability of the models and 
potential for implementation in hospital practice is limited.

To the best of our knowledge, this is the first review on the 
use of AI-based methods to optimize medication alerts gener
ated by CDSS in the hospital setting. Several studies have 
been performed on AI in decision support systems in health
care, but studies on medication alerts specifically are lacking. 
Furthermore, this review demonstrates that AI represents a 
novel approach to optimizing medication alerts. A recent 
scoping review of Ledger et al identified 6 types of interven
tions for optimization of medication alerts in hospitals; alert 
inactivation, alert severity reclassification, information provi
sion, use of contextual information, threshold adjustment, 
and encounter suppression.14 AI is particularly well-suited 
for conducting these interventions, as is also shown by the 
studies included in this review.

The developed AI-based models have shown to decrease 
the alert burden and help identify more inappropriate or 
atypical prescriptions, compared to the regular CDSSs, subse
quently leading to a decreased alert fatigue.15 In general, 
when more alerts are shown to physicians, they are less likely 
to intervene on these alerts.44 However, for AI-based medica
tion alerts to be effective and safe, the models generating 
these alerts must have an optimal balance between sensitivity 
and specificity.45 The higher the specificity of the models, the 
less false alerts will be shown, leading to less alert fatigue. 
The higher the sensitivity, the better the models’ ability to 
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produce alerts which warn about events with high probability 
of patient harm. None of the studies showed a sensitivity and 
specificity higher than 90%. This shows that optimizing med
ication alerts in the vast array of all prescriptions and medica
tion alerts is a challenging task, also for AI-based methods.

Despite the promising results showing a decreased alert 
burden and high PPV values, in most studies the scope is lim
ited as the study was conducted in a single hospital36,37,39–43

and/or with a focus on specific medication or depart
ments.40,42 Furthermore, in only 2 studies, the optimized 
alerts or alert process were implemented in practice. 
Although not explicitly stated in the included studies, lack of 
alignment between the needs from hospital practice with AI- 
based efforts, and insufficient gains in terms of clinical out
comes may explain low uptake in hospital practice.46,47 Also, 

before an AI-based model can be adopted in hospital practice, 
extensive validation has to be performed, internally and 
externally. However, in most studies, the AI algorithm was 
developed using a limited dataset of only 1 hospital and none 
of the studies mention conducting external validation. Suc
cessful implementation may be achieved when more focus is 
given on the process of implementation in practice, rather 
than focusing solely on statistical performance measures.43,45

Also, the integration of the AI-based models into EHR sys
tems to generate optimized medication alerts is challenging 
due to interoperability issues that often arise with such inte
grations.46,48–50

None of the included studies mentioned information about 
model development and validation. This limits transparency 
and replicability of the research and makes it difficult to 

Table 2. Type of alerts or process optimized and CDSS used.

Author Type of alerts targeted Prediction of Name of CDSS End-user Type of model

Segal et al42 NA Prescription errors Medaware system Physician Model is used on top of reg
ular CDSS

Schiff et al36 NA Prescription errors Medaware system Physician Model is used on top of reg
ular CDSS

Hogue et al38 NA Atypical drug orders and 
pharmacological profiles

Not stated Pharmacist Model is incorporated in 
CDSS

Lee et al40 NA Prescription errors Not stated Physician Hybrid system linking 
model to regular CDSS

Kawazoe et al35 Dosing alerts NA Not stated Physician Model is used on top of reg
ular CDSS

Liu et al41 NA User responses Not stated Not stated Model is incorporated in 
CDSS

Poly et al37 NA User responses Not stated Physician Model is incorporated in 
CDSS

Corny et al43 NA Prescription errors Lumio Medication 
System

Pharmacist Hybrid system linking 
model to regular CDSS

Balestra et al39 NA Medication orders requiring 
interventions

Not stated Pharmacist Model is incorporated in 
CDSS

Beaudoin et al34 NA Prescription errors Not stated Pharmacist Model is used on top of reg
ular CDSS

Abbreviation: NA ¼ not applicable.

Table 3. AI-based methods used, implementation, and validation.

Author AI-based method used SLa or ULb Implemented in practice Validation

Segal et al42 ML SL Yes Internal
Schiff et al36 ML SL No Not performed
Hogue et al38 ML: GANomaly UL No Internal
Lee et al40 DL: deep NNc (eg, 

autoencoder)
SL Yes Internal

Kawazoe et al35 ML: bagging, CARTd, RFe Not stated No Internal
Liu et al41 ML: GBTf (eg, LightGBM), 

NNc (eg, autoencoder), 
RFe, SVMg

Not stated No Internal

Poly et al37 ML: GBTf, NNc (eg, 
autoencoder), RFe, NBh

SL No Internal

Corny et al43 ML SL No Internal
Balestra et al39 ML: GBTf (eg, LightGBM) Not stated No Internal
Beaudoin et al34 ML SL No Internal

a SL, supervised learning.
b UL, unsupervised learning.
c NN, neural network.
d CART, classification and regression trees.
e RF, random forest.
f GBT, gradient boosted trees.
g SVM, support vector machine.
h NB, naïve Bayes.
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assess the risk of bias and potential usefulness of the predic
tion model. This reflects a wider trend in reporting of clinical 
prediction model studies which has already been recognized 
for several years.51 Additionally, none of the included studies 
reported applying reporting guidelines such as Transparent 
reporting of a multivariable prediction model for individual 
prognosis or diagnosis (TRIPOD) Statement,52 which may 
explain why the relevant information about models develop
ment and validation was often missing. Adhering to the TRI
POD statement would ensure that enough information is 
provided for the reader to fully understand how the model 
was developed and validated. This transparency would sup
port further research in the use of AI to improve CDSSs.

Strengths, limitations, and future perspectives
Strengths of this scoping review include the comprehensive 
search in different electronic databases and the screening of 
the references of relevant studies together with forward cita
tion. Furthermore, the title and abstract screening was vali
dated by a second screener, to maintain consistency in the 
inclusion of studies. Additionally, the methodology and exe
cution of this scoping review was structurally assessed since it 
was conducted in accordance with the JBI methodology for 
scoping review and the PRISMA-ScR.26,27

Limitations include the restriction to only include peer- 
reviewed studies. Non peer-reviewed studies may provide a 
more recent overview of the current state of AI-based meth
ods for optimization of medication alerts generated by CDSS. 
On the other hand, novel methods for CDSSs in clinical set
tings must be assessed via rigorously peer-reviewed studies. 
Another limitation is the lack of critical appraisal of the 
included studies, but this is in accordance with the guidelines 
on scoping reviews we used.26,27 Also, given the high hetero
geneity of studies included in terms of setting, methods and 
outcomes studies, a critical appraisal is of limited value. Fur
thermore, the utilization of ASReview may have resulted in 
missing relevant studies. Nonetheless, the inherent techniques 
of ASReview and the applied methodologies as described 
have mitigated this likelihood to a minimum. Additionally, 
these potentially missed studies were expected to be identified 
by forward citation. Finally, important contributions from 
Non-English speaking countries may have been missed.

Future studies on AI-based methods for optimization of 
medication alerts generated by CDSS in hospital settings 
should include larger datasets, to be able to extensively vali
date the models internally and externally. Prior to and during 
the development of CDSS using AI-based methods, it is essen
tial to ensure sufficient support and collaboration with 
healthcare professionals, to facilitate trust, clinical value, and 
the implementation of the models in hospital practice. More
over, such studies should use reporting guidelines, such as the 
upcoming ML focused TRIPOD (TRIPOD-ML) to enable 
critical appraisal of the results presented.53 Once the models 
are developed and validated, adequate attention must be 
given to their implementation into hospital practice.

Conclusions
This scoping review provides an overview of the use of AI- 
based methods for optimizing medication alerts generated by 
CDSS in hospital setting. The then studies included show that 
AI has the capacity to adequately reduce alert burden and 
identify inappropriate prescriptions, but the datasets used 

were relatively small and the models lack formal validation. 
Most have not been implemented in hospital practice. Future 
studies should focus on validation and implementation of AI- 
based methods, and use reporting guidelines such as the TRI
POD Statement to report their work.
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