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Background: Allergic diseases are some of the most common
diseases worldwide. Genome-wide association studies (GWASs)
have been conducted to elucidate the genetic factors of allergic
diseases. However, no GWASs for allergen component
sensitization have been performed.
Objective: We sought to detect genetic variants associated with
differences in immune responsiveness against allergen
components.
Methods: The participants of the present study were recruited
from the Tokyo Children’s Health, Illness, and Development
study, and allergen component–specific IgE level at age 9 years
was measured by means of allergen microarray immunoassays.
We performed GWASs for allergen component sensitization
against each allergen (single allergen component sensitization,
number of allergen components analyzed, n 5 31), as well as
against allergen protein families (allergen protein group
sensitization, number of protein groups analyzed, n 5 16).
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Results: We performed GWAS on 564 participants of the Tokyo
Children’s Health, Illness, and Development study and found
associations between Amb a 1 sensitization and the
immunoglobulin heavy-chain variable gene on chromosome 14
and between Phl p 1 sensitization and the HLA class II region on
chromosome 6 (P < 5.03 1028). A GWAS-significant association
was also observed between the HLA class II region and profilin
sensitization (P < 5.0 3 1028).
Conclusions: Our data provide the first demonstration of
genetic risk for allergen component sensitization and show that
this genetic risk is related to immune response genes including
immunoglobulin heavy-chain variable gene and HLA. (J Allergy
Clin Immunol Global 2023;2:100086.)

Key words: Genome-wide association study, immunogenetics,
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Allergic diseases including allergic rhinitis, allergic asthma,
and atopic dermatitis are common diseases worldwide.1 Allergic
diseases have been increasing in prevalence in both developed and
developing countries in the last decade,1 and the high prevalence
of allergic diseases has become a social problem in many coun-
tries. A nationwide survey of Japanese primary school children
(aged 6-8 years) found that 10.2% had wheeze; 18.7%, rhinocon-
junctivitis; and 14.6%, eczema.2

Prevention of allergic disease development has been proposed
to be categorized into primary, secondary, and tertiary preven-
tion.3 In food allergy, primary prevention is defined as the preven-
tion of IgE sensitization itself; secondary prevention, as the
prevention of the onset of allergic symptoms in IgE-sensitized in-
dividuals; and tertiary prevention, as seeking to reduce the expres-
sion of end-organ allergic disease in children with established
food allergy.3 The status of allergen sensitization is therefore
important in evaluating allergic diseases4 as well as in preventing
them. Diagnosis of allergic diseases has become remarkablymore
accurate through improvements in allergen peptide purification.5

One of the most accurate allergy diagnostic methods in recent
years is allergen component–specific IgE.6 Extracts using con-
ventional crude allergens contain various allergens, and it is
now possible to measure allergen component–specific IgE using
a recombinantly purified protein.5 It has been reported that the
measurement of allergen component–specific IgE improves diag-
nostic accuracy and is also useful for identifying cross-reactivity,
such as oral allergy syndrome, and for detecting therapeutic
1
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FIG 1. Flow chart of the present study.

Abbreviations used

eQTL: Expression quantitative trait locus

GWAS: Genome-wide association study

IGHV: Immunoglobulin heavy variable gene

OR: Odds ratio

PC: Principal component

SNP: Single nucleotide polymorphism

T-CHILD: Tokyo Children’s Health, Illness, and Development
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targets for allergen-specific immunotherapy.7 The European
Academy of Allergy and Clinical Immunology published
guidelines for molecular-based diagnosis and declared that
allergen-specific immunotherapy should be prescribed only
when the clinical relevance of a given allergen source has been
reliably demonstrated.8 Allergen components have been proposed
as predictive markers of allergen immunotherapy because they
distinguish between patients with genuine reactivity to biologic
sources and those with misrecognition of biologic sources
including pathogenesis-related PR proteins and profilin.8

A multiplex assay designed for multiple allergen components in
human serum has been developed as a measure of allergen
component–specific IgE, making it possible to evaluate an indi-
vidual’s sensitization profile to more than 100 allergen compo-
nents.9 Patelis et al10 reported that IgE sensitization of allergen
components may have higher clinical and prognostic values
than those of extract-based measurements. We previously exam-
ined allergen component–specific IgE reactivity among children
and showed high allergen sensitization rates, 57.8% at age 5 years
and 74.8% at age 9 years, and that sensitization of allergen com-
ponents related to allergic rhinitis was increased in children aged
9 years when compared with that in children aged 5 years.11

Allergic diseases and allergic sensitization are multifactorial
diseases in the development of which both genetic and environ-
mental factors play roles. Genome-wide association studies
(GWASs) have been conducted to elucidate the genetic factors
of allergic diseases, and many genes associated with allergic
diseases have been identified.12-16 According to the NHGRI-EBI
GWAS catalog (gwas-catalog-v1.0.3; accessed October 6,
2021),17 a curated collection of all human GWASs, 110 studies
have been conducted on asthma: 11, on atopic dermatitis; 3, on
eczema; 4, on food allergy; 4, on allergic rhinitis; and 2, on
allergen sensitization.15,18 Therefore, not many GWASs other
than for asthma have been conducted so far, and to our knowl-
edge, no GWAS for allergen component sensitization has been
performed.

In the present study, we performed the first GWAS of the
sensitization status of allergen components in a general Japanese
pediatric population. The aim of the study was to detect genetic
variants associated with differences in immune responsiveness
against allergen components.

METHODS

Participants
The Tokyo Children’s Health, Illness, and Development (T-CHILD) study

is an ongoing single-center, prospective, and hospital-based birth cohort study

by the National Center for Child Health and Development, Tokyo, Japan.

Detailed information about the T-CHILD study has been described else-

where.11,19,20 The T-CHILD participants were recruited at the National Center

for Child Health and Development during pregnancy, and a total of 1701 preg-

nant women and 1550 newborns participated in the T-CHILD study between
2003 and 2005. The genome study participants were recruited from among the

T-CHILD study participants, and at age 4 to 5 years, 738 children participated

in the genome study.21 Informed consent was obtained from all the parents of

the participants of the genome study. The flow chart of the present study is

shown in Fig 1. Status of asthma, wheeze, eczema, or rhinitis was obtained

from the International Study of Asthma and Allergies in Childhood (ISAAC)

questionnaire.22

The study was approved by the human genome research ethics committees

of the University of Tsukuba (no. 242) and the National Center for Child

Health and Development (no. 533). It was conducted in accordance with the

Declaration of Helsinki.
Allergen component IgE reactivity measurements
Detailed information about blood sampling and measurement of allergen

component–specific IgE has been described previously.11 Allergen

component–specific IgE in blood was measured with ImmunoCAP ISAC

(Thermo Fisher Scientific/Phadia, Uppsala, Sweden).23 The specific IgE anti-

body values werewithin a range of 0.3 to 100 ISAC standardized units, and the

allergen-specific IgE values were converted to binary values with a cutoff

value of 0.3 ISAC standardized units. Total serum IgE levels were determined

using ImmunoCAP (Thermo Fisher Scientific/Phadia).

Allergen components can be categorized according to their biochemical

properties and protein family.24We defined the allergen protein group as sensi-

tization positive if the participants were sensitized against any allergen com-

ponents belonging to the same protein group (see Table E1 in this article’s

Online Repository at www.jaci-global.org).

We analyzed the allergen component/protein group with a greater than 3%

positive sensitization rate in the study population for the GWAS analyses (n5
31 for allergen component and n 5 16 for allergen protein group). The

numbers of cases/controls for the allergen component/protein group for the

GWAS analyses are presented in Table E2 in this article’s Online Repository

at www.jaci-global.org.

The correlation among allergen components and IgE reactivity was

analyzed with the Spearman rank correlation coefficient (r) and visualized

with the corrplot library (https://github.com/taiyun/corrplot) implemented in

R software (http://www.R-project.org/).
GWAS
Genomic DNA was extracted from saliva by use of Oragene DNA

(Genotek, Ottawa, Canada) or from blood by use of a QIAamp DNA Blood

Mini Kit (Qiagen, Hilden, Germany) per the manufacturer’s protocol.

Genotyping was performed using Infinium Asian Screening Array-24 v1.0

(Illumina, San Diego, Calif) and an Illumina iScan Bead Array Reader

(Illumina). The output from the Illumina iScan Bead Array Reader was

processed with GenomeStudio 2.0 software (Illumina), and genotype calling

http://www.jaci-global.org
http://www.jaci-global.org
https://github.com/taiyun/corrplot
http://www.R-project.org/


TABLE I. The characteristics of the participants

Characteristic n (%)

No. of participants 564

Sex: male 283 (50.2)

Asthma current* 29 ( 5.2)

Asthma ever* 116 (20.6)

Wheeze current* 62 (11.0)

Wheeze ever* 185 (32.9)

Eczema current* 119 (21.1)

Eczema ever* 141 (25.0)

Rhinitis current* 324 (57.5)

Rhinitis ever* 341 (60.6)

Geometric mean total serum IgE� (95% CI) 135.4 IU/mL (118.3-154.9)

*n 5 563.

�n 5 562.
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and quality control were performed with the previously reported pipeline25

with some modifications. We selected single nucleotide polymorphisms

(SNPs)/variants according to the following criteria: minor allele frequency

more than 1%, variant genotyping call rate more than 95%, and Hardy-

Weinberg equilibrium P value more than 1.03 1025. Variants with a Gentrain

score of less than 0.7 were excluded by the GenomeStudio 2.0 software. We

excluded samples with a call rate of less than 98%, phenotype-genotype sex

discordance, a close familial relationship estimated with PLINK26 as PI_HAT

more than 0.1875, and outliers from the Japanese ancestry estimated by use of

principal-component (PC) analysis using the 1000 Genome Project Phase 3.27

After quality controls, 674 individuals remained for further analysis (Fig 1).

To perform PC analysis, we used independent markers estimated with the

PLINK –indep-pairwise option, where a window of 50 SNPs was considered

at a time and removed if the linkage disequilibrium was greater than 0.5. PCs

were calculated by use of EIGENSOFT,28 and the first 10 PCs were used for

the analysis. The genotypes were then imputed by use of Minmac4 software29

through the use of the Japanese reference panel (JGAS000114 reference panel;

https://ddbj.nig.ac.jp/resource/jga-dataset/JGAD000220) available at the Na-

tional Bioscience Database Center.30 After imputation, we selected variants

with an imputation quality of Rsqmore than 0.7 andminor allele count greater

than or equal to 20, and finally, we used 6,471,740 variants for the GWAS.

The GWAS for allergen component sensitization was conducted after

adjustment for the first 10 PCs and sex under a logistic regression model using

SAIGE version 1.0.6.31 The odds ratios (ORs) and 95%CIs were calculated to

estimate the degree of the association. The effect size estimation of variants

with a P value less than or equal to .05 was performed by use of Firth’s

bias-reduced logistic regression.

The GWAS for total serum IgE was conducted with the glm function of

PLINK2.032 using log-transformed values of total serum IgE, adjusting for the

first 10 PCs and sex. We used alpha levels of 5.0 3 1028 to define GWAS-

significant associations and of 1.03 1025 for GWAS-suggestive associations.

The GWAS results were plotted by means of PheGWAS33 and CMplot.34 To

assess the independence of the associations, conditional analysis was per-

formed if there were GWAS-significant variants, and the regions around

20,000 bp were depicted by use of LocusZoom.35 Variants were annotated

with ANNOVAR.36
HLA imputation and HLA association analyses
We conducted imputation of HLA alleles (HLA-A, B, C, DRB1, DQA1,

DQB1, DPA1, and DPB1 alleles/amino-acid polymorphisms) by use of

DEEP*HLA software37 when we observed significant GWAS associations

on the HLA region. The statistical methods of the HLA allele and

amino-acid analyses were previously described in detail.37-39 We performed

logistic regression analysis between phenotypes and HLA class II 4-digit

alleles/amino-acid polymorphisms including HLA-DRB1, DQA1, DQB1,

DPA1, and DPB1, in which each allele was coded as a biallelic marker (0,

1, or 2 copies of the allele). The first 10 PCs and sex were used as covariates

of the logistic regression model. An omnibus P value was calculated for the

association analysis between an allergen component sensitization and an

HLA amino-acid polymorphism.39 The omnibus P value of the variant was

obtained by a log-likelihood ratio test comparing the likelihood of a null

model against the likelihood of the fitted model. Firth’s logistic regression

analysis was performed if complete separation was observed in the logistic

model.40
Expression quantitative trait locus analyses
The expression quantitative trait locus (eQTL) results of 5 immune-cell

subsets (CD41 T cells, CD81 T cells, B cells, natural killer cells,

and monocytes) derived from 105 healthy Japanese volunteers

(https://humandbs.biosciencedbc.jp/en/hum0099-v1) were extracted for the

top significant variants in the GWAS-significant regions.41 We selected the

eQTL results for genes with q-value thresholds of 0.05. We also extracted

the results of eQTL from the Genotype-Tissue Expression Portal database

(https://gtexportal.org/home/, version 8) to visualize the variant effect on

various tissues.42
RESULTS
The number of participants analyzed in this study is shown in

Fig 1. Of the 738 genetic study participants of the T-CHILD study,
allergen component IgE data of the ImmunoCAP ISAC sIgE 112
(Thermo Fisher Scientific/Phadia) at age 9 years were available
for 564 participants. The number of male participants was 283
(50.2%). The participants’ baseline characteristics are presented
in Table I. The geometric mean of total serum IgE (n 5 562)
was 135.4 IU/mL (95% CI, 118.3-154.9 IU/mL).

Cry j 1 (Cryptomeria japonica) showed the highest positive
sensitization rate, followed by Der f 1 (Dermatophagoides fari-
nae) andDer p 1 (Dpteronyssinus) (see Fig E1 in this article’s On-
line Repository at www.jaci-global.org); the distributions of the
number of sensitization-positive components per individual are
shown in Fig E2 in this article’s Online Repository at www.
jaci-global.org. One hundred thirty-six participants (24.1%)
were not sensitized to any of the allergen components, and the
maximum number of sensitization-positive components per indi-
vidual was 37.

Among the allergen protein group, pectate lyase was the most
common, followed by cysteine protease and the NPC2 family of
house dust mites (see Fig E3 in this article’s Online Repository at
www.jaci-global.org); the distributions of the number of
sensitization-positive allergen protein groups per individual are
shown in Fig E4 in this article’s Online Repository at www.
jaci-global.org.

Fig E5 in this article’s Online Repository at www.jaci-global.
org show the correlation among IgE reactivities to allergen com-
ponents calculated using the Spearman rank correlation coeffi-
cient (r). As shown in Fig E5, allergen components that belong
to PR-10 or profilin and those in house dust mite allergen compo-
nents showed the strong correlations.

We performed GWAS for each allergen component/allergen
protein group sensitization and total serum IgE. Fig 2 shows the 3-
dimensional Manhattan plot including 47 traits of allergen sensi-
tization data and 1 trait of total serum IgE data.Manhattan plots of
each allergen component and protein group sensitization, and to-
tal serum IgE, are shown in Figs E6 (allergen components), E7
(protein groups), and E8 (total serum IgE) in this article’s Online
Repository at www.jaci-global.org.

A variant (rs35735004) in the immunoglobulin heavy variable
(IGHV) gene region on chromosome 14 was found to be associ-
ated with Amb a 1 sensitization that satisfied the GWAS-
significant levels with the T allele as the risk-associated allele
(Fig 3, A-C; see Table E3 in this article’s Online Repository at

https://ddbj.nig.ac.jp/resource/jga-dataset/JGAD000220
https://humandbs.biosciencedbc.jp/en/hum0099-v1
https://gtexportal.org/home/
http://www.jaci-global.org
http://www.jaci-global.org
http://www.jaci-global.org
http://www.jaci-global.org
http://www.jaci-global.org
http://www.jaci-global.org
http://www.jaci-global.org
http://www.jaci-global.org
http://www.jaci-global.org


FIG 2. 3-Dimensional Manhattan plots of GWAS against allergen components and protein group

sensitization. The x-axis (chromosome) represents the genomic locations; the y-axis, the phenotypes (ie,

allergen component/allergen protein group sensitizations); and the z-axis (-log10(P)), the -log10 (P values).
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www.jaci-global.org; P5 1.873 1029; OR, 4.62; 95% CI, 2.83-
7.55). Conditional analysis with rs35735004 revealed no addi-
tional independent associated variants on the chromosomal re-
gion (Fig 3, D). Then, we analyzed the effect of rs35735004 on
5 immune-cell subsets (CD41 T cells, CD81 T cells, B cells, nat-
ural killer cells, and monocytes)41 and whole blood.42 The risk-
associated T allele of rs35735004 corresponded to decreased
expression levels of IGHV2-70 and increased expression levels
of IGHV3-64 and IGHV3-66 (see Table E4 in this article’s Online
Repository at www.jaci-global.org).41 IGHV4-61 showed the
opposite direction of expression levels in the B cells and whole
blood. Tissue-specific mRNA expression data from Genotype-
Tissue Expression Portal (https://gtexportal.org/home/)42,43 re-
vealed that the eQTL at rs35735004 with IGHVs was not
restricted towhole blood but was also present in other tissue types
(see Fig E9 in this article’s Online Repository at www.jaci-global.
org).

We also identified the rs72847623 located at HLA region on
chromosome 6 and Phl p 1 sensitization, a major grass pollen
allergen component (Fig 4, A and B; Table E3; P 5
3.59 3 1029; OR, 6.03; 95% CI, 3.29-11.04). HLA imputation
analysis showed 3 amino-acid polymorphisms in HLA-DRb1
and 1 amino-acid polymorphism in HLA-DQb1 as suggestive as-
sociations (Fig 4, C and D; see Table E5 in this article’s Online
Repository at www.jaci-global.org; HLA-DRb1 position 10:
P 5 3.08 3 1026). Conditional analysis by amino-acid position
10 of HLA-DRb1 revealed no other independent associations
(see Fig E10 in this article’s Online Repository at www.jaci-
global.org).
Furthermore, we identified the GWAS-significant association
between theHLA region andHev b 8, and that between theHLA re-
gion andMer a 1 (Table E3; P5 5.273 10210, OR, 9.26, 95% CI,
4.65-18.45 for rs1289784088 ofHev b 8 andP5 2.223 1028, OR,
7.19, 95%CI, 3.64-14.20 for rs760563972 ofMer a 1). Both Hev b
8 andMer a 1 are profilin-associated allergens, and allergen protein
group GWAS revealed an association between rs1289784088 and
profilin sensitization (Fig 5, A and B; see Table E6 in this article’s
Online Repository at www.jaci-global.org;P5 5.273 10210; OR,
9.26; 95%CI, 4.65-18.45). In theHLA imputation association anal-
ysis, HLA-DRB1*09:01, HLA-DQB1*03:03, and HLA-
DQA1*03:02were detected as suggestive loci with profilin sensiti-
zation (Fig 5, C; see Table E7 in this article’s Online Repository at
www.jaci-global.org; HLA-DRB1*09:01: P 5 4.00 3 1027, OR,
3.82, 95%CI, 2.28-6.40). We also detected 6 amino-acid polymor-
phisms in HLA-DRb1 and 1 amino-acid polymorphism in HLA-
DQa1 to satisfy a GWAS-suggestive association level with profilin
sensitization (Fig 5,D; see Table E8 in this article’s Online Repos-
itory at www.jaci-global.org). Conditional analysis by
rs1289784088, the GWAS top SNP, or by HLA-DRB1*09:01
showed no other independent association (see Fig E11 in this arti-
cle’s Online Repository at www.jaci-global.org). The Manhattan
plots of Bet v 2, Cor a 1.0101, Phl p 12, Mer a 1, and Hev b 8 are
shown in Fig E6.

The GWAS for total serum IgE levels revealed that a variant
(rs118175928 T>A) located in the intron of LINC01515 on chro-
mosome 10 was associated with total serum IgE levels that satis-
fied the GWAS-significant levels (P5 3.613 1028; b coefficient
of A allele, 21.23; SE, 0.22; Fig E8).

http://www.jaci-global.org
http://www.jaci-global.org
https://gtexportal.org/home/
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FIG 3. GWAS for sensitization against Amb a 1.A,Manhattan plot for GWASwith sensitization against Amb

a 1. The x-axis indicates chromosomal positions, and the y-axis, the 2log10 (P values) calculated with

SAIGE. The red line indicates the genome-wide significance level (P 5 5.0 3 1028), and the blue line, the

genome-wide suggestive level (P 5 1.0 3 1025). B, Quantile-quantile (Q-Q) plot of GWAS with sensitization

against Amb a 1. The Q-Q plot indicates the expected2log10 (P values) vs the observed2log10 (P values). C,

Regional association plots of the GWAS-significant region on chromosome 14. Variants are colored accord-

ing to their linkage disequilibrium (LD) based on the 1000 Genomes Project Phase 3’s EAS reference panel,

and the top-associated SNP (rs35735004) is marked with a purple diamond. D, Regional association plots of

the GWAS-significant region on chromosome 14 after conditioning on the top-associated SNP (rs35735004).
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To examine the effect of the GWAS-significant variants on
other phenotypes, associations between selected variants
(rs35735004, rs72847623, rs1289784088, rs760563972, and
rs118175928) and allergen component sensitization/protein
groups/total serum IgE were evaluated. As shown in Fig E12 in
this article’s Online Repository at www.jaci-global.org,
rs35735004 was not observed in sensitization phenotypes other
than Amb a 1, and rs1289784088 and rs760563972 were found
to be associated with multiple phenotypes that belong to the pro-
filin protein group.

Gheerbrant et al44 reported associations between HLA alleles
and allergen component sensitization. Among 8 allergen compo-
nents (Alt a 1, Art v 1, Bet v 1, Der p 7, Ole e 1, Phl p 2, Phl p 5,
and Pla l 1) with significant associations of FDR q value less than
or equal to 0.05 shown by Gheerbrant et al’s study,44 Alt a 1, Bet v
1, and Phl p 5 were those with greater than a 3% positive sensiti-
zation rate in the present study population. We examined the as-
sociations between the HLA allele and Alt a 1, Bet v 1, and Phl
p 5 sensitization. As presented in Table E9 in this article’s Online
Repository at www.jaci-global.org, we observed the same
direction of association as that of Gheerbrant et al’s study,
although the P values did not reach a significant level.
DISCUSSION
In the present study, we performed allergen component

sensitization GWAS of individuals aged 9 years, including single
allergen component–specific sensitization, and allergen protein
group sensitization. We found that variants located on IGHV are
associated with sensitization against Amb a 1. We also found
that variants located on the HLA region are associated with sensi-
tization against Phl p 1 and profilin sensitizations.

IGHV is a gene that constitutes the variable portion of immuno-
globulins and contributes to the acquisition of immunoglobulin
diversity through genetic recombinations in B cells.45 The vari-
able portions of immunoglobulin heavy chains are composed of
IGHV (100-300 types), IGHD (approximately 25 types), and
IGHJ (6 types). During B-cell maturation, genes from IGHV,
IGHD, and IGHJ are selected through genetic recombination,
which results in the formation of a unique immunoglobulin heavy

http://www.jaci-global.org
http://www.jaci-global.org


FIG 4. GWAS for sensitization against Phl p 1. A, Manhattan plot for GWAS with sensitization against Phl p

1. B, Association results ofHLA class II alleles. The x-axis shows theHLA alleles, and the y-axis, the2log10 (P
values). The red line indicates the genome-wide significance level (P 5 5.0 3 1028), and the blue line, the

suggestive level (P5 1.03 1025). C,Association results of 4-digitHLA class II alleles. Each circle point shows

the2log10 (P values) for the 4-digit HLA class II alleles. The red line indicates the genome-wide significance

level (P 5 5.0 3 1028), and the blue line, the genome-wide suggestive level (P 5 1.0 3 1025). D, Association

results of HLA class II amino-acid polymorphisms. Each circle point shows the 2log10 (P values) for each

amino-acid polymorphism. The x-axis indicates the amino-acid positions. The red line indicates the

genome-wide significance level (P 5 5.0 3 1028), and the blue line, the genome-wide suggestive level

(P 5 1.0 3 1025).
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chain in each B cell.46 IGHV has been reported to be associated
with several autoimmune diseases.45 So far, no studies have re-
ported associations between the IGHV region and Amb a 1 sensi-
tization. However, in other allergen components, Levin et al47

reported that Bet v 1–specific IgE antibodies isolated from the
nasal mucosa of patients with allergic rhinitis carried the same
germline IGHV gene, showing the presence of skewed IgE reper-
tories with overrepresentation of the specific VH-encoding tran-
scripts. Recently, it has been reported that the V(D)J gene usage
profiles of T-cell receptors are associated with variation in the
T-cell receptor b locus.48 Therefore, our study implies that
specific IGHV genes, such as those detected by eQTL analysis
in relation with the genetic variant of rs35735004, may be associ-
ated with Amb a 1 sensitization by influencing the binding prop-
erty of immunoglobulin genes against allergens. Although
previous allergy-related GWASs focused on allergic diseases
such as asthma and did not sufficiently detect allergen-specific as-
sociations,13-16 the present study focused on the allergen compo-
nent and was able to detect Amb a 1 sensitization-specific
associations.

Phl p 1 belongs to beta-expansin, a protein involved in plant
cell wall growth.49 The present study showed an association



FIG 5. GWAS for sensitization against profilin. A, Manhattan plot for GWAS with sensitization against pro-

filin. B,Association results ofHLA class II alleles. The x-axis shows theHLA alleles, and the y-axis, the2log10

(P values). The red line indicates the genome-wide significance level (P5 5.03 1028), and the blue line, the

genome-wide suggestive level (P 5 1.0 3 1025). C, Association results of 4-digit HLA class II alleles. Each

circle point shows the 2log10 (P values) for the 4-digit HLA class II alleles. The red line indicates the

genome-wide significance level (5.0 3 1028), and the blue line, the genome-wide suggestive level

(1.0 3 1025). D, Association results of HLA class II amino-acid polymorphisms. Each circle point shows

the 2log10 (P values) for each amino-acid polymorphism. The x-axis indicates the amino-acid positions.

The red line indicates the genome-wide significance level (5.0 3 1028), and the blue line, the genome-

wide suggestive level (1.0 3 1025).
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between rs72847623 and sensitization against Phl p 1. Cyn d 1 be-
longs to the same protein family as Phl p 1, and the association
between Cyn d 1 sensitization and rs72847623 shows the same
trend as Phl p 1 association, although it did not reach the
GWAS-significant level (P 5 1.02 3 1024; OR, 2.86; 95% CI,
1.67-4.89). One hypothesis is that a unique amino-acid sequence,
which is not shared between Phl p 1 and Cyn d 1, may be associ-
ated with susceptibility to Phl p 1 sensitization, or else differences
in the amount of pollen dispersed may have an impact on the
results.
There are many allergen components that belong to the same
protein superfamily even though they are derived from different
allergens. Cross-reactivity is the phenomenon of sensitization to
multiple allergens through components with similar amino-acid
structures.50 In this study, allergen components belonging to the
same allergen protein group were analyzed. We found
rs1289784088 in the HLA region to be associated with profilin
sensitization that achieved a GWAS significant level, as well as
a GWAS suggestive association for HLA-DRB1*09:01, HLA-
DQB1*03:03, HLA-DQA1*03:02, 6 amino-acid polymorphisms
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in HLA-DRb1 and 1 amino-acid polymorphism in HLA-DQa1.
The amino-acid sequence similarity among allergen components
that belong to profilin is estimated to be between 70% and 80%.51

The GWASs of profilin-associated allergen component sensitiza-
tions showed Hev b 8 to have the strongest association (Table E3;
P 5 5.27 3 10210; OR, 9.26; 95% CI, 4.65-18.45). The variant
with the strongest association for profilin, rs1289784088, is an in-
tronic variant of HLA-DRB1 with an allele frequency of 0.093 in
the Japanese population and of 0.054 in the Korean population,
whereas no allele frequency information of the variant was avail-
able for Whites or Africans in the dbSNP database (5https://
www.ncbi.nlm.nih.gov/snp/?term5rs1289784088; accessed
January 31, 2022). The amino-acid polymorphisms that showed
suggestive association with profilin sensitization were all located
in the allergen-binding region of HLA-DR,52 and this HLA-DR
association disappeared after conditional analysis using
rs1289784088. These data suggest that profilin-related HLA al-
leles, amino-acid polymorphisms, and intronic SNPs are all in
linkage disequilibrium, making it difficult to identify which var-
iants/alleles are involved in disease susceptibility.

In the present study, an intronic variant of LINC01515 was
associated with the total serum IgE level at age 9 years.
LINC01515 is a long intergenic nonprotein coding RNA that
has been reported to be upregulated in nasopharyngeal carci-
noma,53 but the function of LINC01515 is largely unknown. We
did not find an association between variants in the HLA region
and total serum IgE levels in the present study. Chang et al54

compared total serum IgEs with allergen-specific IgE in 3721 pa-
tients with allergic diseases, and suggested that allergen-specific
IgE can lead to an increased level of total serum IgE, but the level
of total serum IgEwas not completely determined by the accumu-
lation of allergen-specific IgE. Also, variants associated with
sensitization to specific allergen components differ from those
of other allergen components on theHLA region. Therefore, these
factors may have influenced the GWAS association results of total
serum IgE levels in the present study.

Gheerbrant et al44 conducted an association study between
HLA class II alleles and allergen component sensitizations
including 26 aeroallergens in a European adult population. In
the present study, association results of Bet v 1, Phl p 5, and Art
a 1 sensitizations were available (Table E9). Although some allele
frequencies are very low in the Japanese population, we observed
the same direction of association and a similar effect size as those
of Gheerbrant et al’s study, suggesting the possibility of a trans-
ethnic association of these HLA alleles with the allergen compo-
nent sensitization.

There are several limitations to the present study. First, owing
to the relatively small sample size, only variants with large effect
could be detected, and the OR estimation may be biased. Second,
we usedP values of 531028 as GWAS-significant cutoffs despite
performing multiple GWASs for each allergen component and
protein group; therefore, the cutoff is not stringent enough. IgE
values that belong to the same protein family are correlated; there-
fore, these values are not independent and the Bonferroni correc-
tionmay be too conservative. Third, although allergen component
sensitization measurement has become possible, few studies have
been reported that used an allergenmicroarray immunoassay such
as ISAC 112 for a genetic association study, making it difficult to
increase the sample size or to have a replication data set; there-
fore, the possibility of the presence of false positives remains.
Although this was an exploratory study, it investigated a wide
range of phenotypes, including allergen component sensitization
as well as allergen protein group measurements.

Most previous allergy-related GWASs focused only on allergic
diseases and related allergen sensitization; few GWAS analyses
are available that used comprehensive allergen sensitization data.
The present study was a single-center prospective cohort study,
and the IgE measurement was conducted in children of the same
age, 9 years; therefore, the degree of allergen exposure was
relatively homogeneous, providing information related to the
genetics of allergen molecule sensitization in childhood.
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Key messages

d Amb a 1 sensitization was associated with genetic variants
of the IGHV on chromosome 14.

d Variants on the HLA class II region on chromosome 6
were also associated with several allergen components
sensitization, including Hev b 8, Mer a 1, Phl p 1, and pro-
filin sensitization.
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