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Abstract

Clustering high-dimensional data, such as images or biological measurements, is a long-

standing problem and has been studied extensively. Recently, Deep Clustering has gained

popularity due to its flexibility in fitting the specific peculiarities of complex data. Here we

introduce the Mixture-of-Experts Similarity Variational Autoencoder (MoE-Sim-VAE), a

novel generative clustering model. The model can learn multi-modal distributions of high-

dimensional data and use these to generate realistic data with high efficacy and efficiency.

MoE-Sim-VAE is based on a Variational Autoencoder (VAE), where the decoder consists of

a Mixture-of-Experts (MoE) architecture. This specific architecture allows for various modes

of the data to be automatically learned by means of the experts. Additionally, we encourage

the lower dimensional latent representation of our model to follow a Gaussian mixture distri-

bution and to accurately represent the similarities between the data points. We assess the

performance of our model on the MNIST benchmark data set and challenging real-world

tasks of clustering mouse organs from single-cell RNA-sequencing measurements and

defining cell subpopulations from mass cytometry (CyTOF) measurements on hundreds of

different datasets. MoE-Sim-VAE exhibits superior clustering performance on all these

tasks in comparison to the baselines as well as competitor methods.

Author summary

Clustering single cell measurements into relevant biological phenotypes, such as cell types

or tissue types, is an important task in computational biology. We developed a computa-

tional approach which allows incorporating prior knowledge about the single cell similar-

ity into the training process, and ultimately achieve significant better clustering

performance compared to baseline methods. This single cell similarity can be defined to

benefit specific needs of the modeling goal, for example to either cluster cell type or tissue

type, respectively.
In addition, we are able to generate new realistic single cell data from a respective

mode of the phenotype due to the architecture of the model, which consists of smaller
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sub-models learning the different modes of the data. Compared to competitor methods,

we show significantly better results on clustering and generation of handwritten digits of

the MNIST data set, on clustering seven different mouse organs from single-cell RNA

sequencing measurements, and on clustering cell types in over 272 different datasets of

Peripheral Blood Mononuclear Cell measured via CyTOF.

This is a PLOS Computational Biology Methods paper.

Introduction

Clustering has been studied extensively [1, 2] in machine learning and has found wide applica-

tion in identifying grouping structure in high dimensional biological data such as various

omics data modalities. Recently, many Deep Clustering approaches were proposed, which

modified (Variational) Autoencoder ((V)AE) architectures [2, 3] or by varying regularization

of the latent representation [4–7].

The reconstruction error usually drives the definition of the latent representation learned

from an AE or VAE. The representation for AE models is unconstrained and typically places

data objects close to each other according to an implicit similarity measure that also yields

favorable reconstruction error. In contrast, VAE models regularize the latent representation

such that the represented inputs follow a certain variational distribution. This construction

enables sampling from the latent representation and data generation via the decoder of a VAE.

Typically, the variational distribution is assumed standard Gaussian, but for example Jiang

et al. [7] introduced a mixture-of-Gaussians variational distribution for clustering purposes.

A key component of clustering approaches is the choice of similarity metric for the consid-

ered data objects which we try to group [8]. Such similarity metrics are either defined a priori
or learned from the data to specifically solve classification tasks via a Siamese network archi-

tecture [9]. Dimensionality reduction approaches, such as UMAP [10] or t-SNE [11], allow to

specify a similarity metric for projection and thereby define the data separation in the inferred

latent representation.

In this work, we introduce the Mixture-of-Experts Similarity Variational Autoencoder (MoE--

Sim-VAE), a new deep architecture that performs similarity-based representation learning, clus-

tering of the data and generation of data from each specific data mode. Due to a combined loss

function, it can be jointly optimized. We empirically assess the scope of the model and present

superior clustering performance on the canonical benchmark MNIST. Moreover, in an ablation

study, we show the efficiency and precision of MoE-Sim-VAE for data generation purposes in

comparison to the most related state-of-the-art method [7]. We achieve superior results on the

identification of tissue- or cell type groupings via MoE-Sim-VAE on a murine single-cell RNA-

sequencing atlas and mass cytometry measurements of Peripheral Blood Mononuclear Cells.

Materials and methods

MoE-Sim-VAE

Here we introduce the Mixture-of-Experts Similarity Variational Autoencoder (MoE-Sim-

VAE, Fig 1). The model is based on the Variational Autoencoder [12]. While the encoder net-

work is shared across all data points, the decoder of the MoE-Sim-VAE consists of a number
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of K different subnetworks, forming a Mixture-of-Experts architecture [13]. Each subnetwork

constitutes a generator for a specific data mode and is learned from the data.

The variational distribution over the latent representation is defined to be a mixture of mul-

tivariate Gaussians, first introduced by Jiang et al. [7]. In our model, we aim to learn the mix-

ture components in the latent representation to be standard Gaussians

z �
XK

k¼0

okN ðμk; IÞ ð1Þ

where ωk are mixture coefficients, μk are the means for each mixture component, I is the iden-

tity matrix and K is the number of mixture components. The dimension of the latent represen-

tation z needs to be defined to suit the demands of Gaussian mixtures which have limitations

in higher dimensions [14]. Similar to optimizing an Evidence Lower Bound (ELBO), we penal-

ize the latent representation via the reconstruction loss of the data Lreconst and by using the Kull-

back-Leibler (KL) divergence for multivariate Gaussians [7] on the latent representation

LKL ¼DKLðN 0;N 1Þ ¼
1

2
ftrðΣ� 1

1
Σ0Þ þ

ðμ1 � μ0Þ
TΣ� 1

1
ðμ1 � μ0Þ � kþ ln

jΣ1j

jΣ0j
g

ð2Þ

where k is a constant, N 0 � N ðμ0;Σ0 ¼ IÞ, and I is the identity matrix. Further,

N 1 � N ðμ1;Σ1 ¼ diagðsjÞÞ, where σj for j = 1, . . ., D, for a number of dimensions D, is

Fig 1. Schematic overview of MoE-Sim-VAE. Data (in panel A) gets encoded via an encoder network (B) into a latent representation (C) which is

trained to be a mixture of standard Gaussians. Via a clustering network (G), which is trained to reconstruct a user-defined similarity matrix (F), the

encoded samples get assigned to the data mode-specific decoder subnetwork (which we call experts) in the MoE Decoder (D). The experts reconstruct

the original input data and can be used for data generation when sampling from the variational distribution (E).

https://doi.org/10.1371/journal.pcbi.1009086.g001
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estimated from the samples of the latent representation. Finally, we assume μ0 = μ1 resulting in

the following simplified objective

LKL ¼ DKLðN 0;N 1Þ ¼
1

2
ftrðΣ� 1

1
Σ0Þ � kþ ln

jΣ1j

jΣ0j
g ; ð3Þ

to penalize exclusively the covariance of each cluster. It remains to define the reconstruction

loss Lreconst, where we choose a Binary Cross-Entropy (BCE)

Lreconst ¼
XN

i

XD

d

xi;d logðx
reconst
i;d Þ ð4Þ

between the original data x (scaled between 0 and 1) and the reconstructed data xreconst, where

i iterates the batch size N and d the dimensions of the data D. We motivate the BCE loss due to

better convergence properties using artificial neural networks in comparison to mean squared

error [15]. Finally the loss for the VAE part is defined by

LVAE ¼ Lreconst þ p1LKL ð5Þ

with a weighting coefficient π1 which can be optimized as a hyperparameter.

Similarity clustering and gating of latent representation. Training of a data mode-spe-

cific generator expert requires samples from the same data mode. This necessitates to solve a

clustering problem, that is, mapping the data via the latent representation into K clusters, each

corresponding to one of the K generator experts. We solve this clustering problem via a clus-

tering network, also referred to as gating network for MoE models. It takes as input the latent

representation zi of sample i and outputs probabilities pik 2 [0, 1] for clustering sample i into

cluster k. According to this cluster assignment, sample i is then gated to expert k = argmaxk pik
for each sample i. We further define the cluster centers μk for k 2 {1, . . ., K} similar as in the

Expectation Maximization (EM) algorithm for Gaussian Mixture models [16] as

μk ¼
1

Nk

XN

i¼1

pikzi ; ð6Þ

where Nk is the absolute number of data points assigned to cluster k based on highest probabil-

ity pik for each sample i = 1, . . ., N. The Gaussian mixture distributed latent representation (via

KL loss in Eq 3) is motivation for the empirical computation of the cluster means and further,

similar as in the EM algorithm, it allows iterative optimization of the means of the Gaussians.

We train the clustering network to reconstruct a data-driven similarity matrix S, using the

Binary Cross-Entropy

LSimilarity ¼
XN

i

XN

j

Si;j logððPP
TÞi;jÞ ð7Þ

to minimize the error in PPT� S, with P≔ {pik}i2{1,. . .,N},k2{1,. . .,K} where N is the number of

samples (e.g., batch size). Intuitively, PPT approximates the similarity matrix S since values in

PPT are only close to 1 when similar data objects are assigned to the same cluster, similar to

the entries in the adjacency similarity matrix S. This similarity matrix is derived in an unsuper-

vised way in our experiments (e.g. UMAP projection of the data and k-nearest-neighbors or

distance thresholding to define the adjacency matrix for the batch), but can also be used to

include weakly-supervised information (e.g., knowledge about diseased vs. non-diseased

patients). If labels are available, the model could even be used to derive a latent representation
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with supervision. The similarity feature in MoE-Sim-VAE thus allows to include prior knowl-

edge about the best similarity measure on the data.

Moreover, we apply the DEPICT loss from Dizaji et al. [4], to improve the robustness of the

clustering. For the DEPICT loss, we additionally propagate a noisy probability p̂ik through the

clustering network using dropout after each layer. The goal is to predict the same cluster for

both, the noisy p̂ik and the clean probability pik (without applying dropout). Dizaji et al. [4]

derived as objective function a standard cross-entropy loss

LDEPICT ¼ �
1

N

XN

i¼0

XK

k¼0

qik log p̂ik ð8Þ

whereby qik is computed via the auxiliary function

qik ¼
pik=ð

P
i0pi0kÞ

1

2

P
k0pik0=ð

P
i0pi0k0 Þ

1

2

: ð9Þ

We refer to Dizaji et al. [4] for the exact derivation. The DEPICT loss encourages the model to

learn invariant features from the latent representation for clustering with respect to noise [4].

Looking at it from a different perspective, the loss helps to define a latent representation which

has those invariant features to be able to reconstruct the similarity and therefore the clustering

correctly. The complete clustering loss function LClustering is then defined by

LClustering ¼ LSimilarity þ p2LDEPICT ð10Þ

with a mixture coefficient π2 which can be optimized as a hyperparameter.

MoE-Sim-VAE loss function. Finally, the MoE-Sim-VAE model loss is defined by

LMoE� Sim� VAE ¼ LVAE|ffl{zffl}
Lreconstþp1LKL

þ LClustering
|fflfflfflffl{zfflfflfflffl}

LSimilarityþp2LDEPICT

ð11Þ

which consists of the two main loss functions LVAE, acting as a regularization for the latent

representation, and LClustering , which helps to learn the mixture components based on an a priori
defined data similarity. The model objective function LMoE� Sim� VAE can then be optimized end-

to-end to train all parts of the model.

Related work

(V)AEs have been extensively used for clustering [1, 4–6, 17–20]. The most related approaches

to MoE-Sim-VAE are Jiang et al. [7] and Zhang et al. [3].

Jiang et al. [7] introduced the VaDE model, comprising a mixture of Gaussians as underly-

ing distribution in the latent representation of a Variational Autoencoder. Optimizing the Evi-

dence Lower Bound (ELBO) of the log-likelihood of the data can be rewritten to optimize the

reconstruction loss of the data and KL divergence between the variational posterior and the

mixture of Gaussians prior. Jiang et al. [7] use two separate networks for reconstruction and

the generation process. Further, to effectively generate images from a specific data mode and

to increase image quality, the sampled points have to surpass a certain posterior threshold and

are otherwise rejected. This leads to an increased computational effort. The MoE Decoder of

our model, which is used for both reconstruction and generation, does not need such a

threshold.

Zhang et al. [3] have introduced a mixture of autoencoders (MIXAE) model. The latent

representation of the MIXAE is defined as the concatenation of the latent representation
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vectors of each single autoencoder in the model. Based on this concatenated latent representa-

tion, a Mixture Assignment Network predicts probabilities which are used in the Mixture

Aggregation to form the output of the generator network. Each AE model learns the manifold

of a specific cluster, similarly to our MoE Decoder. However, MIXAE does not optimize a vari-

ational distribution, such that generation of data from a distribution over the latent representa-

tion is not possible, in contrast to the MoE-Sim-VAE (Fig 2).

Results

In the following we report superior clustering and generating results of MoE-Sim-VAE on real

world problems. First, we evaluate MoE-Sim-VAE on images from MNIST and show why a

MoE decoder is beneficial. Second, we present significantly better clustering results on mouse

organ single-cell RNA sequencing data. Third, we apply MoE-Sim-VAE to cluster cell types in

Peripheral Blood Mononuclear Cells using CyTOF measurements on 272 distinct data sets sig-

nificantly better than competitors. (Exact model and optimization details as well as preprocess-

ing steps for all experiments can be found in S1 Text)

Unsupervised clustering, representation learning and data generation on

MNIST

We trained a MoE-Sim-VAE model on images from MNIST. We compared our model against

multiple models which were recently reviewed in Aljalbout et al. [1], and specifically against

VaDE [7] which shares similar properties with MoE-Sim-VAE. The VaDE model is compris-

ing a mixture of Gaussians as underlying distribution in the latent representation of a Varia-

tional Autoencoder (more detailed comparison in Section Related work).

Fig 2. Generation of MNIST digit images. Data points from the latent representation were sampled from the variational distribution (A) which is

learned to be a mixture of standard Gaussians and then clustered and gated (B) to the data-mode-specific experts of the MoE Decoder (C). (D) All

samples from the variational distribution were correctly classified and therefore also correctly gated.

https://doi.org/10.1371/journal.pcbi.1009086.g002

PLOS COMPUTATIONAL BIOLOGY Mixture-of-Experts Variational Autoencoder for single cell data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009086 June 30, 2021 6 / 17

https://doi.org/10.1371/journal.pcbi.1009086.g002
https://doi.org/10.1371/journal.pcbi.1009086


We compare the models with the Normalized Mutual Information (NMI) criterion but also

classification accuracy (ACC) (Table 1). The MoE-Sim-VAE outperforms the other methods

w.r.t. clustering performance when comparing NMI and achieves the second-best result when

comparing ACC. Note that for comparability reasons we used the number of experts k = 10 in

our model to fit the existing number of digits in MNIST. To prove that MoE-Sim-VAE is able

to learn the correct number of experts, we report a study on synthetic data in supporting infor-

mation (S1 Text and S1 Fig).

We use a UMAP projection [10] of MNIST as our similarity measure and then apply k-

nearest-neighbors of each sample in a batch. In an ablation study, we show the importance of

the similarity matrix to create a clear separation of the different digits in the latent representa-

tion. Therefore, we computed a test statistic based on the Maximum Mean Discrepancy

(MMD) [28, 29] which can be used to test if two samples are drawn from the same distribution

(see Section 1.2 in S1 Text). In this work we use MMD to test if samples of different clusters of

the latent representation are similar. When sampling twice from the same cluster we get an

average MMD test statistic of tsim = −0.05 with, and t = −0.11 without similarity matrix,

whereas the average distance between samples from two different clusters is significantly larger

when training with similarity matrix tsim = 221.66 compared to when training without

t = 49.29. This clearly suggests better separation on the latent representations between the clus-

ters when being able to define a respective similarity (S2 Fig).

In addition to the clustering network, we can make use of the latent representation for

image generation purposes. The latent representation is trained as a mixture of standard Gaus-

sians. The means of these Gaussians are the centers of the clusters trained via the clustering

network. Therefore, the variational distribution can be sampled from and gated to the cluster-

specific expert in the MoE-decoder. The expert then generates new data points for the specific

data mode. Results and the schematic are displayed in Fig 2.

Table 1. Performance comparison of our method MoE-Sim-VAE with several published methods on MNIST. The

table is mainly extracted from [1, 21] and complemented with results of interest. (“-”: metric not reported).

Method NMI ACC

JULE [22] 0.915 -

CCNN [23] 0.876 -

DEC [17] 0.80 0.843

DBC [18] 0.917 0.964

DEPICT [4] 0.916 0.965

DCN [5] 0.81 0.83

Neural Clustering [19] - 0.966

UMMC [20] 0.864 -

VaDE [7] 0.876 0.945

TAGnet [24] 0.651 0.692

IMSAT [25] - 0.984

Aljalbout et al. [1] 0.923 0.961

MIXAE [3] - 0.945

Spectral clustering [26] 0.754 0.717

SpectralNet [26] 0.924 0.971

ClusterGAN [21] 0.89 0.95

Info-GAN [27] 0.86 0.89

GAN with bp [21] 0.90 0.95

MoE-Sim-VAE (proposed) 0.935 0.975

https://doi.org/10.1371/journal.pcbi.1009086.t001
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In an ablation study, we compare the two models MoE-Sim-VAE and VaDE [7] on generat-

ing MNIST images with the request for a specific digit. The goal is to show that a MoE decoder,

as proposed in our model, is beneficial. We focus our comparison to VaDE since this model,

as the MoE-Sim-VAE, resorts to a mixture of Gaussian latent representation but differs in gen-

erating images by means of a single decoder network instead of a Mixture-of-Expert decoder

network. The rationale for our design choice is to ensure that smaller sub-networks learn to

reproduce and generate specific modes of the data, in this case of specific MNIST digits.

To show that both models’ latent representations are separating the different clusters well,

we computed the Maximum Mean Discrepancy (MMD) [28], similar as introduced above. An

MMD statistic of tMoE-Sim-VAE = 256.31 and tVaDE = 355.14 suggests separation of the clusters

when sampling in the latent representations of both models. Therefore, both latent representa-

tions can separate the clusters of respective digits well, such that the decoder gets well-defined

samples to generate the requested digit. Hence, the main difference of generating specific digits

arises in the decoder/generator networks (S3 Fig).

We evaluated the importance of the MoE-Decoder to (1) accurately generate requested dig-

its and (2) be efficient in generating requested digits. Specifically, we sampled 10, 000 points

from each mixture component in the latent representation, generated images, and used the

model’s internal clustering to assign a probability to which digits were generated. To generate

correct and high-quality images with VaDE, the posterior of the latent representation needs to

be evaluated for each sample. This was done for the different thresholds ϕ 2 [0.0, 0.1, 0.2, � � �,

0.9, 0.999]. The default threshold [7] used was ϕ = 0.999. To compare the separation of the

clusters in the latent representation above using MMD, we used a threshold of only ϕ = 0.8,

which already is enough to have higher separation based on MMD. Instead of thresholding the

latent representation, we ran the generation process for MoE-Sim-VAE for each threshold

with the same settings. To generate images from VaDE we used the Python implementation

(https://github.com/slim1017/VaDE) and model weights publicly available from Jiang et al.
[7].

As a result the MoE-Sim-VAE generates digits more accurately with fewer resources

required, especially when comparing the number of iterations required to fulfill the default

posterior threshold of 0.999. VaDE needs nearly 2 million iterations to find samples that fulfill

the aforementioned threshold criterion whereas the MoE-Sim-VAE only requires 10, 000 for a

comparable sample accuracy. In comparison, the mean accuracy over all thresholds for MoE--

Sim-VAE is 0.970, whereas VaDE reaches on average only 0.944 (S4, S5 and S6 Figs).

Clustering organ-specific single cell RNA-seq data

Single-cell RNA-sequencing (scRNA-seq) measurements allow measuring transcriptomes of

tens of thousands of single cells. Clustering of the resulting data into groups representing bio-

logical phenotypes, such as cell type or tissue type, constitutes a major analysis task in scRNA-

seq studies. In the following, we present how MoE-Sim-VAE outperforms the methods Gauss-

ian Mixture Models (GMM), k-means, hierarchical clustering, HDBSCAN, fuzzy-c-means

(FCM), Louvain and scVI. [30–33] for clustering the scRNA-seq data of the Tabula Muris

study covering seven different mouse organs [34]. The method scVI is a well established deep

generative modeling framework designed for single cell transcriptomic data modeling the

count data with a Poisson distribution, and allows to perform several downstream analysis

tasks, such as clustering. Also in this example we used MoE-Sim-VAE with a BCE loss instead

of a mean squared error loss for MoE-Sim-VAE, motivated due to better convergence proper-

ties in combination with artificial neural networks [15], and due to literature where BCE was

used as reconstruction loss on RNA-seq data for visualization purposes [35].
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MoE-Sim-VAE allows for incorporation of a user defined similarity and therefore also

prior knowledge about the data. From literature we identified for each organ a representing

signature gene and use each to encode prior expectation of organ assignment for each cell

measurement. Namely, we take advantage of the high expressions of Lpl in the heart, Miox in

kidney, Hpx in liver, Tspan1 in large intestine, Prx in lung, Cd79a in spleen and Dntt in thymus

[36–39]. Single cells which show above average expression of a respective signature gene are

considered to be similar. For the training of MoE-Sim-VAE we only considered cells which

show above average expression in exactly one of the respective organ-specific signature genes

(does not apply for the test data). To highlight the influence of the similarity prior in this exam-

ple, we report the average accuracy of 0.92 of having a correct similarity assignment for each

organ based on above average expression (S1 Table).

MoE-Sim-VAE outperforms all above mentioned baseline approaches in clustering the sin-

gle cells with respect to the organ of origin. Our model reaches a F-measure of 0.748 and is

therefore close to 0.1 better compared to the second best competitor. We performed a hyper-

parameter screening for the competitor methods (more details in Chapter 4 in S1 Text) and

chose the best results achieved on the test dataset based on the F-measure as well. In Table 2

we present the exact results in detailed comparison. In Fig 3A and 3B) we show a Principal

Component Analysis (PCA) of the original data as well as of the latent representation of MoE-

Sim-VAE. It can be seen that the organs are better separated in the latent representation

inferred from our model which enables for better clustering results of MoE-Sim-VAE

(Fig 3C)). In Fig 3D–3I) we present the results of the competitor methods in the latent repre-

sentation of MoE-Sim-VAE and can clearly see that Louvain performs second best, but poorly

separates cells from organs which are close to each other or overlap in the original PCA repre-

sentation.Fig 3J) visualizes the Leiden clustering results on the latent representation inferred

from scVI. This latent space shows a more detailed separated latent representation but with

overlapping or separated true labels. For example, samples from the heart are separated in up

to seven different groups. This leads to less precise clustering results concerning the task of

identifying tissue types, but might be beneficial when clustering cell types. This also highlights

Table 2. Results on clustering mouse organs based on RNA-seq. We compare MoE-Sim-VAE to the competitor

methods Gaussian Mixture Models (GMM), k-means, Hierarchical clustering, DBSCAN, FCM and Louvain clustering.

Method F-measure NMI

GMM

PCA k = 20

0.632 0.487

k-means

PCA k = 40

0.606 0.443

hierarchical

PCA k = 20

0.643 0.534

HDBSCAN

PCA k = 20

min cluster size = 50

0.615 0.517

fuzzy-c-means

PCA k = 50

m = 4

0.549 0.336

Louvain

PCA k = 30

resolution = 0.01

0.679 0.584

scVI

leiden clustering

resolution = 0.06

0.653 0.561

MoE-Sim-VAE (proposed) 0.748 0.519

https://doi.org/10.1371/journal.pcbi.1009086.t002

PLOS COMPUTATIONAL BIOLOGY Mixture-of-Experts Variational Autoencoder for single cell data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009086 June 30, 2021 9 / 17

https://doi.org/10.1371/journal.pcbi.1009086.t002
https://doi.org/10.1371/journal.pcbi.1009086


Fig 3. Results of clustering mouse organs from single-cell RNA-sequencing data. A) Principal Component Analysis of the

original data with true labels. The remaining panels are UMAP representations of the latent representation inferred from

MoE-Sim-VAE with B) true labels. C) predicted labels from MoE-Sim-VAE. D) predicted labels from Gaussian Mixture Model. E)

predicted labels from k-means. F) predicted labels from hierarchical clustering. G) predicted labels from DBSCAN. H) predicted

labels from fuzzy-c-means. I) predicted labels from Louvain. J) true and predicted labels on scVI inferred latent representation

using Leiden clustering.

https://doi.org/10.1371/journal.pcbi.1009086.g003
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the importance of being able to incorporate prior knowledge when inferring latent representa-

tions for specific clustering tasks, such as grouping tissue types.

Learning cell type composition in peripheral blood mononuclear cells using

CyTOF measurements

In the following, we want to assess representation learning performance on the real-world

problem of cell type definition from single-cell measurements. Cytometry by time-of-flight

mass spectrometry (CyTOF) is a state-of-the-art technique allowing measurements of up to 1,

000 cells per second and in parallel over 40 different protein markers of the cells [40]. Defining

biologically relevant cell subpopulations by clustering this data is a common learning task [41,

42].

Many methods have been developed to tackle the problem introduced above and were com-

pared on four publicly available datasets in Weber and Robinson [42]. The best out of 18 meth-

ods were FlowSOM [43], PhenoGraph [44] and X-shift [45]. These are based on k-nearest-

neighbors heuristics, either defined from a spanning graph or from estimating the data den-

sity. In contrast to these methods, MoE-Sim-VAE can map new cells into the latent representa-

tion, assign probabilities for cell types, and infer an interpretable latent representation,

allowing intuitive downstream analysis by domain experts.

We applied MoE-Sim-VAE to the same datasets as in Weber and Robinson [42] and

achieve superior results in classification using the F-measure [41] in three out of four datasets.

Similarly as in Weber and Robinson [42], we trained MoE-Sim-VAE 30 times and report in

Table 3 (adopted from Weber and Robinson [42]) the means and standard deviation across all

runs (S7 Fig). As a MoE-Sim-VAE similarity measure we used a UMAP projection with Can-

berra distance [46] as metric and computed similarly to the MNIST experiments the k-near-

est-neighbors of each sample in the batch. This applies for all CyTOF experiments.

Table 3. Comparison of MoE-Sim-VAE performance to competitor methods in defining cell type composition in CyTOF measurements. The results in the table are

extracted from the review paper of [42], where 18 methods are compared on four different datasets. Our model outperforms the baselines on three out of four data sets.

Method Levine_32dim Levine_13dim Samusik_01 Samusik_all

ACCENSE 0.494 0.358 0.517 0.502

ClusterX 0.682 0.474 0.571 0.603

DensVM 0.66 0.448 0.239 0.496

FLOCK 0.727 0.379 0.608 0.631

flowClust N/A 0.416 0.612 0.61

flowMeans 0.769 0.518 0.625 0.653

flowMerge N/A 0.247 0.452 0.341

flowPeaks 0.237 0.215 0.058 0.323

FlowSOM 0.78 0.495 0.707 0.702

FlowSOM_pre 0.502 0.422 0.583 0.528

immunoClust 0.413 0.308 0.552 0.523

k-means 0.42 0.435 0.65 0.59

PhenoGraph 0.563 0.468 0.671 0.653

Rclusterpp 0.605 0.465 0.637 0.613

SamSPECTRAL 0.512 0.253 0.263 0.138

SPADE N/A 0.127 0.169 0.13

SWIFT 0.177 0.179 0.202 0.208

X-Shift 0.691 0.47 0.679 0.657

MoE-Sim-VAE (proposed) 0.70 ± 0.04 0.68 ± 0.01 0.76 ± 0.03 0.74 ± 0.02

https://doi.org/10.1371/journal.pcbi.1009086.t003
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Further, we trained a MoE-Sim-VAE model with a fixed number of experts k = 15 (thereby

slightly overestimating the true number of subpopulations) on 268 datasets from Bodenmiller

et al. [47] and achieve superior clustering results of cell subpopulations in the data when com-

paring to state-of-the-art methods in this field (PhenoGraph, X-Shift, FlowSOM). Results are

summarized in Fig 4 as well as exactly listed in S2 Table. Furthermore, we visualize in detail

the reconstruction of the original data per expert using a Principal Component Analysis on the

original data space. This visualization also shows that many experts were silenced during the

training, since only seven out of possible 15 experts where selected (S8 Fig).

Discussion

Our MoE-Sim-VAE model can infer similarity-based representations, perform clustering

tasks, and efficiently as well as accurately generate high-dimensional data. The training of the

model is performed by optimizing a joint objective function consisting of data reconstruction,

clustering, and KL loss, where the latter regularizes the latent representation. On the bench-

mark dataset of MNIST, we present superior clustering performance and the efficiency and

accuracy of MoE-Sim-VAE in generating high-dimensional data. On the biological real-world

tasks of clustering mouse organs and defining cell subpopulations in complex single-cell data,

we show superior performances compared to state-of-the-art methods on a vast range of over

270 datasets and therefore demonstrate the MoE-Sim-VAE’s real-world usefulness.

To achieve outstanding clustering performances the choice of the similarity measure as well

as the hyperparameter tuning, such as for the loss coefficients, play a crucial role. As shown in

Fig 4. Results on clustering cell types on CyTOF measurements. Comparison of MoE-Sim-VAE to the most popular

competitor methods on defining cell types in peripheral blood mononuclear cell data via CyTOF measurements. On

the x-axis different inhibitor treatments are listed whereas the y-axis reports the respective F-measure. Each violin plot

represents a run on a different inhibitor with multiple wells, whereas the line connects the means of the performance

on the specific inhibitor.

https://doi.org/10.1371/journal.pcbi.1009086.g004
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the ablation study for clustering MNIST, setting the similarity clustering loss to zero has a tre-

mendous effect on the learned latent representation and the clustering performance. In gen-

eral, we could observe that the loss coefficients of the reconstruction loss and clustering loss

need to be selected close to one, whereas the loss coefficient for the KL loss is closer to zero. A

less crucial role plays the selection of number of experts, as shown on clustering synthetic data,

on the example of clustering mouse organs based on single cell RNA-sequencing data, or

when clustering cell types from mass cytometry measurements. Even when defining more

experts than the number of expected clusters, MoE-Sim-VAE did not target each single expert.

A minimum number of required experts to distribute the different modes of the data with

respect to the defined similarity where selected by the model.

Future work might include to add adversarial training to the MoE decoder, which could

improve image generation to create even more realistic images. Also, specific applications

might benefit from replacing the Gaussian with a different mixture model. Especially biologi-

cal data is not always generated from Gaussian distributions. So far the MoE-Sim-VAE’s simi-

larity measure has to be defined by the user. Relaxing this requirement and allowing for

learning a useful similarity measure automatically for inferring latent representations will be

an interesting extension to explore. This could be useful in a weakly-supervised setting, which

often occurs for example in clinical data consisting of healthy and diseased patients. Minor

details between a healthy and diseased patient might make a huge difference and could be

learned from the data using neural networks.

In summary, we expect the MoE-VAE model, as well its future extensions, to be a valuable

contribution to the computational biology toolbox to identify biological group structure in

high-dimensional molecular data modalities under consideration of weak prior knowledge, in

particular including single-cell omics data.

Supporting information

S1 Text. Supporting information for Mixture-of-Experts Variational Autoencoder for clus-

tering and generating from similarity-based representations on single cell data.

(ZIP)

S1 Fig. Testing MoE-Sim-VAE on data sampled from a Gaussian mixture model with ran-

domly sampled parameters. We tested for specific number of synthetic mixture components

and iterating number of experts. Until a number of GMM components of23 MoE-Sim-VAE is

precise in learning the real number of clusters even when allowing the model to have 40

experts.

(EPS)

S2 Fig. Ablation study on the similarity matrix S. Both figures show the MMD statistic and

UMAP [10] projection of reconstructed MNIST digits computed on the latent representation.

A) shows the results on MoE-Sim-VAE trained with the similarity matrix. The different digits

separate well which can also be seen in the heatmap showing the MMD statistics between all

digits. In comparison, B) shows results of the MoE-Sim-VAE model ignoring the similarity

matrix setting the loss coefficient to zero. One can observe that the MMD statistic, which can

be seen as a similarity measure of two distributions, is way lower compared to the model

including the similarity matrix. Further, also the UMAP projection confirms less separation in

the latent representation between the different digits.

(EPS)

S3 Fig. Comparison of two sample MMD test on the distributions from the different mix-

ture components in the latent representation. The heatmaps on the left side show the
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estimation of the MMD which can be seen as the distance between pairs of distributions. The

figures on the right side show the separation of the cluster in the latent representation based

on a dimensionality reduction via UMAP [10]. A) shows the results for the clusters of VaDE at

a posterior threshold of 0.8 which is the first threshold which shows total separation of all clus-

ters. B) shows the separation of the clusters in latent space learned from MoE-Sim-VAE. For

both methods, all distributions belonging to clusters of different respective digits show a larger

distance compared to the diagonal of matching distributions, such that we generate images

from a well-separated latent representation for both methods and therefore the main differ-

ence comes from the decoders.

(EPS)

S4 Fig. Comparison of data generation process between Moe-Sim-VAE and VaDE. A)

shows the accuracy of how certain a specific digit can be generated from the respective cluster

in the latent representation whereas B) compares the number of runs until a sample from the

latent representation satisfied the posterior criterion from VaDE. It needs to be mentioned

that MoE-Sim-VAE does not require any thresholding such that we ran the data generation

process multiple times with the same settings to compare with VaDE. In total 10000 samples

are generated for each digit.

(EPS)

S5 Fig. Confusion map for data generation using MoE-Sim-VAE. Besides the systematic

error of confusing digit 5 and 8, which can also depend on the clustering network, the digit

generation of our model performs very precise with a high accuracy of generating the digit

asked for. In comparison to VaDE [7] our model does not need any threshold on samples

from the latent representation which reduces the computational costs by far.

(EPS)

S6 Fig. Confusion maps for data generation using VaDE. A) Posterior threshold 0.0. B) Pos-

terior threshold 0.1. C) Posterior threshold 0.2. D) Posterior threshold 0.3. E) Posterior thresh-

old 0.4. F) Posterior threshold 0.5. G) Posterior threshold 0.6. H) Posterior threshold 0.7. I)

Posterior threshold 0.8. J) Posterior threshold 0.9. K) Posterior threshold 0.999 (default for

VaDE [7]).

(EPS)

S7 Fig. Reproducibility of MoE-Sim-VAE on the four datasets. Similar as in Weter et al.
[42], we show the reproducibility of MoE-Sim-VAE on the four datasets when running MoE--

Sim-VAE 30 times. The variance on defining the correct subpopulations of MoE-Sim-VAE is

quite small and therefore also an improvement to many methods compared in Weber et al.
[42].

(EPS)

S8 Fig. Reconstruction of data modes per expert. PCA plot showing the reconstruction (red)

of original data (colored underneath) separated per MoE-expert on the Inhibitor GDC-0941

and Well A09 from the Bodenmiller [47] data. This example reached a F-measure of 0.8606.

The experts with ID 2, 3, . . ., 9 where not selected via the gating network. The red samples in

each plot visualize the reconstructed data. A) Expert ID = 0. B) Expert ID = 1. C) Expert

ID = 10. D) Expert ID = 11. E) Expert ID = 12. F) Expert ID = 13. G) Expert ID = 14. H) Visu-

alization of the reconstruction taking the data modes from all selected experts together. I) PCA

plot of the true labels without any reconstruction overlaid.

(EPS)
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S1 Table. Signature gene accuracy. Accuracy of assigning a organ similarity based on high

gene expression of prior selected organ specific signature genes for the split training and test

data set. We computed the balanced accuracy for each single organ vs. the rest, respectively.

(XLS)

S2 Table. Exact results on 268 mass cytometry experiments. CyTOF measurements from

peripheral blood mononuclear cells (PBMCs) were taken and the goal is to define the different

cell types present in the data. The ground truth was defined using the SPADE algorithm [48],

which can visualize the high dimensional data in such a way to be able to manual gate the cells.

We compare to other fully unsupervised methods as FlowSOM, X-shift and PhenoGraph and

achieve in most cases the best F-measure.

(XLS)
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