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Guidelines and Guidance

Microarray technology measures the mRNA levels 
of tens of thousands of genes in tissue samples 
simultaneously in a high-throughput and cost-

effective manner. Since its introduction over a decade ago [1], 
it has found widespread use in the fields of molecular genetics 
and functional genomics. It has been applied in order to 
understand underlying biological mechanisms [2], to discover 
novel subgroups of diseases [3–5], to examine drug response 
[6,7], to classify patients into disease groups [3], and to 
predict disease outcomes [8–10]. Some molecular signatures 
discovered with microarray technology are now being 
evaluated in prospective randomized clinical trials [11,12].

Despite their great promise, microarray-based studies may 
report findings that are not reproducible [13] or not robust 
to the mildest of data perturbations [14,15]. Common causes 
include improper analysis or validation, insufficient control of 
false positives, and inadequate reporting of methods [16,17]. 
The situation is exacerbated by the small sample sizes relative 
to large numbers of potential predictors; typically tens of 
thousands of probes are investigated in only tens or hundreds 
of biological samples.

Generalizability across studies [18] also needs to be 
assessed before considering widespread practical application. 
For example, the findings of a study using historical controls 
from a particular geographical region may not be applicable 
to newer cohorts of patients or different regions.

Combining information from multiple existing studies can 
increase the reliability and generalizability of results. The use 
of statistical techniques to combine results from independent 
but related studies is called “meta-analysis.” However, 
the term meta-analysis is also widely used to describe the 
whole study process (as we do here), not just the statistical 
techniques, for which an alternative term is a “systematic 
review.” Through meta-analysis, we can increase the statistical 
power to obtain a more precise estimate of gene expression 
differentials, and assess the heterogeneity of the overall 
estimate. Meta-analysis is relatively inexpensive, since it makes 
comprehensive use of already available data.

Indeed, the advantages of meta-analysis of gene expression 
microarray datasets have not gone unnoticed by researchers 
in various fields [19–28]. Several meta-analysis techniques 
have been proposed in the context of microarrays 
[19,22,29–40]. However, no comprehensive framework exists 
on how to carry out a meta-analysis of microarray datasets.

There is a considerable literature to guide the whole review 
process, including statistical methods for clinical trials and 
epidemiological studies [41–43]. As yet, however, there is 
little guidance for conducting a meta-analysis of microarray 

datasets. Therefore, in this paper, we disentangle this 
complex topic and identify seven distinct key issues specific to 
meta-analysis of microarray datasets, each comprising several 
steps. The first five issues are related to data acquisition and 
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Summary Points

have led to the generation of many highly complex datasets 
that often try to address similar biological questions.

from independent but related studies, is a relatively 
inexpensive option that has the potential to increase both the 
statistical power and generalizability of single-study analysis.

general, is desirable, and is much enhanced when raw data are 
available.

in conducting meta-analysis of microarray datasets: (1) Identify 
suitable microarray studies; (2) Extract the data from studies; 
(3) Prepare the individual datasets; (4) Annotate the individual 
datasets; (5) Resolve the many-to-many relationship between 
probes and genes; (6) Combine the study-specific estimates; 
(7) Analyze, present, and interpret results.

reviewing such a meta-analysis. 

of high-throughput biological data analysis.
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curation. We discuss the sixth issue—choosing a meta-analysis 
technique—using the two-class comparison as an example. 
The seventh issue of analyzing, presenting, and interpreting 
data is discussed briefly using an illustrative meta-analysis of 
25 datasets. We provide a practical checklist, shown in Table 
1, that should enable the reader to make informed decisions 
on how to conduct a meta-analysis, and to understand better 
the underlying concepts that make this approach so attractive 
for analysis of microarray data.

Issue 1: Identify Suitable Microarray Datasets

The first step in any research project is to clearly define the 
objectives (Step 1). Meta-analysis could be used to identify 
genes expressed differentially between two groups [19,22,29,3
0,32,33,35,37,38,40], to robustify cross-platform classification 
[34], to identify overlaps between samples from heterologous 
datasets [30], to identify co-expressed genes, or to reconstruct 
gene networks [31,36,39].

Having a detailed review protocol can further help to 
clarify the research objectives and methods and to minimize 

bias from unplanned data-driven analysis. We suggest 
developing the review protocol by outlining the solutions 
to the steps in the checklist shown in Table 1. For example, 
Step 7 (Check the selected study against inclusion-exclusion 
criteria) might be expanded in the review protocol as follows: 
“Two reviewers will check the eligibility of the identified 
studies, with disagreements resolved by a third reviewer. A 
log of excluded studies, with reasons for exclusions, will be 
maintained.” The protocol can be turned into a useful project 
management tool by incorporating timelines and division of 
labor.

The inclusion-exclusion criteria (Step 2) are eligibility 
criteria for studies that will help achieve the stated objectives. 
These criteria could be biological (e.g., specific disease, type 
of outcome, type of tissues) or technical (e.g., density of array, 
minimum number of arrays). The retrieved articles must be 
evaluated as to whether they met the inclusion criteria.

Once the inclusion-exclusion criteria have been defined, 
one needs to perform a comprehensive literature search 
(Step 3) to identify suitable studies, usually based on 

Table 1. A Checklist for Conducting Meta-Analysis of Microarray Datasets

Step Action

Identify suitable microarray studies (Issue 1)
1 Formulate objectives and a review protocol.

2 Define inclusion-exclusion criteria and suitable keywords.

3

4 Search public microarray repositories listed in Table 2.

5 Contact collaborators and experts in the field to help find published and unpublished data.

6 Search the reference section of retrieved studies for other relevant studies.

7 Check the selected study against inclusion-exclusion criteria. 

Extract the data from studies (Issue 2)
8 Scan the literature to identify FLEO data (e.g., CEL, GPR files).

9

10 If multiple publications use overlapping data, identify the most comprehensive one. Combine any training and validation dataset together. 

Prepare the individual datasets (Issue 3)
11 Identify and remove any arrays with poor quality.

12 Preprocess the FLEO data into a GEDM.

13 Check for batch effects among arrays, especially in large studies.

14 Filter out any probes with poor spot quality in the arrays (optional).

15 Aggregate any technical replicates.

16 Check that the processed expression values from multiple platforms are compatible. 

Annotate the individual datasets (Issue 4)
17 Identify either (a) the probe sequence or (b) the most sequence-specific probe annotation information.

18 Either (a) cluster the probe sequences or (b) map the most sequence-specific probe annotation to a gene-level identifier. Use the same mapping build for all 

datasets.

Resolve the many-to-many relationship between probes and genes (Issue 5)
19 Discard any probe that does not map to any GeneID.

20 For every GeneID within a study, calculate the study-specific estimate(s).

21 If a probe maps to multiple GeneIDs within a study, “expand” it by replacing it with a new record for each GeneID with the same study-specific estimate(s) or 

expression profile.

22 For GeneIDs with multiple records within a study, “summarize” them by either selecting one of the records or by aggregating them. 

Combine the study-specific estimates (Issue 6)
23 For every GeneID, identify the studies that provide usable information. Optionally, discard any GeneID that is not found in at least a prespecified number of 

studies.

24 For every GeneID, combine the study-specific estimates across the studies using a meta-analytic technique. Record the resulting summary statistic(s).

25 Calculate the nominal p-value of the summary statistic(s) for every GeneID and adjust for multiple testing. 

Analyze, present, and interpret results (Issue 7)
26 Examine the sensitivity of results to individual studies with a leave-one-out analysis and by varying the selections made (e.g., type of data available).

27 Present the summary statistics graphically (e.g., forest plot) for genes of interest.

28 Analyze findings using computational tools (e.g., gene set enrichment analysis).

29 If possible, validate using an alternative technology and/or different samples.

30 Consider strength of evidence, limitations, and generalizability of current findings.

doi:10.1371/journal.pmed.0050184.t001
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appropriate keywords for automated queries. We recommend 
searching all the major online repositories of abstracts listed 
in Table 2 to maximize data acquisition. Reading the latest 
review articles and directly contacting researchers in relevant 
fields (Step 5) may help to identify both work potentially 
missed by automated search, and ongoing research efforts 
with possibly unpublished data.

In the case of microarrays, one should also search public 
microarray data repositories [44–46] recommended by the 
Minimum Information About a Microarray Experiment 
(MIAME) requirements [47,48], as well as a few more 
specialized repositories [49,50], listed in Table 2 (Step 4).

Having identified potentially eligible studies from abstracts, 
one needs to retrieve the articles, where available, and 
confirm eligibility (Step 7). This process may best be done by 
at least two people.

Issue 2: Extract Data from Studies

Before we consider how to extract the data, we need to first 
decide what type of data to extract. This partially depends 
on the choice of meta-analysis technique (Issue 6), but the 
underlying principles will be discussed here. Figure 1 shows 
the four types of data arising from microarray analysis.

A published gene list (PGL) represents the genes that 
are declared as differently expressed in a given study. PGLs 
are often presented in the main or supplementary text 
of microarray-based studies and are thus easy to obtain. 
Unfortunately, such PGLs are of limited use for meta-
analysis since they represent only a subset of the genes 
actually studied, and information from many genes will 
be completely absent. Furthermore, PGLs depend heavily 
on the preprocessing algorithm, the analysis method, the 
significance threshold, and the annotation builds used in 
the original study, all of which usually differ between studies 
[51]. Thus individual patient-level data (IPD), which for 
microarrays represents the measurement for every probe in 
every hybridization, are far more useful. Ioannidis et al. [52] 
discuss further the advantages of a meta-analysis using IPD 
versus PGLs.

The gene expression data matrix (GEDM) represents the 
gene expression summary for every probe and sample and 
is thus ideally suited as input for meta-analysis. Published 
GEDMs, however, are unsuitable for meta-analysis because 
they depend on the choice of the preprocessing algorithms 
used, which may produce non-combinable results. At 
present, image files are neither routinely deposited in public 

microarray repositories nor technologically uniform enough 
to be used as input for meta-analysis.

In order to eliminate bias due to specific algorithms used 
in the original studies, and to allow consistent handling 
of all datasets, we recommend obtaining the feature-level 
extraction output (FLEO) files (Step 8), such as CEL and 
GPR files, and converting them to GEDMs in a consistent 
manner (see Issue 3). FLEO files are likely to be available, 
especially for newer studies, because the widely supported 
MIAME requirements [48] now ask authors to make the 
FLEO data available in public microarray repositories.

If the main text and supplementary information do not 
state the location of the FLEO data, then one should try 
searching public microarray repositories or the research 
group’s Web page before contacting the authors (Step 9). If 
multiple publications use overlapping sets of data, one should 
identify and use the most comprehensive dataset available 
(Step 10), and combine any datasets that were split for 
algorithm training and validation purposes.

Issue 3: Prepare Datasets from Different Platforms

FLEO data have to be converted into GEDMs, which can 
then be used as input for the meta-analysis. The same 
preprocessing algorithm should be used for multiple studies 
conducted on the same platform. To combine studies from 
different platforms, which may have different designs and 
thus have different options of preprocessing algorithms, 
it is desirable to try to identify comparable preprocessing 
algorithms. There are many microarray platforms, but we 
focus on the most popular: the Affymetrix platform and a set 
of platforms that could be generically classified as “two-color 
technology” platforms.

Before the preprocessing step, one may wish to first 
identify and remove any arrays that are of poor quality (Step 
11). There are many comprehensive, free, and open-source 
packages in BioConductor [53] for quality assessment 
including arrayMagic [54] for the two-color technology 
platform and Simpleaffy [55], and affyPLM [56] for the 
Affymetrix platform.

Next, all good quality arrays should be preprocessed 
consistently to remove any systematic differences (Step 12). 
This is an important stage, since preprocessing directly affects 
the gene expression measurements, and thus all subsequent 
steps. In practice, researchers are likely to combine datasets 
from multiple platforms and there are very few preprocessing 
algorithms that can be applied universally, such as the 

Table 2. Useful Internet Resources to Identify Studies for Meta-Analysis of Microarray Studies

Database Web site Reference

Online repositories of abstracts
PubMed http://www.pubmed.gov/

Google Scholar http://scholar.google.com/

http://wos.mimas.ac.uk/

SCOPUS (requires subscription) http://www.scopus.com/

Microarray repositories recommended by MIAME for mandatory data deposition
Array Express http://www.ebi.ac.uk/arrayexpress/ [44]

CIBEX http://cibex.nig.ac.jp/ [45]

Gene Expression Omnibus (GEO) http://www.ncbi.nlm.nih.gov/geo/ [46]

Other useful sites for data identification
ONCOMINE http://www.oncomine.org/ [49]

Stanford Microarray Database (SMD) http://smd.stanford.edu/ [50]

doi:10.1371/journal.pmed.0050184.t002
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variance stabilizing normalization [57], which accounts for 
the dependence between variance and mean of the output 
expression measure. By contrast, it is more common to use 
different preprocessing algorithms for each platform [58–61]. 
Unfortunately, there is currently no consensus on which 
preprocessing algorithm(s) produce comparable expression 
measurements across different platforms.

Third, one may also want to check and correct for 
any batch effects (Step 13), especially in large studies. 
Unsupervised visualization [62] can help to identify any 
grouping caused by experimental factors. 

Fourth, one needs to decide whether to use all available 
probes on the array, or a filtered set of probes (Step 14). It 
is common to filter out probes that have visible defects (e.g., 
using quality flags), probe-set calls (e.g., absent/present calls 
from MAS 5.0 preprocessing algorithm), or probes that show 
little variation (e.g., using minimum coefficient of variation) 
in single-study analysis. However, it is unclear if such filtering 
is beneficial from a meta-analysis perspective.

Fifth, one needs to deal with multiple technical replicates 
(i.e., multiple measurements from the same biological 
subject) if relevant (Step 15). These should not be treated 
as independent observations. One approach is to select one 
of the replicates at random. Alternatively, one can average 
the replicates. If we assume that all technical replicates have 
similar array quality, then a simple average or median can be 
used.

Finally, one could check that the processed expression 
values from multiple platforms are comparable (Step 
16). Microarray platform manufacturers typically include 
housekeeping genes or negative controls, which are genes 
expected to be transcribed at a constant level, and may 
be used for this purpose. Additionally, one may use a 
visualization technique such as multidimensional scaling 
[63,64] to inspect for any clustering of arrays by studies.

Issue 4: Annotate the Individual Datasets

Microarray probe designers use short, highly specific regions 
in genes of interest because using the full-length gene 
sequence can lead to non-specific binding or noise. Different 
design criteria lead to the creation of multiple probes for the 
same gene. Therefore, one needs to identify which probes 
represent a given gene within and across the datasets. 

One option is to cluster the probes based on the sequence 
data (Step 17a) using the BLAST algorithm [65], for 
example, by using the Ensembl browser [66] (Step 18a). It 
has been shown that sequence-matched datasets can increase 
cross-platform concordance [67]. Such methods can also 

accommodate Affymetrix probe-set redefinitions [68], which 
better addresses the problem of alternative splicing. However, 
the probe sequence may not be available for all platforms 
and the clustering of probe sequences could be computer 
intensive for very large numbers of probes.

Alternatively, one can map probe-level identifiers such as 
I.M.A.G.E. CloneID, Affymetrix ID, or GenBank accession 
numbers to a gene-level identifier such as UniGene, RefSeq, 
or Entrez Gene ID. UniGene [69], which is an experimental 
system for automatically partitioning sequences into non-
redundant gene-oriented clusters, is a popular choice to 
unify the different datasets. For example, UniGene Build 
#211 (released March 12, 2008) reduces nearly 7 million 
human sequences to 124,181 clusters. To translate probe-level 
identifiers to gene-level identifiers, one can use either the 
annotation packages in BioConductor [53] or Web tools such 
as SOURCE [70] and RESOURCERER [71] (Step 18b). We 
suggest using I.M.A.G.E. CloneID [72] or Affymetrix ID first, 
if available, as they are more sequence-specific (Step 17b). 
The same mapping build, ideally the most recent, should be 
used for all datasets to avoid inconsistencies between releases 
[73,74].

Issue 5: Resolve the Many-to-Many Relationships 
between Probes and Genes

In this section, we will refer to either the sequence cluster ID 
or the gene-level identifier (such as UniGene ID or RefSeq 
ID) used to annotate the datasets, simply as the GeneID. 

Many probes can map to the same GeneID because of 
the clustering nature of the UniGene, RefSeq, and BLAST 
systems involved, or because the microarray chips used 
contain duplicate spotted probes. On the other hand, a 
probe may map to more than one GeneID if the probe 
sequence is not specific enough. Sometimes, a probe has 
insufficient information to be mapped to any GeneID, and 
we recommend omitting these from further analysis (Step 
19). Inconsistencies between annotation databases or releases 
and software [73–75] complicate the matter further. The 
illustrative example of a meta-analysis of 25 datasets presented 
later in this paper contains 537,686 probes. Of these probes, 
47,154 (or 8.7%) could not be mapped to any UniGene ID, 
while 29,774 (or 6.1%) of the remaining probes mapped to 
more than one UniGene ID.

This “many-to-many” relationship can fragment the 
available information for meta-analysis. For example, a 
probe could map to GeneID X in half of the datasets but to 
both GeneIDs X and Y in the remaining datasets. Software 
that performs automated meta-analysis on several thousand 

doi:10.1371/journal.pmed.0050184.g001

Figure 1. The Flow from Data to Information to Biological Knowledge in Gene Expression Microarray Research
The image files are obtained from optical scanning of hybridized samples.
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genes will treat such probes as two separate gene entities, 
failing to fully combine the information for GeneID X from 
all studies.

A simple approach is to use only the probes with one-
to-one mapping for further analysis, but this means losing 
information, and so is not recommended. In the example 
above, potentially half of the information for GeneID X 
(i.e., from probes mapping to both X and Y) will be ignored. 
Therefore, when relevant, we recommend replacing probes 
with multiple GeneIDs by a new record for each GeneID 
(Step 21). This greedy approach of “expanding” the probes 
with multiple GeneIDs ensures the software uses all possible 
information.

On the other hand, how should one deal with multiple 
probes that map to the same GeneID within a given study? 
Grützmann et al. [24] treated these as independent 
observations in the meta-analysis, but we recommend 
summarizing them (Step 22) into a single representative 
value per key within a study.

Several options are available to summarize information 
in this situation. First, one could select a probe at random, 
but this means losing information. Simply averaging the 
expression profiles before proceeding is not desirable either, 
as different probe sequences have different binding affinity, 
giving rise to the problem of different measurement scales. 
Thus, it is preferable to work with standardized measures such 
as the p-value or effect size. When working with standardized 
measures, one could select the most extreme value, since it 
is least likely to occur by chance. For example, Rhodes et al. 
[19] used the smallest p-value of the probes that corresponded 
to each GeneID. A more sophisticated approach, when 
working with effect size, is to meta-analyze the probes.

Recently, the MicroArray Quality Control (MAQC) project 
[61] described another alternative to resolve the many-to-many 
mapping. For a probe that mapped to multiple RefSeq IDs, the 
authors selected the RefSeq ID that was annotated by TaqMan 
assays and, secondarily, one that was present in the majority of 
platforms. Next, if many probes mapped to a given RefSeq ID, 
they chose the one closest to the 3’ end of the gene.

After resolving for the many-to-many relationship by 
expanding and summarizing probes, we are left with one 
summary statistic per GeneID per study. In the next step, we 
proceed with meta-analyzing the summary statistic for each 
GeneID in turn across the studies.

Issue 6: Choosing a Meta-Analysis Technique

The choice of meta-analysis technique depends on the type 
of response (e.g., binary, continuous, survival) and objective. 
In this article, we focus on a fundamental application of 
microarrays: the two-class comparison where the objective is 
to identify genes expressed differentially between two well-
known conditions. There are four generic ways of combining 
information in such a situation. (For clarity of presentation, 
we indicate the steps only for the inverse-variance technique.)

Vote counting. Here, one counts the number of studies 
in which a gene was declared significant [76]. For very small 
numbers of studies, the results can be visualized using a Venn 
diagram [77]. Vote counting in the context of microarrays is 
perhaps best described by Rhodes et al. [22], who also suggest 
calculating the null distribution of votes using permutation 
testing. Alternatively, one could calculate the significance of 
the overlaps using the normal approximation to binomial as 

described in Smid et al. [30]. Yang et al. [35] extend both of 
these techniques into the concept of meta-analysis pattern 
matches.

Combining ranks. Unlike vote counting, this technique 
accounts for the order of genes declared significant. 
DeConde et al. [37] use three different approaches to 
aggregate the rankings of, say, the top 100 lists (the 100 most 
significantly up-regulated or down-regulated genes) from 
different studies. Two of the algorithms use Markov chains 
to convert the pair-wise preference between the gene lists to 
a stationary distribution; the third algorithm is based on an 
order-statistics model. Zintzaras and Ioannidis [40] proposed 
METa-analysis of RAnked DISCovery datasets (METRADISC), 
which is based on the average of the standardized rank 
and has the advantage of incorporating the between-study 
heterogeneity (sum of squared deviations from the average). 
The null distributions for the average rank and heterogeneity 
are then estimated using non-parametric Monte Carlo 
permutation testing and matched for pattern of occurrence 
in studies. Hong et al. [38] proposed the RankProd [78], 
which calculates the product of the rank of pair-wise 
differences between every biological sample in one group 
versus another group across the studies.

Combining p-values. Rhodes et al. [19] use Fisher’s sum 
of logs method [79], which sums the logarithm of the (one-
sided hypothesis testing) p-values across k studies for a given 
gene. The test statistic can be compared against a chi-square 
distribution with 2k degrees of freedom.

Combining effect sizes. Choi et al. [29] and others 
[24,32,80] used the inverse-variance technique [81,82] in the 
context of microarrays. The first step is to calculate the effect 
size and the variance associated with the effect size for every 
gene in every study (Step 20). Effect size can be calculated 
as the Cohen’s d [83], which is the difference in two group 
means standardized by its pooled standard deviation [84]. 
Hedges and Olkin (1985) showed that this standardized 
difference overestimates the effect size for studies with small 
sample sizes. They proposed a small correction factor to 
calculate the unbiased estimate of the effect size, which is 
known as the Hedges’ adjusted g. The study-specific effect 
sizes for every gene are then combined across studies into a 
weighted average (Step 24). As the name suggests, the study 
weights are inversely proportional to the variance of the study-
specific estimates.

Additionally, the integrative correlation technique 
proposed by Parmigiani et al. [33] could be first used to select 
only the “reproducible” genes for meta-analysis. First, the 
correlation profile of gene G is calculated as the correlation 
between gene G and every other gene in a study. Next, the 
correlation of correlation profiles of gene G in every pair 
of studies is computed, and if the average exceeds a certain 
threshold, the gene is called reproducible.

Given the various statistical options for meta-analysis, how 
should one choose the most suitable technique? We present 
a series of questions that could help a meta-analyst make an 
informed choice.

First, what are the minimum data required for each 
technique? Fisher’s method, the inverse-variance technique, 
METRADISC, and the RankProd all require IPD, which are 
less readily available than PGLs. Vote counting, DeConde and 
colleagues’ algorithms, and combining p-values are techniques 
that in theory could use the PGLs, but may not be able to 
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do so in practice. For example, most publications report the 
significant genes or their rankings based on two-sided p-values, 
while vote counting and rank aggregation techniques require 
a one-sided p-value. Using p-values from two-sided testing 
means ignoring the directionality of the significance and may 
lead one to select genes that are discordant in direction of 
gene regulation between the studies. As noted earlier in Issue 
2, we strongly prefer to use the IPD to minimize the influence 
of differing methods across datasets.

Second, which set of genes does each technique use? Vote 
counting and rank aggregation techniques (using PGLs) only 
consider the genes declared significant in the original studies. 
Thus, these techniques depend on an arbitrary threshold, 
and completely ignore genes that fall below this selected 
threshold. By contrast, the rank aggregation technique (using 
IPD), Fisher’s method, and the inverse-variance technique 
consider information from all available genes. However, 
it is also important to note that the ranking of genes in an 
individual study depends on which other genes are included 
in the chip, and thus can influence the rank aggregation 
techniques. Since microarrays are often used as a hypothesis 
generating tool, we would prefer a technique that captures 
information from as many genes as possible.

The third question, related to the previous question, 
is how does each technique treat frequently studied and 
rarely studied genes? Newer microarrays chips have more 
comprehensive sets of genes compared to older chips. Thus 
some genes will be studied more frequently across the studies 
than others. For example, Affymetrix version HGU-133 plus 
2.0 (released in 2003) contains almost all of 6,065 UniGene 
IDs available in Affymetrix version HU-6800 (released in 
1998), plus a further additional 13,624 UniGene IDs. Ideally, 
we would prefer a technique that treats a frequently studied 
and a rarely studied gene equally.

Since vote counting and rank aggregation use the genes 
declared significant in the original studies, they do not account 
for the frequency of the genes. For example, a gene found 
significant in four studies and not significant in 16 studies will 
be favored over a gene found significant in three studies but 
absent in the other 17 studies. METRADISC accounts for this 
by matching each gene to the null distribution of genes that 
have the same absent/present patterns. Although the test 
statistic for Fisher’s method is based on an unstandardized 
sum, it can address this problem by comparing it to a chi-
square distribution where the degree of freedom is determined 
by the number of studies or by permutation. The inverse-
variance technique addresses this problem directly as it 
calculates a weighted average of the effect sizes.

Fourth, what is the ability of each technique to rank the 
genes, especially if only a small number of studies, say three 
to five, are available? A ranked list can help researchers to 
prioritize genes for further testing and validation. The vote 
counting technique produces very granular results, while 
other techniques produce results on a much finer scale.

Fifth, what is the computational complexity involved for 
each technique once the datasets have been prepared and 
annotated? The computing time for meta-analyzing the 
prepared and annotated GEDM for the 25 datasets in the 
illustrative example that follows, using vote counting, Fisher’s 
method and inverse-variance technique are approximately 
two minutes, two minutes, and eight minutes respectively. 
We used R version 2.5.1 [85] on a Windows-based personal 

computer with a 1.86 GHz Intel Pentium M processor 
and 1 GB of RAM memory. Further, any technique that 
uses PGLs has to extract the information and annotation 
in a standardized format. The question of computational 
complexity becomes important, especially when one wants to 
estimate the null distribution using permutation techniques.

We believe that combining the effect sizes using an 
inverse-variance model is the most comprehensive approach 
for meta-analysis of two-class gene expression microarrays. 
In addition to the characteristics discussed above, this 
method has several other decisive advantages. First, it yields 
a biologically interpretable discrimination measure—the 
pooled effect size of differential expression and its standard 
error. Second, it is the only technique that weights the 
contribution of each study by its precision, which is related to 
the study sample size. Third, one is able to use a forest plot 
[86] to visually investigate the contributions of individual 
studies and the amount of heterogeneity across datasets. The 
use of effect size, a unitless measure not dependent on sample 
size, facilitates the combining of signals from one-color and 
expression ratios from two-color technology platforms.

Illustrative Example: Differential Gene Expression in 
Cancer Tissues
We demonstrate one exemplary meta-analysis using a subset 
of an ongoing meta-analysis where we look at the differences 
between cancerous tissues relative to normal tissues across 
various cancer types. This example stops short of discussing 
the biological significance of the findings, which is beyond 
the scope of this article.

We concisely describe the meta-analysis protocol in Table 3, 
using the same ordering as in Table 1. Figure 2 shows the data 
acquisition process, and Table 4 lists the characteristics of the 
21 studies included [87–107]. Arrays from the Affymetrix-
based studies were preprocessed using the robust multichip 
average [108], and arrays from two-color technology were 
LOESS (local regression) normalized [109, 110]. All analysis 
(unless stated otherwise) was carried out in R version 2.5.1 
[85] and BioConductor release 2.0 [53]. The R codes are 
available upon request.

We chose to combine the effect sizes using the inverse-
variance model for the reasons described previously. Note 
that there are two variants of the inverse-variance technique. 
The random effects model used differs from the fixed 
effect model in that it incorporates the between-study 
heterogeneity into study weights. We use the random effects 
model in Step 24, where we can expect significant between-
study heterogeneity since the studies combined are both 
biologically (e.g., different tumors) and technically diverse 
(e.g., different platforms, laboratories). We used the fixed 
effects used in Step 22 to summarize probes within a study 
as we can expect a reasonable level of homogeneity within a 
study.

The pooled effect size and its 95% confidence interval for all 
16,803 genes can be visualized simultaneously as in Figure 3. 

The z-statistic (ratio of the pooled effect size to its standard 
error) for every UniGene ID was compared to a standard 
normal distribution to obtain the p-value and adjusted for 
false discovery rate (FDR) [111] (Step 25). Table 5 shows 
the output from the inverse-variance technique for the top 
five statistically significant up-regulated and down-regulated 
genes.
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Table 3. Outline of the Illustrative Example of Meta-Analysis

Step Action

1 Objective: To identify genes that are consistently up- or down-regulated in cancers globally.

2 Inclusion-exclusion criteria: Any human studies investigating at least 7 patients with primary cancer and at least 7 patients with corresponding normal 

samples using high-density arrays. Any patients with metastatic tumors, cell lines, or benign tumors, or studies using specialized arrays, were excluded.

3–10 Data identification and acquisition: See Figure 2 for data retrieval of 21 studies. Ramaswamy et al. [104] had 5 sets of cancer-normal tissues that satisfied 

our criteria, and thus we have 25 datasets (see Table 4). 

11 Array quality check: Not performed as this information was not available for all retrieved studies.

12 Preprocessing FLEO files: Arrays from the Affymetrix platform were RMA-preprocessed [108], and arrays from two-color technology were LOESS-normalized 

the expression values are on log base 2 scale.

13 & 14 Batch effect and spot quality check: Not performed as this information was not available for all studies.

15 Aggregate technical replicates: Only Bhattacharjee et al. (2001) [90] had technical replicates, which we averaged using a simple mean.

16 Compatibility check: Not performed.

17 & 18 Annotation matching: For the Affymetrix studies, we mapped the probe-sets to UniGene using the annotation packages in BioConductor 1.8.0 (built on 

March 26, 2006]. For the two-color technology arrays, we mapped the clone IDs, and if not available the GenBank Accession number, to UniGene using the 

web tool SOURCE [70] in March 2006.

19 Discard non-identifiable probes: 
20 Calculate study-specific estimates: For every probe and for every study, we calculated effect size as the Hedges’ adjusted g.

21 Expanding probes with multiple UniGene IDs: As described in text of Issue 5.

22 Summarizing multiple probes per UniGene ID within a study: 
23 Discard poorly represented probes: The probes map to 28,365 unique UniGene IDs, but we restricted the analysis to the 16,803 that were identified in at 

least 5 of the 25 sets.

24 Combine study-specific estimates: 

its standard error.

25 The z-statistics (ratio of the pooled effect size to its standard error) for every UniGene ID was compared to a standard normal distribution to obtain the 

nominal p

LOESS, local regression; RMA, robust multichip average.
doi:10.1371/journal.pmed.0050184.t003

doi:10.1371/journal.pmed.0050184.g002

Figure 2. Data Acquisition to Summarize Steps 3–10 in Table 3
In total, 21 studies (6 + 3 + 8 + 4) are included in the meta-analysis. The characteristics of the included studies are given in Table 4. 
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At the FDR rate of 1%, we found 168 significantly down-
regulated and up-regulated genes. At this rate, we should 
expect 1% of the significant genes list, and in this case 1.68 
and 3.25 in each list respectively, to be false positives. 

After having identified the genes of most interest, we can 
proceed as in a traditional meta-analysis and visualize the 
contribution of individual studies using forest plots (Step 
27). Figure 4 shows the forest plot for the most significantly 
up-regulated (Hs.478481) and down-regulated (Hs.117835) 
genes.

We can also proceed as in a typical single-study analysis. 
For example, using significant genes identified from the 
meta-analysis, we can use computational tools such as pathway 
enrichment (Step 28), conduct a literature search, and/or 
validate them on an alternative technology or on different 
patient sets (Step 29).

In this illustrative example of a meta-analysis, we have 
shown how the inverse-variance technique can identify 
consistently up- or down-regulated genes, information that 
suggests further lines of investigation.

Discussion

Meta-analysis of microarray datasets shares many features with 
meta-analysis in other areas of health care research. Perhaps 
the main differences are the large numbers of variables 
involved and technical complexities of integrating data across 
multiple platforms. Furthermore, most microarray studies 
are not prospectively planned and often do not have detailed 

protocols, but rather tend to make use of existing samples. 
Table 6 gives an overview of the advantages and disadvantages 
of various aspects of meta-analysis of microarray datasets. We 
discuss some of these points below.

Working with FLEO files allows for better standardization 
of information and the incorporation of data from 
unpublished studies, but it also requires significant effort 
to acquire and manage the datasets due to increased data 
complexity. This is further hampered by data sharing issues 
([112–115] and Ramasamy et al., unpublished data).

Sample matching between “cases” and “controls” may 
be a problem in meta-analysis as much as in single studies. 
Leaving aside the choice of biological equivalency of cases 
and controls, the numerical problem is highlighted by 
the imbalance of samples between the two groups in the 
illustrative example (see Table 4). For example, while the 
proportion of normal to total biological samples in prostate 
and lung cancer (the two tissues with the greatest number of 
biological samples in the illustrative example) is far less than 
half, the proportions do vary (105 out of 452 or 23.2% in 
prostate cancer versus 60 out of 356 or 16.9% in lung cancer).

Another major concern associated with meta-analysis in 
many clinical and epidemiological studies is the problem 
of publication bias, which is a consequence of selectively 
publishing statistically significant and favorable results 
[116,117]. On the surface, we do not expect to find a 
publication bias at a gene level in a given study because of 
the discovery-driven and high-density nature of microarrays. 

Table 4. Datasets Used in the Illustrative Meta-Analysis

Study Information # Samples Array and Annotation Information

Citation Tissue PubMed ID Normal Tumor Platform Total
Probes

Probes with 
UniGenes

After UniGene 
Expanding

After UniGene 
Summarizing

Aldred et al. (2003) [87] Thyroid 12776192 7 9 HGU95Av2 12,625 12,104 13,134 9,364

Basso et al. (2005) [88] B cells 15778709 10 66 HGU95Av2 12,625 12,104 13,134 9,364

Beer et al. (2002) [89] Lung 12118244 10 86 HU6800 7,129 6,919 7,556 6,069

Bhattacharjee et al. (2001) 

[90]

Lung 11707567 17 139 HGU95Av2 12,625 12,104 13,134 9,364

Chen et al. (2002) [91] Liver 12058060 75 104 cDNA 22,607 21,032 22,880 14,772

Chen et al. (2003) [92] Gastric 12925757 22 90 cDNA 42,037 38,276 40,471 22,150

Couvelard et al. (2005) [93] Pancreas 15910598 7 12 cDNA 9,910 8,446 8,446 5,097

Dyrskjøt et al. (2004) [94] Bladder 15173019 9 41 HGU133A 22,283 21,288 23,134 13,223

Hippo et al. (2002) [95] Stomach 11782383 8 22 HU6800 7,129 6,919 7,556 6,069

Hu et al. (2005) [96] Lung 15592519 14 47 cDNA 9,927 8,443 8,443 5,096

Huang et al. (2001) [97] Thyroid 11752453 8 8 HGU95A 12,626 12,110 13,145 9,391

Jones et al. (2004) [98] Lung 15016488 19 24 cDNA 40,368 35,370 35,370 20,993

Klein et al. (2001) [99] B cells 11733577 20 32 HGU95A 12,626 12,110 13,145 9,391

Kuriakose et al. (2004) [100] Head & neck 15170515 17 17 HGU95Av2 12,625 12,104 13,134 9,364

Lapointe et al. (2004) [101] Prostate 14711987 41 62 cDNA 40,699 37,460 39,673 21,228

Lenburg et al. (2003) [102] Renal 14641932 8 9 HGU133 set 44,928 39,884 43,194 18,249

Pellagatti et al. (2006)[103] Bone marrow 16527891 11 58 HGU133A

plus 2.0

54,675 47,147 50,987 19,738

Ramaswamy et al. (2001) 

[104]

Bladder 11742071 7 11 HU8000 + 

HU35kSubA

16,063 15,069 16,369 10,881

Brain 8 20

Colon 11 9

Kidney 11 8

Pancreas 10 11

Singh et al. (2002) [105] Prostate 12086878 50 52 HGU95Av2 12,625 12,104 13,134 9,364

Prostate 11507037 8 25 HGU95A 12,626 12,110 13,145 9,391

Head & neck 17409455 11 11 HGU133A

plus 2.0

54,675 47,147 50,987 19,738

Total 419 973 537,686 490,532 525,658 28,365

doi:10.1371/journal.pmed.0050184.t004
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However, anecdotal evidence based on sales figures (J. P. 
Ioannidis, personal communication) suggests that data from 
only 10% of all the Affymetrix chips sold are published. The 
possibility of publication bias in microarray research needs 
further investigation.

Furthermore, within a single-study microarray analysis, 
the particular choice of down-stream analysis may lead 
to different results depending on the objective of the 
study [118,119]. It is unclear to what extent this problem 
affects meta-analysis of microarrays, even with coherently 
preprocessed datasets.

Finally, the sensitivity of the results from meta-analysis, 
as with any other research study, should be tested before a 
final conclusion is reached (Step 26). We did not present 
any sensitivity analysis for the illustrative example presented 
here, but there are several possibilities. First, we could 
investigate sensitivity of the results to the choices we made 
here (e.g., using probes present in at least five studies). 
Secondly, we can test if any particular study is particularly 
influential, by repeating the meta-analysis without each study 
in turn and comparing the change. Finally, we could test if 
the inclusion of studies that provide only the GEDM into the 

Table 5. The Output from the Inverse-Variance Technique for the Top Five Statistically Significant Up-Regulated and 
Down-Regulated Genes

UniGene ID n Effect Size Standard Error ô2 z pFDR Symbol

Up-regulated
Hs.478481 25 0.834 0.113 0.175 7.4 1.39E-13 2.14E-09 ALG3

Hs.643516 7 0.605 0.084 0 7.16 7.89E-13 3.31E-09

Hs.522819 23 0.788 0.114 0.177 6.91 4.89E-12 1.37E-08 IRAK1

Hs.247280 21 0.567 0.083 0.082 6.85 7.41E-12 1.78E-08 RBCK1

Hs.435947 7 0.594 0.096 0.029 6.22 4.93E-10 9.13E-07 RBM15

Down-regulated
Hs.117835 7 −0.457 0.063 0.005 −7.3 2.95E-13 2.14E-09 FGD4

Hs.433068 25 −0.578 0.08 0.052 −7.26 3.82E-13 2.14E-09 PRKAR2B

Hs.591387 7 −0.568 0.08 0.004 −7.08 1.41E-12 4.74E-09 KIAA1881

Hs.443683 24 −0.575 0.091 0.074 −6.32 2.60E-10 5.47E-07 MYOM2

Hs.495710 25 −0.777 0.126 0.305 −6.16 7.49E-10 9.21E-07 GPM6B

For each UniGene ID, the table shows the number of studies the gene was present in (n), the pooled effect size, standard error of the pooled effect size, between-study heterogeneity 
measure (ô2), z-score, p-value of the z-score, the FDR adjusted value, and GenBank symbol (if available).
doi:10.1371/journal.pmed.0050184.t005

doi:10.1371/journal.pmed.0050184.g003

Figure 3. 
The GenBank identifier (if available) for the top five most statistically significant up-regulated and down-regulated genes is shown.



PLoS Medicine  |  www.plosmedicine.org 1329 September 2008  |  Volume 5  |  Issue 9  |  e184

Table 6. Advantages and Disadvantages of Various Aspects of Meta-Analysis of Microarray Datasets

Advantages Disadvantages

Combining independent but related studies
Increases statistical power Assumes there are sufficient numbers of suitable studies available

Increases generalizability of results Study selection issues such as study diversity and data quality need to be addressed

Financially inexpensive as it uses existing studies Time and effort to acquire and manage data can be significant

Potential publication bias might limit meta-analysis

IPD versus PGLs
IPD avoids selective reporting of genes Harder to acquire IPD compared to gene lists

IPD permits re-analysis of individual studies for reproducibility or to carrying out 

other analysis

FLEO data versus GEDM
FLEO data allows us to standardize preprocessing algorithms and analysis 

methods

More time and effort required to acquire and manage FLEO relative to GEDM

In practice, some researchers may withhold access to FLEO and thereby introduce a 

possible bias

Inverse-variance technique versus other techniques for combining data
Interpretable results with standard error to construct confidence intervals A large study in the collection may influence the overall results of meta-analysis

Treats a rarely studied and frequently studied genes equally Ignores correlation between genes (as do most techniques)

IPD may not be available for all studies.

Good ability to rank results when applied on small number of studies

Use of forest plots
Visualize contributions from individual studies Only possible to look at the forest plots for a small number of genes

Assess heterogeneity of result across datasets Descriptive in nature

doi:10.1371/journal.pmed.0050184.t006

doi:10.1371/journal.pmed.0050184.g004

Figure 4. Forest Plot of the Most Statistically Significant Up-Regulated and Down-Regulated Genes Identified from the Meta-Analysis
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meta-analysis along with the studies that provide FLEO data 
changes the results.

In this paper, we have formulated and explored key issues 
encountered in conducting a meta-analysis of microarray 
datasets. We considered the available solutions and made 
some practical recommendations. First, we showed how to 
obtain suitable datasets by searching the published literature 
and public microarray repositories. Second, we proposed 
that using FLEO files allows for better standardization 
of information. Third, we outlined the issues involved in 
preparing datasets from multiple platforms. Fourth, we 
discussed how to match the different datasets using gene-level 
identifiers. Fifth, we explained how to resolve the problems 
caused by the many-to-many relationship between the probes 
and genes by “expanding” probes with multiple GeneIDs and 
then “summarizing” the multiple probes that correspond to 
a GeneID within a study. Sixth, we argued that the inverse-
variance technique, initially proposed in the microarray 
context by Choi et al. [29], has many desirable properties 
over other techniques used for two-class comparison of gene 
expression microarray studies. Finally, we presented an 
illustrative meta-analysis of 25 datasets to briefly demonstrate 
the issue of how to present, analyze, and interpret a meta-
analysis of microarray datasets. All of this information is 
neatly captured in a practical checklist, shown in Table 1. �
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