
Laser Photobiomodulation 808nm:
Effects on Gene Expression in
Inflammatory and Osteogenic
Biomarkers in Human Dental Pulp
Stem Cells
Elaine A. da Rocha1, Marcela M. P. Alvarez2, Agatha M. Pelosine3,
Marcela Rocha O. Carrilho4, Ivarne L. S. Tersariol 2 and Fábio D. Nascimento1,2,3*

1Technology Research Center, Mogi das Cruzes University, Mogi das Cruzes, Brazil, 2Department of Biochemistry, Federal
University of São Paulo, São Paulo, Brazil, 3Interdisciplinary Center of Biochemical Investigation, University of Mogi das Cruzes,
Mogi das Cruzes, Brazil, 4College of Dental Medicine-Illinois, Midwestern University, Downers Grove, IL, United States

The tissue engineering of dental oral tissue is tackling significant advances and the use of
stem cells promises to boost the therapeutical approaches of regenerative dentistry.
Despite advances in this field, the literature is still scarce regarding the modulatory effect of
laser photobiomodulation (PBM) on genes related to inflammation and osteogenesis in
Postnatal Human Dental Pulp Stem cells (DPSCs). This study pointedly investigated the
effect of PBM treatment in proliferation, growth and differentiation factors, mineralization,
and extracellular matrix remodeling genes in DPSCs. Freshly extracted human third molars
were used as a source for DPSCs isolation. The isolated DPSCs were stimulated to an
inflammatory state, using a lipopolysaccharide (LPS) model, and then subjected or not to
laser PBM. Each experiment was statistically evaluated according to the sample
distribution. A total of 85 genes related to inflammation and osteogenesis were
evaluated regarding their expression by RT-PCR. Laser PBM therapy has shown to
modulate several genes expression in DPSCs. PBM suppressed the expression of
inflammatory gene TNF and RANKL and downregulated the gene expression for VDR
and proteolytic enzymes cathepsin K, MMP-8 andMMP-9. Modulation of gene expression
for proteinase-activated receptors (PARs) following PBM varied among different PARs. As
expected, PBM blocked the odontoblastic differentiation of DPSCs when subjected to
LPS model. Conversely, PBM has preserved the odontogenic potential of DPSCs by
increasing the expression of TWIST-1/RUNEX-2/ALP signaling axis. PBM therapy notably
played a role in the DPSCs genes expression that mediate inflammation process and tissue
mineralization. The present data opens a new perspective for PBM therapy in mineralized
dental tissue physiology.
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INTRODUCTION

A primary objective of regenerative medicine and tissue
engineering is to support the reinstatement of tissues and/or
organ’s functions by means an in situ substitution/repair of
their injured structures. However, intrinsic morphological
complexities such as those found, for instance, in dental pulp
can substantially compromise this tissue successful remodeling
and repair. Dental pulp is a unique and specialized mesenchymal
tissue that, by being confined inside a mineralized rigid chamber
in the core of teeth, has limited or virtually no chance to expand as
part of the inflammatory response to accommodate an uneventful
tissue turnover. Stromal fibroblasts and odontoblasts are the main
regenerative/formative cells in dental pulp tissue (Nor, 2006).
Interestingly, the pulp tissue also harbors mesenchymal stem cells
with self-renewal capacity and multidifferentiation potential
(Botelho et al., 2017).

Postnatal stem cells have proven to be an excellent resource in
regenerative medicine. Among mesenchymal postnatal cells found
in dental pulp, the Dental pulp stem cells (DPSCs) (Kerkis et al.,
2006) have shown to exhibit promising tissue regenerative cues,
such as a more mature phenotype in comparison to stem cells
derived from exfoliated deciduous teeth (SHEDs) (Goldberg and
Smith, 2004), and higher plasticity (i.e. proliferative and
differentiation capacity to turn into various cells) than Bone
marrow stem cells (BMSCs) (Miura et al., 2003).

Overall, the inflammatory process is generally accompanied by
imbalance in gene expression and signaling, as well as by the
release of proinflammatory cytokines, such as tumor necrosis
factor-alpha (TNF-α), reactive oxygen, nitrogen species and,
interleukin-1β (IL-1β) and IL-6 (Hanisch, 2002). LPS can
activate the NF-κB signalling pathway in DPSCs. NF-κB is a
transcription factor that regulates a large variety of inflammatory
cytokines, including TNF-α, IL-1, IL-6, and IL-8 (Baldwin, 2001).
The LPS induces the production of pro-inflammatory cytokines
in dental pulp fibroblasts (Nakane et al., 1995). Also, it has been
shown that LPS can promote odontoblastic differentiation of
human DPSCs via TLR-4, ERK, and P38 MAPK signalling
pathways (He et al., 2015). The inflammatory interleukin(s)-1.
-6. -11 (IL-1. IL-6. IL-11), and TNF-α can stimulate osteoclast
development and thereby the process of bone resorption
(Manolagas, 1995).

In addition to these canonical inflammatory pathways, cell
signaling via Proteinase-activated receptors (PARs) are emerging
as an important path in the study of inflammatory responses in
various tissues (Russell and McDougall, 2009). PARs are part of
the family of G-protein-coupled receptors that are activated by
proteinases secreted into extracellular matrix (ECM) during
inflammation. Whilst first described as thrombin receptors,
various other proteinases are able to signal via PARs. While
PAR-1, PAR-3, and PAR-4 are canonically activated by thrombin,
PAR-2 is mainly activated by trypsin. Furthermore, it can be
activated by tryptase, matrix metalloproteinases (MMPs), and
tissue factor-VIIa-Xa complex (Vu et al., 1991; Bohm et al., 1996;
Ruf and Mueller, 2006). PARs are also known to participate on
extracellular matrix pathophysiological processes. Collagenase
hydrolysis showed an antagonistic behavior on PAR2

activation, proposing an relevant negative feedback mechanism
whereby canonical PAR2 activation induces MMP expression,
and MMP activity can subsequently antagonize PAR2 (Falconer
et al., 2019). PARs 1 and 2 have been recently demonstrated to
play a role in inflamed odontoblasts (Alvarez et al., 2017).

Low-level laser therapy, also known as Photobiomodulation
Therapy (PBM) (Hamblin, 2016), had its onset in the 1960’s and
it relies on the use of light devices–lasers or light-emitting diodes
(LEDs) - as resource to trigger tissue biological/medical responses
(i.e. healing, immunity enhancement, anti-inflammatory and
antibiotic properties) (Vu et al., 1991; Conlan et al., 1996;
Bjordal et al., 2003; Yu et al., 2003; Ruf and Mueller, 2006;
Ghanaat, 2010; Alvarez et al., 2017; Falconer et al., 2019).
Studies have showed that PBM can significantly reduce
inflammation, by inhibiting inflammatory cytokines expression
and activity in different tissues (Sakurai et al., 2000; Arany et al.,
2007; de Lima et al., 2011). Moreover, the use of lasers and LEDs
demonstrated to be effective in modulating the cell viability and
growth in different cell models, includingmesenchymal stem cells
(Kim et al., 2009; Li et al., 2010; Alghamdi et al., 2012; Ginani
et al., 2015). Research that evaluated the effect of PBM on SHED
cells has shown for instance that infrared LEDs (850 nm 40mW/
cm2) could promote an in vitro increase in the levels of
phosphates, synthesis of collagen and dentinal sialoprotein
(Turrioni et al., 2014), and induce a significant increase in
cells viability, proliferation, and production of mineralized
tissues for SHEDs that remained in nutrient starvation after
PBM (Turrioni et al., 2015).

To better understand DPSC’s features for tissue regenerative
applications, such as vital pulp therapy or regenerative
endodontic procedures, we believe it is important to assess
their biological responses when exposed to light sources under
PBM parameters. As far as we know, this is the first study that
assessed the potential for laser irradiation to modulate the gene
expression for PARs and other genes related to the inflammatory
process and osteogenesis using a DPSCs model. This study
hypothesis was that PBM can interfere in inflammatory gene
expression and in osteogenesis related genes.

METHODS

Dental Pulp Tissues Obtainment
Approval for this protocol was obtained from the local Human
Research Ethics Committee (# 98511618.8.0000.5497) to use five
freshly extracted thirdmolars from patients ages 19–39 years. The
use of the third molars is the most convenient source of adult
stem cells as they contain sufficient amount of dental pulp tissue
to ensure proper isolation of DPSCs (Liu et al., 2006). After
extraction teeth were copiously washed with deionized water and
placed in a sterile solution containing saline, subsequently they
were rinsed with 70% ethanol to reduce the biofilm
contamination. Then, the dental elements were rinsed 5 times
with sodium phosphate buffer (PBS) to remove ethanol.
Subsequently, decontaminated teeth were cut with a sterile
Zekrya (Dentsplay Sirona, United States) drill using a high-
speed device to expose the pulp chamber and, consequently,
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provide access to the pulp tissue. The pulp tissue was gently
removed from the pulp chamber with a sterile endodontic file and
immediately transferred to a sterile screw-capped tube containing
α-MEM cell culture medium without calf bovine serum (FCS).

Isolation of Postnatal Human Dental Pulp
Stem Cells
Excised pulp tissue was digested in a solution containing 3mg/ml
collagenase type I (Merck KGaA, Darmstadt, Germany) and 4mg/ml
dispase (Merck KGaA, Darmstadt, Germany) for 1 h at 37°C. After
digestion, 5 volumes of α-MEM medium containing 10% FCS were
added. This solution was centrifuged at 120 × g for 10min, at room
temperature. The precipitated material was resuspended in α-MEM
medium and filtered through filters with pores of 70 μM. This
procedure resulted in a single-cell suspension for in vitro culture.
The cells were seeded into culture flasks with α-MEM, supplemented
with 10% FCS, 100 μML-ascorbic acid, 2 mM L-glutamine and
penicillin (100 U/mL)/streptomycin (100mg/ml) and incubated at
37°C with 5%CO2. In the initial stage, after adhering to culture flasks,
cells grew slowly. Cell colonies were identified after 10–14 days, with
their fibroblastoid appearance, which showed to be dependent on the
cell density obtained in initial plating. After reach 70% of confluence,
cells were considered ready to proceed with experiments.
Accordingly, isolated DPSCs were randomly assigned to the
following experimental groups: Group 1–LPS stimulus and laser
irradiation; Group 2–LPS stimulus and no laser irradiation; Group
3–Control group, no LPS or laser treatment.

Human Dental Pulp Stem Cells
Inflammation Induction by
Lipopolysaccharides Assay
The lipopolysaccharides induces the production of pro-inflammatory
cytokines such as interleukins (IL-1β, IL-6 and IL-8), tumor necrosis
factor (TNF-), platelet and prostaglandin activating factors by
macrophages and neutrophils present in areas infected by bacteria
(Lindemann et al., 1988; Wilson et al., 1996). To promote in vitro
cellular inflammatory response, 2 × 106 of DPSCs were seeded in six
wells plates with α-MEM, supplemented with 10% FCS,
100 μML-ascorbic acid, 2mM L-glutamine and penicillin (100U/
mL)/streptomycin (100mg/ml) and incubated from 24 h at 37°C
with 5% CO2 for complete adhesion. Previous to the experiment cells
were starved for 6hs in α-MEMwithout FCS. After starvation period,
10 μg/ml of LPS were added in α-MEM, supplemented with 10%
FCS, 100 μML-ascorbic acid, 2 mM L-glutamine and penicillin
(100 U/mL)/streptomycin (100mg/ml), for 24 hs.

Part of these cells was further irradiated (see PBM protocol
following) with a laser device (Group 1); while the other part
remained not irradiated for subsequent analysis (Group 2).

Photobiomodulation Irradiation Protocol
DPSCs assigned for Group 1 were irradiated using the Laser Duo
device (MM Optics, São Carlos, BR), containing 1 light-emitting
diode, in the infrared wavelength (808 nm) that delivered a total
energy of 6 J (100mW × 60 s). 0.4 × 105 cells per well were seeded in
a 96 wells plate 24 hs before the experiment. All the three

experimental groups were evaluated in triplicates. The plate cover
and the culturemediumwere removed prior irradiation to avoid any
interference related to light refraction. The laser probe was placed
perpendicularly from bottom of the well with a 0.5 cm of distance for
60 s, in order to be sure that all cells received the radiation. After the
treatment, the culture medium was replaced for 30min before the
genetic material be assessed. Device specifications: laser type,
InGaAIP; wavelength, 808 nm; irradiation type, Infrared; laser
beam output area, 0.3 cm2; Continuous; power output,
100mW ± 20%; irradiance, 0.33W/cm2; fluence, 6 J/cm2 (Table 1).

Proteinase-Activated Receptors Gene
Expression Quantification
The tRNA from DPSCs was extracted using the TRIzol® (Thermo
Fischer Scientific, Waltham, United States) reagent. The
complementary DNA (cDNA) was obtained from the tRNA by
reverse-transcription using the ImProm-II Reverse transcriptase
System kit (Promega, Madison, United States) according to the
manufacturer’s protocol. The gene expression evaluation was
performed by Real-time quantitative polymerase chain reaction
(qRT-PCR) assays, using the SYBR Green PCR Master Mix®
(Thermo Fisher Scientific, Waltham, United States). The reaction
cycling parameters were adjusted to 50°C for 2 min and 95°C for
10 min, followed by 40 cycles at 95°C for 15 s and 60°C for 1min in
an Real Time PCR System ABI PRISM 7500 (Applied Biosystems,
Foster City, United States). Relative quantification was carried out
using the ΔCt method. This method results in ratios between the
target genes and the housekeeping reference gene, in this case, the

TABLE 1 | mRNA expression of cell adhesion and extracellular matrix proteins in
DPSCs after and before laser irradiation.

Gene LPS LPS + Laser Gene Fold (Change Factor)

ACVR1 1.15 0.66 −1.74
AHSG 1.21 0.53 −2.28*
ALPL 2.85 6.15 2.16*
ANXA5 1.99 1.48 −1.34
BGLAP 0.61 0.26 −2.35*
BGN 1.31 1.13 −1.16
CDH11 1.33 1.30 −1.02
CD36 0.11 0.06 −1.83
COL10A1 2.89 5.84 2.02*
COL14A1 0.82 0.79 −1.04
COL15A1 1.21 1.27 1.04
COL1A1 1.12 0.83 −1.35
COL1A2 1.00 0.77 −1.29
COL2A1 1.21 0.53 −2.28*
COL3A1 1.02 0.99 −1.03
COL5A1 1.65 0.98 −1.68
COMP 1,21 0.53 −2,28*
FN1 1.04 0.83 −1.25
ICAM1 29.32 30.55 1.04
ITGA1 4.73 2.98 −1.59
ITGA2 3.20 1.95 −1.64
ITGA3 0.61 0.60 −1.02
ITGAM 1.96 0.53 −3.70*
ITGB1 2.00 1.48 −1.35
SPP1 0.95 0.56 −1.70
VCAM1 6.07 3.67 −1.65
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enzyme β-2-microglobulin (positive control) for DSPCs. This assay
is based on gene fold-Regulation approach, that represents in fold-
change (fc) results of the evaluated genes. Fold-change values greater
than one indicates a positive- or an up-regulation in gene expression,
while fold-change values less than one indicate a negative or down-
regulation, of the evaluated gene. The p-values were calculated based
on a Student’s t-test of the replicate 2̂ (ΔCt) values for each gene in
the experimental or control groups. All primers sequences used in
PARs genes evaluation were manufactured by Exxtend (São Paulo,
SP, Brazil). The melting curve analysis was used to determine the
specificity of the reaction. All experiments were run in triplicates.

Inflammation and Osteogeneses Genes
Expression Array
Likewise, DPSCs from the 3 experimental groups were assessed
for expression of eighty-five (85) genes related to inflammation
and osteogenesis the RT2 Profiler ™ PCR array (Qiagen,
Hilden, GER) was used. This device allows gene expression
profiling technology by analyzing focused panels of genes using
real-time PCR. Each experimental kit contains a set of the
inflammatory/osteogenesis pathway-converged genes, and five
housekeeping (positive controls) genes. The array also contains
a panel of other reaction controls to monitor real-time PCR
efficiency (PPC), genomic DNA contamination (GDC) as well
as the first strand synthesis (RTC). All experiments were run in
triplicates.

Statistical Analysis
Raw data for each experiment (PARs, inflammation and
osteogenesis gene expression) was transformed in a fractional
number as function of the data from control group, using a single
rule of 3, wherein the gene expression values of control groups for
each experiment were considered � 1. Lack of normal distribution
demanded the application of non-parametric Kruskal–Wallis
tests, complemented by Mann–Whitney tests for pairwise
comparison, at a 5% level of significance.

RESULTS

Proteinase-Activated Receptor Expression
Four PARs have been identified so far (PAR-1–4) and evidence
shows that they can exhibit both anti- and pro-inflammatory
properties. Figure 1 shows that PBM treatment can modulate
the gene expression of all PARs members. While PAR-1
showed a downregulation in the gene expression, the
other PARs show a significant increase in the number of
gene copies.

Photobiomodulation Effect on Gene
Expression of Human Dental Pulp Stem
Cells After Lipopolysaccharide
Inflammatory Stimulus
PBM therapy showed a wide range of effects at the tissue, cellular,
and molecular levels. LPS-inflamed DPSCs demonstrated to be
sensitive to PBM irradiation with several genes related to
inflammation and osteogenesis being modulated either up or
down after treatment. Among the genes analyzed, Table 1 depicts
the DPSCs genes related to proteins involved in the extracellular
matrix (ECM) organization that were modulated by LPS
inducement and/or then regulated or inhibited by PBM
irradiation.

Photobiomodulation Effect on Expression
of Proteolytic Enzymes Genes of Human
Dental Pulp Stem Cells
Both in vivo and in vitro have used PBM because it is an
important tool to positively stimulate bone. However, little is
known about its association with anti-inflammatory and
neoformative events taking place in human stem cells

FIGURE 1 | PBM modulate PARs genes expression in DPSCs. Real-
time quantitative PCR (qRT-PCR) analysis of gene expression in LPS
stimulated DPSCs irradiated with the infrared wavelength (808 nm) with total
energy of 6 J (100mW × 60s). The bars represent the mean expression
levels of the four PARs genes and standard error. The qRT-PCR analysis of
gene expressions was normalized to the housekeeping gene enzyme β-2-
microglobulin for DPSCs (control); the relative quantification of the expression
levels (experimental/control) was determined based on the 2-ΔCt method.
Experiments were performed in triplicate. Different letters indicate statistically
significant differences (p < 0.05) in gene expression.

TABLE 2 | mRNA expression of proteolytic enzymes related to organic matrix
remodeling in the DPSCs before and after laser irradiation.

Gene LPS LPS + Laser Gene Fold (Change Factor)

CTSK 1,70 1.14 −1.49
MMP2 1.30 0.96 −1.35
MMP8 1.60 0.53 −3.02*
MMP9 1.42 0.53 −2.68*
MMP10 0.54 0.98 1.81
PHEX 0.26 0.18 −1.44
SERPINH1 1.30 0.99 −1.31
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derived from a mineralized tissue. The data presented in
Table 2 show the expression of proteolytic enzymes genes
related to organic matrix remodeling in mineralized tissues

that were upregulated in the inflammatory state and then,
mainly downregulated after PBM therapy. From all enzymes
evaluated only MMP-10 showed an increase in the expression
(1.81-fold), while MMP-8 and MMP-9 gene expression were
significantly reduced -3.03 and -2.68-fold, respectively.

Photobiomodulation Effects on Genes
Expression of Growth and Differentiation
Factors in Human Dental Pulp Stem Cells
Initially known as an active secreted molecule that can affect
the growth of the cells, the growth factors family has been
expanded his activities to include secreted molecules that can
affect cellular differentiation and promote or inhibit mitosis.
Table 3 show the expression profile of genes that can act on
specific cell surface receptors that subsequently transmit their
growth signals to other intracellular components, after
inflammatory stimulus, and after PBM treatment. Our
results clearly show that the growth factors were
predominantly upregulated by LPS, while PBM treatment
lowered the gene expression of proteins related to tissue
mineralization, such as BMP-1 (-3.67-fold), BMP-4 (-3.73-
fold), and BMP-7 (-2.28-fold). In the same sense, VEGF-B
was significantly downregulated by laser treatment (-9.43-
fold).

Photobiomodulation-Modulating Effect on
Gene Expression of Cell Surface Receptors
Once the expression of growth factors was evaluated, the gene
expression for cell receptors related to these specific ligands
was also evaluated. As expected, the expression of the cellular
receptors followed the trend profiling found as far expression
of their respective ligands. For most of evaluated cellular
receptors, it was observed an increase in their gene
expression after induction with LPS, while PBM treatment
downregulated all evaluated genes. Interestingly, the most
significantly inhibited receptors were those related to tissue
mineralization processes (Table 4), including: Calcium
Receptor (-2.28-fold), and Vitamin D Receptor (-37.66-fold).

TABLE 3 | mRNA expression of growth and differentiation factors in the DPSCs
before and after laser irradiation.

Gene LPS LPS + Laser Gene Fold (Change Factor)

BMP1 3.05 0.83 −3.67*
BMP2 2.85 1.82 −1.47
BMP3 1.21 1.94 1.60
BMP4 1.53 0.41 −3.73*
BMP5 0.52 0.57 1.90
BMP6 1.50 1.59 1.06
BMP7 1.21 0.53 −2.28*
CHRD 1.21 0.53 −2.28*
CSF1 1.36 1.28 −1.06
CSF2 0.13 0.16 1.23
CSF3 0.77 0.49 −1.57
EGF 1.21 1.53 1.26
FGF1 3.51 1.29 −2.72*
FGF2 2.63 2.09 −1.26
GDF10 1.21 0.53 −2.28*
IGF1 0.37 0.51 1.38
IGF2 1.21 0.53 −2.28*
IHH 1.21 0.53 −2.28*
NOG 2.80 2.79 −1.00
PDGFA 1.22 1.24 1.01
TGFB1 1.79 0.88 −2.03*
TGFB2 2.19 1.12 −1.96
TGFB3 0.47 0.52 1.11
TNF 1.21 0.53 −2.28*
VEGFA 1.52 1.16 −1.31
VEGFB 2.64 0.28 −9.43*

TABLE 4 |mRNA Expression of Cellular Receptors Related to Osteogenesis in the
DPSCs After and Before Laser Irradiation.

Gene LPS LPS + Laser Gene Fold (Change Factor)

ACVR1 1.15 0.66 −1.74
BMPR1A 2.02 1.40 −1.44
BMPR1B 1.11 0.55 −2.02*
BMPR2 1.81 1.40 −1.29
CALCR 1.21 0.53 −2.28*
EGFR 1.33 1.11 −1.20
FGFR1 1.24 0.95 −1.31
FGFR2 0.78 0.13 −6.00*
FLT1 0.19 0.55 2.89*
IGF1R 3.88 1.90 −2.04*
TGFBR1 1.36 0.92 −1.48
TGFBR2 1.31 0.81 −1.62
TNFSF11 0.58 0.37 −1.57
VDR 15.44 0.41 −37.66*

(ACVR1) Activin A receptor type I. (BMPR1A) Bonemorphogenetic protein receptor, type
IA. (BMPR1B) Bone morphogenetic protein receptor, type IB. (BMPR2) Bone
morphogenetic protein receptor, type II. (CALCR) Calcitonin receptor. (EGFR) Epidermal
growth factor receptor. (FGFR1) Fibroblast growth factor receptor 1. (FGFR2) Fibroblast
growth factor receptor 2. (FLT1) Fms-related tyrosine kinase. (IGF1R) Insulin-like growth
factor 1 receptor. (TGFBR1) Transforming growth factor, beta receptor 1. (TGFBR2)
Transforming growth factor, beta receptor II. (TNFSF11) Tumor necrosis factor (ligand)
superfamily, member 11. (VDR) Vitamin D (1.25- dihydroxyvitamin D3) receptor. The
numbers represent the quantification of the gene expression variation in fold change, and
the * represents genes that were modulated + or – 2.00-fold (p<0.05).

TABLE 5 | mRNA expression of transcription factors in the DPSCs before and
after laser irradiation.

Gene LPS LPS + Laser Gene Fold (Change Factor)

DLX5 1.21 0.53 −2.28*
GLI1 1.51 0.53 −2.85*
NFKB1 1.21 1.27 1.05
RUNX2 0.83 0.80 −1.04
SMAD1 1.51 0.66 −2.29*
SMAD2 1.68 1.09 −1.54
SMAD3 1.55 0.79 −1.96
SMAD4 2.80 1.36 −2.06*
SMAD5 1.99 1.76 −1.13
SOX9 3.68 3.20 −1.15
SP7 1.74 0.53 −3.28*
TWIST1 1.56 3.78 2.35*
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Photobiomodulation-Modulating Effect on
Gene Expression of Transcription Factors
Transcription factors are proteins that regulates the transcription
of genes. They have DNA-binding sequences that give them the
ability to bind to specific of DNA domains called enhancer
sequences. The evaluated members of this family were
basically not modulated by LPS (Table 5). Except for the
SOX-9 gene that showed a 3.68-fold increase in expression
levels. Conversely, the PBM treatment downregulated the
expression of all analyzed genes with the SP-7 (−3.28-fold),
GLI-1 (−2.85-fold), and TWIST-1 (−2.35-fold) showing to be
the most sensitive genes to laser irradiation.

DISCUSSION

In the regenerative dentistry field researchers face two major
challenges, both related to the pulp tissue pathophysiology.
The first is the tissue ability to turn back to a healthy metabolic
state after a transitory inflammation. The second concerns to
its intrinsic potential to produce mineralized tissue through its
specialized cells, the odontoblasts. The appreciation of human
dental pulp stem cells (DPSCs) as suitable for dental tissue
engineering applications (Kaigler and Mooney, 2001; Young
et al., 2005; Duailibi et al., 2008; Zhang et al., 2009) renders the
overall ambition of tissue regeneration in dentistry more
accomplishable. The PBM therapy or PBM treatment has
been used in medicine and dentistry for its well
demonstrated analgesic, anti-inflammatory, and
biostimulation effects (Reddy, 2004; Silveira et al., 2007;
Moosavi et al., 2016). In addition, the present study has
shown, for the first time, that such modulatory physio-
biological effects of PBM is accompanied by a modulation
on the gene expression of inflammation and osteogenic
biomarkers in DPSCs.

Proteinase-activated receptors (PARs) have a distinct
mechanism of activation that involves limited proteolysis and
unmasking of a receptor activating motif called tethered ligand
(Huesa et al., 2016). PAR-1 and PAR-4 are canonically described
as thrombin-activated receptors, while PAR-2 is activated by
trypsin. Interestingly, PAR-3 was related to play role during
embryonic development (Gieseler et al., 2013). Our results
clearly showed that PBM therapy can increase the expression
of PAR-2 (3.7-fold), PAR-3 (2.3-fold), and PAR-4 (3.8-fold) while
decreasing the expression of PAR-1 (-0.6-fold). Interestingly,
matrix metalloproteinases (MMPs), which genes have shown
to be upregulated by PBM in the present study, have been
described to activate PARs in a noncanonical way (Alvarez
et al., 2017). Thus, taken in conjunction, these results strongly
suggest that PARs can play a role in the anti-inflammatory
process promoted by PBM therapy by not only increasing
their expression, but also by increasing the MMPs expression
levels.

Even under basal conditions DPSCs produce these molecular
markers, including but not limited to CD-36, BMPs, NOG, Type
II collagen, RUNX2, SOX-9 that are responsible for maintenance

of pluripotency in early embryos and embryonic stem cells
(Govindasamy et al., 2010; Karaoz et al., 2010; Martinez-Sarra
et al., 2017), which indicate a promising primitiveness and
multipotency of DPSCs for regenerative dentistry.

The osteogenic gene profile analysis was performed to provide
better understanding on the underlying mechanisms for DPSCs
differentiation and modulation of mineralization process upon
the effects of an inflammatory model (LPS) and PBM (Tables
2–5). The treatment of DPSCs with LPS was capable to
remarkably induce the gene expression of odontoblastic
differentiation biomarkers, BMP-1, BMP-2, BMPR-1A, FGF-1,
FGF-2, TGF-B2, IGF-1R, SMAD-4, SMAD-5, COL-10A1, ITG-
A1, ITG-A2, ITG-B, ITG-A, and Alkaline phosphatase (ALP) in
DPSCs. ALP is a widely accepted as an earlier marker for the
differentiation of cells forming mineralized tissues. It has been
shown that BMP-2 is required to induce the differentiation of
DPSCs into odontoblast (Casagrande et al., 2010), and in
mesenchymal stem cells, BMP-2 efficiently induced the
expression of transcriptional factor Sox9 responsible for
chondrogenic differentiation via BMP-2/Smad (Pan et al.,
2008). Transforming growth factor-beta (TGF-β), also via
SMAD pathways, plays a major role in tooth development and
the reparative process by regulating cell proliferation,
differentiation, and reparative dentinogenesis (Niwa et al.,
2018). FGF-1 and TGF-β1 have a synergic effect to promote
morphological and functional features of differentiated
odontoblasts, whereas FGF-2 seems to modulate TGF-β1
action (Unda et al., 2000). TGF-β1 and TGF-β3 are
predominantly expressed in odontoblasts, whereas TGF-β2 is
high expressed in dental pulp (Niwa et al., 2018). IGF-I stimulate
osteoblast differentiation in human mesenchymal stem cells
(HMSCs), it stimulates the biosynthesis of 1α.25(OH)2D in
synergy with 25OHD3. Osteoblast differentiation and skeletal
homeostasis may be regulated by autocrine/paracrine actions of
25(OH)D (3) in HMSCs (Geng et al., 2011). Here, we
demonstrate that LPS can increases both IGF-1R and VDR
expression in DPSCs favoring odontoblast differentiation.
Taken together, our data suggest that LPS treatment induced
odontoblastic differentiation of human DPSCs.

RANKL is a tumor necrosis factor (TNF)-like factor produced
by mesenchymal cells, osteoblast derivatives, and T cells that is
essential for osteoclastogenesis. In osteoblasts, RANKL
expression is regulated by two major calcemic hormones, 1.25-
dihydroxyvitamin D (3) [1.25(OH) (2)D (3)] and parathyroid
hormone (PTH), as well as by several inflammatory/
osteoclastogenic cytokines (Kim et al., 2006).

It is important to mention that 1.25(OH)2 vitamin D
stimulates osteoblast maturation, increasing expression of the
mature osteoblast marker osteocalcin (BGLAP) in osteoblasts,
and 1.25(OH)2 vitamin D also stimulates the expression of the
osteoclast differentiation factor RANKL (Pereira et al., 2019). The
biological actions of 1.25-(OH)2D3 are mediated by the vitamin
D receptor (VDR), a protein that binds to target genes and alters
their expression. 1.25-(OH)2D3 is also able of inducing
transcription of the VDR gene itself (Zella et al., 2006). VDR
signaling in osteoprogenitors cells increases RANKL expression
and stimulates osteoclastogenesis (Kim et al., 2006).
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In this sense, PBM treatment significantly suppressed the
mRNA expression of TNF and RANKL (TNFSF11) triggered
by LPS in DSPC. Interesting, PBM treatment greatly decreased
(37.66-fold) the expression Vitamin D Receptor (VDR) triggered
by LPS in the cell model. PBM treatment can inhibit the
transcriptional activity of NF-κB in human periodontal
ligament cells (Lee et al., 2018), which is a crucial
transcription factor involved in the regulation of the
inflammatory process triggered by LPS in dental pulp stem
cells (Baldwin, 2001). PBM decreased cell death and
attenuated the NLRP3 inflammasome in the ischemic brain. In
mice experimental model with ischemic stroke, PBM therapy
showed suppressed TLR-2 levels, MAPK signaling and NF-kB
activation. The suppression of NF-kB activation induced by PBM
is related to the major anti-inflammatory activity of Laser (Lee
et al., 2017).

Our data suggest that the decrease in the VDR expression
promoted by PBM treatment can lead to inhibition of
1.25(OH)2D3/VTR signaling, and downregulating RANKL
expression in DPSCs (Kim et al., 2006). PBM therapy also
decreased the expression of proteolytic enzymes cathepsin K,
MMP-8 and MMP-9 after LPS assay. Overall, PBM blocked the
odontoblastic differentiation of human dental pulp stem cells
subjected to LPS assay that were dependent on BMP, FGF, IGF
and TGFB signaling, decreasing the expression of the transcriptional
factor DLX-5 and SP-7 as expected. SP-7 and Dlx5, in turn, was
shown to drive the differentiation of mesenchymal precursor cells
into osteoblasts (Nakashima et al., 2002). Conversely, it is important
to mention that PBM did not block the mRNA expression of ALP,
Twist homolog 1 (TWIST-1) and Runt-related transcription factor 2
(RUNX-2) in DPSCs, even in the presence of LPS. TWIST-1 protein
regulates several genes that are known to be key players in bone
formation, including the FGF-R2 and RUNX-2 genes. In
conjunction, our data strongly suggest that PBM decreased
inflammatory mineral matrix resorption in DPSCs by decreasing
the activation of RANKL expression via inhibition of 1.25(OH)2D3/
VTR signaling. Moreover, PBM treatment preserved the
odontogenic potential of DPSCs by increasing the expression of
TWIST-1/RUNEX-2/ALP signaling axis.

In spite of the study limitations, were possible to conclude
that biomodulation of DPSCs by irradiation with laser device at
the infrared wavelength (808 nm) showed not only to mediate
the gene expression related to habitual anti-inflammatory
molecular canons, but also participate in the regulation of
genes that can express signaling molecules and factors
associated with other non-classic inflammation molecules (i.e.
PARs, cell receptors and transcription factors) as well as with
molecules of bone tissue protection from resorption, even if it
has not clearly shown yet to influence the expression of genes

that stimulate bone neoformation. Further studies still need to
be performed to better elucidate the role of PBM therapy on the
DPSCs and bone. However, this study certainly brings new data
to tissue engineering related to the regenerative pulp
therapy field.
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