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Much is known about age-related anatomical changes in the vestibular system. 
Knowledge regarding how vestibular anatomical changes impact behavior for older 
adults continues to grow, in line with advancements in diagnostic testing. However, 
despite advancements in clinical diagnostics, much remains unknown about the func-
tional impact that an aging vestibular system has on daily life activities such as standing 
and walking. Modern diagnostic tests are very good at characterizing neural activity of 
the isolated vestibular system, but the tests themselves are artificial and do not reflect the 
multisensory aspects of natural human behavior. Also, the majority of clinical diagnostic 
tests are passively applied because active behavior can enhance performance. In this 
perspective paper, we review anatomical and behavioral changes associated with an 
aging vestibular system and highlight several areas where a more functionally relevant 
perspective can be taken. For postural control, a multisensory perturbation approach 
could be used to bring balance rehabilitation into the arena of precision medicine. For 
walking and complex gaze stability, this may result in less physiologically specific impair-
ments, but the trade-off would be a greater understanding of how the aging vestibular 
system truly impacts the daily life of older adults.
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AGiNG AND tHe vestiBULAr sYsteM

Many systems in the human body are adversely affected by the aging process, including the vestibular 
system. It has long been known that the number of vestibular hair cells is reduced in older adults 
compared to younger adults, independent of vestibular disease (1–4). The decline in hair cells is not 
uniform throughout the vestibular periphery. The saccule and utricle experience approximately a 
25% reduction in hair cells, whereas semi-circular canals (SCCs) lose approximately 40% of their 
hair cells with age (5). Moreover, type I hair cells die off at a higher rate in the SCCs compared to the 
saccule and utricle, whereas type II hair cells experience similar rates of degeneration in the SCCs 
and otolith organs (3, 6–8). Utricular hair cells are more susceptible to age-related degeneration than 
saccular hair cells (3).

The size and number of neurons that make up the vestibular nucleus decrease by 3% each decade 
beginning around age 40 (9). The number of vestibular nerve fibers also declines with increasing 
age (10). Fewer vestibular sensory cells and neural pathways result in an age-related reduction in 
vestibular afferent signals to the central nervous system. There is also an associated reduction in the 
number of cerebellar Purkinje cells that contribute to modulation of vestibular afferents (11).
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Paralleling the anatomical changes, most behavioral experi-
ments have demonstrated a decline in functional vestibular tests 
[e.g., decreased vestibulo-ocular reflex (VOR) with increased 
age] (12–16). Fewer sensory cells in the SCCs result in a reduced 
capacity for detecting rotational head movements. In addi-
tion to reduced VOR gain, older adults also have shorter VOR 
time constants (12). Reduction in the vestibular time constant 
suggests the neural integrator as a potential site of age-related 
degeneration (13, 17). Dependence of the VOR on age appears to 
be variable as not all experiments demonstrate age-related decline 
in VOR gain (18, 19). VOR function measured by head impulse 
testing was impaired more often than otolith function based on 
vestibular-evoked myogenic potential (VEMP) testing for adults 
over 70 (20).

The functional consequence of fewer sensory cells in the 
otolith organs includes reduced sensitivity to gravity and linear 
acceleration (21, 22). Consistent with the decreased sensitivity 
of the saccule, older adults have smaller amplitude ocular and 
cervical VEMPs (23–27). Cervical VEMP response latencies are 
also longer and depend on a greater extent on stimulus volume 
to generate an effective response in older adults (27, 28). The 
optimal frequency for air conducted VEMPS also changes with 
increased age (25). Older adults display less ocular counter roll 
during slow roll tilt and also in response to galvanic vestibular 
stimulation consistent with reduced utricular responsiveness (29, 
30). Linear VOR responses to fore-aft accelerations were smaller 
in older adults than in younger adults (31), demonstrating that 
the otolith responses to movement and to sound/vibration show 
a similar pattern of decline with age. The linear VOR has been 
implicated in anticipatory eye movements and a decline in otolith 
function may contribute to abnormal gaze stability during repeti-
tive behaviors such as walking (32).

FUNctiONAL iMPAct OF tHe AGiNG 
vestiBULAr sYsteM

It has been estimated that 30–35% of older adults suffers from 
vestibular dysfunction (33, 34). The most common type of ves-
tibular disorder in the elderly is benign paroxysmal positional 
vertigo (BPPV) (35), likely due to fewer otoconia adhering to the 
saccule or utricle combined with alteration in calcium metabo-
lism (22, 26, 36). Diagnosis of BPPV is based on stereotypical 
patterns of nystagmus and vertigo during positional testing, such 
as Hallpike–Dix testing (35, 37), supine head turns (38, 39), or 
deep head hanging (40). Routine medical screening for BPPV has 
been advocated for older adults due to the prevalence and ease of 
treatment (41).

Approximately one-third to one-half of the population over the 
age of 65 experiences an injurious fall annually (42, 43). Vestibular 
dysfunction results in balance impairments that frequently result 
in falls (44). Eighty percent of fallers in a recent study were found 
to have a vestibular impairment (45). Older adults experience 
more disequilibrium following nerve section associated with 
treatment of acoustic neuroma compared to younger adults 
(46). Persistent disequilibrium suggests that sensory reweighting 
may be more difficult with reduced vestibular input to the aging 

nervous system (47–49). Sensory reweighting involves prioritiz-
ing accurate and reliable sensory information over less reliable or 
less accurate sensory information for estimating body motion in 
space (50). Deviations in subjective visual vertical with age are 
consistent with reduced sensitivity of the otolith organs that lead 
to an increase in visual weighting to identify vertical (51, 52). 
Healthy older adults also demonstrate an increase in trunk sway 
velocity with age (53, 54). Older adults with abnormal utricular 
responses to whole body tilt have more variable medio-lateral 
sway relative to young adults, partly due to altered gravitational 
integration for postural control (29). Additionally, age-related 
changes in somatosensory function (reduced nerve conduction 
velocity), visual impairments, cognitive decline, and decreased 
strength may impact balance-related sensory integration for 
older adults who develop vestibular pathology (55–57).

Reduced capabilities in the aging vestibular system may 
impair the ability to rapidly detect changes in head acceleration 
and may contribute to slower walking as a self-protective strategy 
to prevent falls in older adults. Falls are known to occur most 
frequently during walking or transitions from sitting/standing to 
walking when head acceleration is higher (58). Abnormal SCC 
function [based on clinical head impulse test (HIT)] has been 
associated with slower gait speed and increased odds of falling in 
adults over 70 years old (59). By contrast, individuals with acute 
unilateral vestibular disease do not show a strong or consistent 
relationship between trunk velocity while walking and VOR gain 
(60). These inconsistencies may represent functional distinctions 
between VOR and vestibulo-spinal pathways despite neural con-
vergence in the vestibular nuclei (61). Walking leg movement and 
trunk sway may receive different vestibular modulation as has 
been demonstrated for vision (62). Increased variability of double 
support time during walking has recently been reported for older 
female fallers with asymmetric responses to the post head shak-
ing nystagmus test (63). Saccular function has also been shown 
to contribute to age-related changes in gait speed in healthy older 
adults (64). Slower gait speed may be a compensation related to 
postural abnormalities during a task when the base of support is 
dynamically changing (65), or to impaired visual stability at faster 
head speeds (66), or both. Differences in sample size, age, and 
pathology of vestibular dysfunction limit comparisons between 
these studies and highlight the need for additional studies to bet-
ter understand the causal link between walking difficulties and 
age-related decline in SCC and otolith function.

The vestibular system has been linked to visuospatial function 
(67, 68), and individuals with vestibular loss experience dif-
ficulties with spatial navigation (69). Accurate spatial navigation 
depends on having a stable egocentric reference frame, and the 
vestibular system has been proposed as a source for that reference 
(70). Older fallers made significantly larger errors when perform-
ing a triangle walking task blindfolded, demonstrating a reduced 
ability to accurately perform spatial path integration (71, 72). 
Older adults have greater difficulty integrating multisensory cues 
for navigation than younger adults (73). Older adults are more 
likely to experience cognitive decline, and vestibular dysfunction 
mediates the decline in cognition associated with increased age 
(74). It is not clear to what extent age-related decline in spatial 
navigation measured when blindfolded relates to goal-oriented 

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org


January 2016 | Volume 6 | Article 2693

Anson and Jeka The Aging Vestibular System

Frontiers in Neurology | www.frontiersin.org

walking since path direction is influenced by vision, vestibular, 
and proprioceptive input (75).

However, many older adults with degenerating vestibular 
systems do not report imbalance or dizziness (13). Symptom 
reports do not consistently relate to either physiological (i.e., 
VOR) or perceptual assessments of vestibular function such 
as dynamic visual acuity (76–80). Further complicating the 
mismatch between symptoms and physiology, older adults may 
have anxiety/depression/fear of falling that exacerbates or mimics 
symptoms from age-related vestibular dysfunction (81–84). Due 
to limitations in vestibular diagnostic testing, clinicians may not 
be able to detect residual vestibular function in older adults with 
vestibular loss confirmed by current diagnostic testing (20, 85). 
Among older adults with severe vestibular loss canal function was 
impaired in 100% of individuals, but approximately 60% of those 
individuals demonstrate some degree of preserved otolith func-
tion (86). However, canal function evaluated by HIT does not 
require complete absence of function in order to be identified as 
pathologic (87, 88); therefore, there may also be preserved canal 
function in adults with age-related decline in vestibular function 
based on HITs. In addition to partially preserved vestibular func-
tion, inconsistent subjective reports may also be due to anticipa-
tory mechanisms (89, 90), changes in lifestyle behaviors (91), or 
changes in multisensory reweighting (92, 93).

FUtUre DirectiONs FOr FUNctiONAL 
vestiBULAr testiNG

Current vestibular assessments are very good at characterizing 
the reactivity of the peripheral vestibular sensory epithelium; 
however, they rely on artificial and unnatural stimuli to deter-
mine whether the vestibular system is working (79, 94, 95). The 
relevance of these artificial assessments to natural multisensory 
functional behavior is not always clear (96, 97). Even when there 
are associations between vestibular tests and functional activi-
ties, such as standing and walking, the direct causal link between 
walking and tests performed while sitting or lying down remains 
to be elucidated. Some tests such as calorics and clinical head 
impulse testing are very good at identifying abnormal vestibular 
function (88), but they may not be sensitive enough to identify 
slow decline in vestibular function associated with age (41). 
The range for clinically normal rotational VOR gain is 0.7–1.0, 
making it is unclear whether the measure of rotational VOR gain 
is adequate to capture age-related decline (14, 15, 98). Recently, 
more attention has been placed on corrective saccades resulting 
from head impulse testing as an additional method for identi-
fying age-related change in vestibular-mediated gaze stability 
(99–101). Quantification of gaze stability based on compensatory 
saccades may prove to be more sensitive for identifying subtle 
age-related decline in vestibular function associated with aging. 
Since adaptive compensatory saccades contribute to gaze stabil-
ity to a greater extent in response to vestibular pathology (102), 
new methods to quantify “global gaze stability” during natural 
behavior are needed that allow for multiple loci for neural control.

Current clinical balance assessments cannot specifically iden-
tify change in vestibular function as the primary contribution to 

balance problems for older adults. Perturbation-based evaluation 
of balance and sensory weighting allows for balance testing to 
move beyond descriptions of sway to mechanistic identification 
of abnormal multisensory integration (50, 103). This type of bal-
ance assessment has the potential to move beyond the standard 
approach to clinical balance assessment for older adults and 
bring balance rehabilitation closer to precision medicine. Major 
limitations to implement this level of precision diagnostics for 
balance include the expense of equipment, space for equipment, 
technical skills to perform the experiment, and interpret the 
experimental results. Additionally, the time needed to conduct 
these experiments may be clinically prohibitive. Future work in 
this field should focus on adapting perturbation style laboratory 
techniques for identifying mechanistic contributions to balance 
impairments into clinical settings (104), as well as controlled 
trials designed to target impaired balance mechanisms with 
rehabilitation strategies using a precision medicine approach. 
Clinical adaptations could include the use of body worn inertial 
sensors and head-mounted displays for visual stimulation to 
reduce equipment cost and space (105, 106). Electrical vestibular 
stimulation and tendon vibration could provide specific stimula-
tion (103), rather than relying on non-specific effects encoun-
tered with foam surfaces. Demonstrating that equivalent results 
can be obtained in a shorter, more clinically friendly time frame 
is necessary before widespread clinical acceptance of this tech-
nique. Furthermore, task-specific balance assessment should not 
be restricted to standing balance. Body worn inertial sensors and 
smartphone technology can and should be leveraged to identify 
functional balance impairments during tasks, such as walking, 
obstacle crossing, and stair negotiation (60, 107, 108).

The ability to see clearly during head/body movement is 
important for many daily tasks, such as shopping, obstacle 
avoidance and manipulation, determining location/navigation 
by reading signs, and driving. The primary purpose of the VOR 
is to stabilize gaze during locomotion (109, 110). Oscillopsia, the 
apparent “jumping of objects …  due to bobbing up and down 
of the head” degrades visual acuity during head motion making 
faces or reading signs/labels difficult or impossible to recognize 
(111–113). Oscillopsia can lead to reduced quality of life through 
reduction in activity participation, elevated economic burden, 
and self-imposed limitations on driving (86, 114). In contrast to 
seated tests of gaze stability, walking gaze stability depends on 
multiple sensory systems (vision, vestibular, and proprioception) 
for coordination of ocular muscles with postural muscles that 
control movement of the head (115–118). Characterizing overall 
gaze stability during walking would provide greater insight into 
actual functional problems experienced by older adults with 
reduced vestibular function. Overall gaze stability, despite being 
less physiologically specific, during a more natural behavior 
such as walking would be more informative about the daily life 
impact that vestibular decline has on older adults. In order to 
be more patient focused, future studies should move beyond the 
laboratory to evaluate functional gaze stability in natural settings 
during typical daily tasks. This is particularly relevant for studies 
attempting to link head impulse assessment of VOR gain to gaze 
stability during walking as peak head velocity during walking 
often exceeds the peak velocity of a head impulse (119). Portable 
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lightweight gaze analysis systems could be sent home to capture 
a “day in the life” of an older adult or individuals with vestibular 
dysfunction.

Despite associations between VEMP tests and functional 
behaviors such as gait speed, the directionality and causality 
of those links remain unclear. Functionally relevant methods 
to evaluate otolith contributions to vestibulo-spinal control 
during standing and walking are needed (120, 121). Including 
assessments when the postural control system is under real or 
apparent threat, for example at heights, will also be important as 
vestibulo-spinal gain and postural sway are different under those 
conditions (121–123). Treadmills paired with virtual reality or 
head-mounted displays should be leveraged to evaluate spatial 
navigation for older adults. Immersive technology will facilitate 
simultaneous measurement of balance and walking ability, gaze 
stability, and eye movement control, while also tasking aspects of 
cognition, fear/anxiety, and ability to navigate through space. As 

new methods are devised to probe functional vestibular behavior, 
they will need to incorporate physiologically relevant vestibular 
stimulation for the SCCs and otoliths while also capturing the 
multiple systems influenced by the vestibular system (119, 124). 
A comprehensive and integrative approach to the evaluation of 
vestibular function should concurrently address gaze stability 
and postural control during functionally relevant standing and 
walking tasks.
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