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a b s t r a c t 

The yeast Rgt1 repressor inhibits transcription of the glucose transporter ( HXT ) genes in the absence of

glucose. It does so by recruiting the general corepressor complex Ssn6-Tup1 and the HXT corepressor

Mth1. In the presence of glucose, Rgt1 is phosphorylated by the cAMP-activated protein kinase A (PKA)

and dissociates from the HXT promoters, resulting in expression of HXT genes. In this study, using

Rgt1 chimeras that bind DNA constitutively, we investigate how glucose regulates Rgt1 function. Our

results show that the DNA-bound Rgt1 constructs repress expression of the HXT1 gene in conjunction

with Ssn6-Tup1 and Mth1, and that this repression is lifted when they dissociate from Ssn6-Tup1 in

high glucose conditions. Mth1 mediates the interaction between the Rgt1 constructs and Ssn6-Tup1,

and glucose-induced downregulation of Mth1 enables PKA to phosphorylate the Rgt1 constructs. This

phosphorylation induces dissociation of Ssn6-Tup1 from the DNA-bound Rgt1 constructs, resulting in

derepression of HXT gene expression. Therefore, Rgt1 removal from DNA occurs in response to glucose

but is not necessary for glucose induction of HXT gene expression, suggesting that glucose regulates

Rgt1 function by primarily modulating the Rgt1 interaction with Ssn6-Tup1. 
C © 2013 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical

Societies. All rights reserved. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The yeast Rgt1 repressor is a DNA-binding transcription factor that

regulates expression of glucose responsive genes, including genes en-

coding a family of glucose transporters (HXTs) [ 1 , 2 ]. Rgt1 represses

expression of HXT genes in the absence of glucose by recruiting the

general corepressor Ssn6-Tup1 complex, which in turn recruits global

corepressors, such as chromatin and nucleosome remodelers, or di-

rectly interacts with the RNA transcription machinery [ 1 , 3 –5 ]. Ssn6-

Tup1 also functions by masking the activation domain of a DNA-

binding repressor and thereby preventing recruitment of the coac-

tivators necessary for transcriptional activation [ 6 ]. Thus, Ssn6-Tup1

may act differently on different repressors, but an efficient recruit-

ment of Ssn6-Tup1 by gene specific repressors may be critical for
� This is an open-access article distributed under the terms of the Creative Com- 

mons Attribution-NonCommercial-No Derivative Works License, which permits non- 

commercial use, distribution, and reproduction in any medium, provided the original 
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establishing repression. 

Rgt1-dependent, Ssn6-Tup1-mediated repression occurs in con-

junction with the paralogous proteins Mth1 and Std1. Rgt1 does not

bind DNA, which thereby causes constitutive expression of HXT genes,

in cells lacking Mth1 and Std1 [ 7 –9 ]. Mth1 and Std1 directly interact

with Rgt1, enabling Rgt1 to recruit Ssn6-Tup1 to the HXT promoters

in the absence of glucose, but are degraded by the proteasome in the

presence of high levels of glucose, implicating Mth1 and Std1 as Rgt1

regulators [ 10 –14 ]. However, evidence also indicates that deletion of

the STD1 gene alone has little effect on the regulation of HXT gene

expression [ 8 , 9 , 15 ]. Glucose stimulates proteasomal degradation of

Std1 but also induces expression of STD1 gene expression, suggesting

attenuation of Std1 degradation by feedback regulation of Std1 ex-

pression. By contrast, glucose stimulates Mth1 degradation [ 14 –17 ]

but at the same time represses expression of the MTH1 gene [ 9 , 15 ].

Therefore, Mth1 degradation is reinforced by glucose repression of

MTH1 gene expression, ensuring rapid removal of Mth1 from cells

when glucose becomes available so as to enables prompt induction of

HXT gene expression. Hence, glucose likely modulates Rgt1 function

by mainly regulating Mth1 levels [ 18 ]. 

Rgt1 is phosphorylated and dissociated from the HXT promoters

in cells grown in high glucose [ 3 , 19 ]. Rgt1 is a phosphoprotein; it

is phosphorylated at a basal level in the absence of glucose, but hy-

perphosphorylated by PKA in high levels of glucose [ 20 –23 ]. Rgt1 is
f European Biochemical Societies. All rights reserved. 
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Table 1 

S. cerevisiae strains used in this study. 

Strain Genotype Source 

BY4741 Mata his3 Δ1 leu2 Δ0 

ura3 Δ0 met15 Δ

[ 37 ] 

FM557 Mata his3 Δ1 leu2 Δ0 

ura3 Δ0 met15 Δ LYS2 

rgt1::kanMX 

[ 37 ] 

YM6545 Mata his3 Δ1 leu2 Δ0 

ura3 Δ0 met15 Δ LYS2 

RGT2–1 

[ 15 ] 

JKY98 Mata his3 Δ1 leu2 Δ0 

ura3 Δ0 met15 Δ LYS2 

rgt1::kanMX 

p HXT1::NAT 

This study 

KFY35 Mat α his3 Δ1 leu2 Δ0 

ura3 Δ0 met15 Δ

mth1::kanMX 

[ 37 ] 

KFY56 Mata his3 Δ1 leu2 Δ0 

ura3 Δ0 met15 Δ

SSN6-TAP-HIS3MX6 

[ 38 ] 
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hosphorylated at four serine residues within its amino-terminal re- 

ion, but this does not occur until Mth1 is degraded [ 24 ]. The PKA 

hosphorylation of Rgt1 inhibits its interaction with Ssn6-Tup1 and 

his phosphorylation is inhibited by Mth1, suggesting that Mth1 me- 

iates the interaction between Rgt1 and Ssn6-Tup1 by inhibiting Rgt1 

hosphorylation [ 25 ]. Interestingly, a recent work shows that Rgt1 

ound to the HXT1 promoter does not inhibit glucose induction of 

XT1 gene expression in cells lacking Ssn6 or Tup1, raising a possi- 

ility that glucose-induced Rgt1 removal from DNA may be not the 

rimary cause of glucose induction of HXT gene expression [ 25 ]. The 

elief of Ssn6-Tup1-mediated repression comes about through the 

estruction or inactivation of the individual repressors, resulting in 

issociation of the repressors from Ssn6-Tup1 and / or DNA [ 4 ]. Based 

n these observations, we have hypothesized that dissociation of Rgt1 

rom DNA occurs in response to glucose, but is not required for glu- 

ose induction of HXT gene expression, and that Rgt1 dissociation 

rom Ssn6-Tup1 may be sufficient to lift Rgt1-mediated repression. 

The goal of this study is to provide direct evidence to support 

his hypothesis. To do so, we examined glucose regulation of LexA- 

gt1 and GFP-Rgt1 fusions that bind DNA constitutively and found 

hat the Rgt1 constructs repress HXT1 gene expression in conjunction 

ith Mth1 and Ssn6-Tup1 in the absence of glucose, and that this 

epression is lifted when they are phosphorylated and dissociated 

rom Ssn6-Tup1 in the presence of glucose. We observed, however, 

hat the Rgt1 constructs lacking PKA phosphorylation sites did not 

issociate from Ssn6-Tup1 and thereby repress expression of the HXT1 

ene constitutively. Our results suggest that glucose induction of HXT 

ene expression results primarily from the disruption of the Rgt1- 

sn6-Tup1 interaction, rather than from Rgt1 removal from DNA. 

. Materials and methods 

.1. Yeast strains and plasmids 

Yeast strains used in this study are listed in Table 1 . Except where 

ndicated, yeast strains were grown in YP (2% bacto-peptone, 1% yeast 

xtract) and SC (synthetic yeast nitrogen base media containing 0.17% 

east nitrogen base and 0.5% ammonium sulfate) supplemented with 

he appropriate amino acids and carbon sources. 

.2. Chromatin immunoprecipitation (ChIP) 

ChIP was performed as described previously [ 3 ]. Yeast strains were 

rown till mid-log phase (O.D 600nm 

= 1.2–1.5) and incubated with 

ormaldehyde (1% final concentration) at room temperature for 15 to 
20 min. The cross-linking reaction was quenched by adding glycine to 

a final concentration of 125 mM for 5 min. The cells were disrupted by 

vortexing with acid-washed glass beads in ice cold ChIP lysis buffer 

(50 mM HEPES–KOH, pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.1% Na- 

deoxycholate) containing protease and phosphatase inhibitors. The 

lysate was sonicated (ultrasonic cell disruptor with a microtip) five 

times with 10 s pulse. The genomic DNA fragments were immuno- 

precipitated with anti-HA, LexA, GFP or Ssn6 antibody (Santa Cruz) 

conjugated with agarose beads. After washing the immunoprecipi- 

tated beads, DNA was eluted from both immunoprecipitated and 1 / 
100 input samples. The immunoprecipitated DNA was PCR-amplified 

using primer pairs directed against the HXT1 promoter. As a negative 

control, primer sets were designed to amplify the actin gene pro- 

moter region. DNA-binding of Rgt1 was determined by running the 

PCR products of linear range in 1.5% agarose gel and visualizing by 

ethidium bromide staining. 

2.3. Western blot and immunoprecipitation (IP) analysis 

For Western blot analysis, yeast cells (O.D 600 = 1.5) were collected 

by centrifugation at 3000 rpm in a table-top centrifuge for 5 min. 

The cell pellets were resuspended in 100 μl of SDS-buffer (50 mM 

Tris–HCl, pH 6.8, 10% glycerol, 2% SDS, 5% β-mercaptoethanol) and 

boiled for 5 min. After the lysates were cleared by centrifugation 

at 12,000 rpm for 10 min, soluble proteins were resolved by SDS–

PAGE and transferred to PVDF membrane (Millipore). The membranes 

were incubated with appropriate antibodies (anti-HA, anti-LexA, anti 

-GFP and anti-TAP antibodies, Santa Cruz) in TBST buffer (10 mM 

Tris–HCl, pH 7.5, 150 mM NaCl, 0.1% Tween-20) and proteins were 

detected by the enhanced chemiluminescence (ECL) system. For IP, 

yeast cells were disrupted by vortexing with acid-washed glass beads 

in ice cold NP40 buffer (1% NP40, 150 mM NaCl, 50 mM Tris–HCl, pH 

8.0) containing protease and phosphatase inhibitors. The cell lysates 

were incubated with appropriate antibodies at 4 ◦C for 3 h and further 

incubated with protein A / G-conjugated agarose beads at 4 ◦C for 1 h. 

The precipitated agarose beads were washed three times with ice cold 

NP40 buffer containing protease and phosphatase inhibitor cocktails 

(Sigma P8215 and Sigma P0044, respectively) and boiled in 50 μl of 

SDS–PAGE buffer. The resulting proteins were analyzed by Western 

blot using appropriate antibodies. 

2.4. β-Galactosidase assay 

To assay β-galactosidase activity with yeast cells expressing the 

HXT1-LacZ reporter, the yeast cells were grown to mid-log phase and 

the assay was performed as described previously [ 14 ]. Results were 

given in Miller Units [(1000 × O.D 420nm 

) / ( T × V × O.D 600nm 

), where 

T was the incubation time in minutes, and V is the volume of cells in 

milliliters]. The reported enzyme activities were averages of results 

from triplicates of three different transformants. 

2.5. Quantitative RT-PCR (qRT-PCR) 

Total RNA was extracted by RNeasy mini kit (Qiagen) following 

manufacturer’s protocol and 2 μg of total RNA was converted to cDNA 

by qScript cDNA supermix (Quanta Biosciences). cDNA was analyzed 

by qRT-PCR using SsoFast Evagreen reagent (Bio-Rad) in CFX96 Real- 

time thermal cycler (Bio-Rad). ACT1 was used as an internal control 

to normalize expression of HXT1 gene. All of the shown quantification 

data were the averages of three independent experiments with error 

bars representing standard deviations (S.D.). 
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Fig. 1. Dissociation of the Rgt1 repressor from HXT promoters is not required for glucose-induction of HXT1 gene expression. (A) Schematic diagram of the structures of Rgt1 and 

its constructs. The map shows the DNA-binding domain, the Ssn6-Tup1 interaction site and the PKA phosphorylation sites. (B) Yeast cells ( rgt1 Δ) expressing Rgt1-HA (KFP60), 

LexA-Rgt1 (pBM3580) or GFP-Rgt1 (pBM3911) were grown in SC–2% galactose medium ( −) till mid-log phase and shifted to SC–4% glucose medium ( + ) for 1 h. Rgt1 was subjected 

to Western blot analysis using anti-HA, anti-LexA or anti-GFP antibody. (C) ChIP analysis of Rgt1 binding to the HXT1 promoter. Yeast cells ( rgt1 Δ) expressing Rgt1-HA, LexA-Rgt1 

or GFP-Rgt1 were grown in SC–2% galactose medium ( −) and shifted to SC–4% glucose medium ( + ) for 1 h, and cross-linked chromatin was precipitated using anti-HA, anti-LexA 

or anti-GFP antibody. Representative PCRs are shown for amplification of HXT1 promoter. As a negative control of Rgt1 DNA binding, primer sets were designed to amplify the 

actin gene promoter region (p ACT1 ) , which does not contain the Rgt1-binding sequence (5 ′ -CGGANNA-3 ′ ) [ 3 ]. (D) qPCR analysis of Rgt1-binding to the HXT1 promoter. The amount 

of immunoprecipitated (IP) DNA was quantified by qPCR with primer pairs directed against the HXT1 promoter (p HXT1 ). IP / Input ratio was determined by the ratio of IP / p HXT1 

relative to the IP / p ACT1 divided by the ratio of input / p HXT1 relative to the INPUT / p ACT1. The data shown are averages of three independent experiments with error bars showing 

mean ± S.D. (E) The HXT1 ORF was replaced by the NAT ORF by homologous recombination [ 26 ]. Empty vector, Rgt1-HA, LexA-Rgt1 and GFP-Rgt1 were expressed in the reporter 

strain. The reporter cells were spotted on SC-Leu or SC-Ura plate containing either 2% galactose or 4% glucose supplemented with 100 μg / ml NAT sulfate. The first spot of each row 

represented a count of 5 × 10 7 cells / ml, which is diluted 1:10 for each spot thereafter. The plates were incubated for 3 days and photographed. (F) Yeast cells ( rgt1 Δ) coexpressing 

p HXT1-LacZ reporter plasmid and Rgt1-HA, LexA-Rgt1 or GFP-Rgt1 were grown as described in (B) and assayed for β-galactosidase activity. An empty vector served as a control. 

Fig. 2. Mth1 does not directly regulate the DNA-binding ability of Rgt1. (A) The current model of glucose-induction of HXT gene expression. The Rgt2 and Snf3 glucose sensors 

undergo a conformational change upon glucose binding and generate a signal that leads to proteasomal degradation of Mth1 and Std1. PKA phosphorylation of Rgt1, which occurs 

when Mth1 and Std1 are degraded, induces its dissociation from both Ssn6-Tup1 and its target promoters, leading to the expression of the HXT genes. RGT2–1 and SNF3–1 are 

dominant mutations that are thought to convert the proteins into the glucose-bound forms and cause glucose-independent expression of the HXT genes. (B) ChIP analysis of 

Rgt1-binding to the HXT1 promoter. Top: Yeast cells of indicated genotypes expressing Rgt1-HA or LexA-Rgt1 were grown in SC–2% galactose medium ( −) and shifted to SC–4% 

glucose medium ( + ) for 1 h and cross-linked chromatin was precipitated using anti-HA or anti-LexA antibody, and representative PCRs were shown for amplification of HXT1 

promoter. As a negative control of Rgt1 DNA-binding, primer sets were designed to amplify the actin gene promoter region (p ACT1 ). Bottom: qPCR analysis of Rgt1-binding to the 

HXT1 promoter, as described in Fig. 1 D. (C) Yeast cells ( mth1 Δ and RGT2–1 ) coexpressing p HXT1-LacZ reporter plasmid and Rgt1-HA or LexA-Rgt1 were grown as described in (B) 

and assayed for β-galactosidase activity. Empty vector served as a control. 
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Fig. 3. Rgt1 phosphorylation at the PKA sites is required for glucose-induction of HXT gene expression. (A) ChIP analysis of LexA-Rgt1-binding to the HXT1 promoter was carried out 

as described in Fig. 1 C (left). The anti-LexA antibody was used to precipitate chromatin. Right: qPCR analysis of Rgt1-binding to the HXT1 promoter, as described in Fig. 1 D. (B) The 

p HXT1-NAT reporter strain (JKY98) expressing empty vector, LexA-Rgt1 or LexA-Rgt1 (5SA) was spotted on SC-Leu plate containing either 2% galactose or 4% glucose supplemented 

with 100 μg / ml NAT sulfate, as described in Fig. 1 E. The plates were incubated for 3 days and photographed. (C) Yeast cells ( rgt1 Δ) coexpressing the p HXT1-LacZ reporter plasmid 

and LexA-Rgt1 or LexA-Rgt1 (5SA) were grown in SC–2% galactose medium ( −) and shifted to SC–4% glucose medium ( + ) for 1 h and assayed for β-galactosidase activity. 
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. Results 

.1. Glucose induction of HXT gene expression does not require the 

issociation of Rgt1 from the HXT promoters 

Rgt1 can bind DNA constitutively without inhibiting glucose in- 

uction of HXT gene expression in cells lacking Ssn6 or Tup1, raising 

he question of whether derepression of HXT genes does not require 

gt1 removal from the HXT promoters [ 25 ]. To answer this ques- 

ion, we tested three Rgt1 fusion proteins—Rgt1-HA (3 × HA at its 

-terminus, 27 aa) [ 19 ], LexA-Rgt1 (LexA at its N-terminus, 87 aa) 

 1 ], and GFP-Rgt1 (GFP at its N-terminus, 239 aa) [ 3 ]—for their ability 

o bind to the HXT1 promoter ( Fig. 1 A and B). ChIP analysis showed 

hat Rgt1-HA binds to the HXT1 promoter in the absence of glucose, 

ut is dissociated from DNA in the presence of high concentrations 

f glucose ( Fig. 1 C and D). However, LexA-Rgt1 and GFP-Rgt1 were 

hown to bind DNA constitutively. Thus, Rgt1-HA, like the native, un- 

agged Rgt1, binds DNA in a glucose-regulated manner as reported 

reviously [ 19 , 25 ], whereas DNA binding by LexA-Rgt1 and GFP-Rgt1 

s constitutive. Thus, the addition of the LexA or GFP epitope to the 

-terminus of Rgt1 seems to affect its DNA-binding property. 

We next assessed the ability of the Rgt1 fusions to repress HXT1 

ene expression. The HXT1-NAT reporter strain expresses the NAT re- 

istance gene under the control of the HXT1 promoter. Hence, the 

train is susceptible to nourseothricin in the absence of glucose (2% 

al + NAT), but exhibits resistance to the antibiotic in the presence 

f glucose [ 26 ]. The reporter strains expressing the Rgt1 fusions were 

hown to grow only in glucose-containing medium ( Fig. 1 E), suggest- 

ng that the Rgt1 constructs repress expression of the HXT1 promoter 

n the absence of glucose but negatively regulated by glucose. We 

lso found that expression of the HXT1-lacZ reporter is repressed by 

ll the Rgt1 fusions in the absence of glucose (vector vs. Rgt1 fusions) 

ut induced in the presence of glucose by ∼52-fold (Gal vs. Glu) in 

ells expressing Rgt1-HA and by ∼11- and ∼15-fold (Gal vs. Glu) in 

ells expressing LexA-Rgt1 and GFP-Rgt1, respectively ( Figs. 1 F and 

1A ). This indicates that expression of the HXT1-lacZ reporter is still 

4–5-fold repressed by LexA-Rgt1 or GFP-Rgt1 (vector vs. LexA- or 

FP-Rgt1 fusions) in the presence of glucose. 
3.2. Mth1 does not directly regulate the DNA-binding ability of 

LexA-Rgt1 

The DNA-binding activity of Rgt1 is regulated by Mth1 [ 8 , 15 ]. 

Given that LexA-Rgt1 and GFP-Rgt1 binds DNA constitutively ( Fig. 

1 ), we investigated whether the DNA-binding activity of these Rgt1 

constructs is regulated by Mth1. The glucose signal that leads to HXT 

gene expression is generated by the Rgt2 and Snf3 glucose sensors 

at the plasma membrane [ 27 ] ( Fig. 2 A). Dominant mutations in the 

glucose sensor genes ( SNF3–1 and RGT2–1 ) cause Mth1 degradation 

and thereby HXT gene expression in a glucose-independent manner 

[ 16 , 28 , 29 ]. Consistent with these observations, Rgt1 does not bind 

DNA regardless of the presence of glucose in mth1 Δ or RGT2–1 strain 

[ 8 ]. In mth1 Δ or RGT2–1 strain, the Rgt1-HA fusion was shown not 

to bind do the HXT1 promoter, but the DNA-binding of the LexA- 

Rgt1 fusion was constitutive ( Fig. 2 B). Thus, Mth1 is not required for 

the DNA-binding of LexA-Rgt1. Despite of this discrepancy, neither 

Rgt1-HA nor LexA-Rgt1 was able to repress expression of HXT1-lacZ 

reporter in the strain ( mth1 Δ or RGT2–1 ) ( Figs. 2 C and S1B ). These 

results suggest that Mth1 may regulate the function of LexA-Rgt1 

without directly affecting its DNA-binding ability. 

3.3. LexA-Rgt1 function is regulated by its phosphorylation state 

Our findings that LexA-Rgt1 binds DNA constitutively without sig- 

nificant inhibition of glucose-induction of HXT gene expression sup- 

port the view that Rgt1 dissociation from DNA may not be required 

for glucose-induction of HXT gene expression ( Fig. 1 ). Rgt1 function is 

critically regulated by its phosphorylation by PKA [ 22 –24 ]. Thus, we 

examined whether the function of the DNA-bound LexA-Rgt1 is regu- 

lated by its phosphorylation state. To this end, we explored the ability 

of the wild type LexA-Rgt1 and the mutant LexA-Rgt1 (5SA) lacking 

the PKA phosphorylation sites (S96, S146, S202, S283 and S284) to reg- 

ulate the HXT1 promoter. Both LexA-Rgt1 and LexA-Rgt1 (5SA) were 

shown to bind to the HXT1 promoter constitutively, suggesting that 

the phosphorylation state of LexA-Rgt1 does not regulate its DNA- 

binding ability ( Fig. 3 A, top). However, the colony assay, performed 

as described above ( Fig. 1 E), demonstrated that LexA-Rgt1 (5SA), but 
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Fig. 4. The interaction of Rgt1 with Ssn6-Tup1 is critically regulated by its phosphorylation state. (A) ChIP analysis of the interaction of Ssn6 with Rgt1. Left: Yeast cells ( rgt1 Δ) 

expressing LexA-Rgt1 or LexA-Rgt1 (5SA) were grown in SC–2% galactose medium ( −) and shifted to SC–4% glucose medium ( + ) for 1 h, and cross-linked chromatin was 

precipitated using anti-Ssn6 antibody. Representative PCRs are shown for the amplification of HXT1 promoter. As a negative control, primer sets were designed to amplify the 

actin gene promoter region (p ACT1 ). Right: qPCR analysis of Rgt1-binding to the HXT1 promoter, as described in Fig. 1 D. (B) Co-IP analysis of the interaction of Rgt1 with Ssn6. 

Yeast cells coexpressing Ssn6-TAP [ 38 ] and LexA-Rgt1 (left) or LexA-Rgt1(5SA) (right) were grown in SC–2% galactose medium ( −) till mid-log phase and shifted to SC–4% glucose 

medium ( + ) for 1 h. Cell extracts were immunoprecipitated with anti-LexA antibody (IP) and immunoblotted with either anti-LexA or anti-TAP antibody. Expression of Ssn6-TAP 

was analyzed by Western blot (Input). Quantification of Ssn6-TAP immunoprecipitated with LexA-Rgt1 protein is shown (bottom). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

not by LexA-Rgt1, constitutively inhibits the expression of the NAT re-

sistant gene and thereby cell growth in the glucose medium ( Fig. 3 B).

Consistently, LexA-Rgt1 (5SA) was shown to inhibit glucose-induced

expression of the reporter gene ( Figs. 3 C and S1C ). These results sug-

gest that the function of the LexA-Rgt1 repressor, bound to the HXT

promoters constitutively, is critically regulated by its phosphorylation

state. 

3.4. The phosphorylation state of LexA-Rgt1 regulates its affinity for 

Ssn6-Tup1 

Given that glucose-induced expression of HXT genes requires the

dissociation of Rgt1 from Ssn6-Tup1 [ 25 ], we examined the ability

of LexA-Rgt1 and LexA-Rgt1 (5SA) to recruit Ssn6-Tup1 to the HXT1

promoter by ChIP analysis using the anti-Ssn6 antibody. LexA-Rgt1

appeared to recruit Ssn6-Tup1 to the HXT1 promoter in a glucose-

dependent manner ( Fig. 4 A, left). Ssn6-Tup1 was associated with the

HXT1 promoter in the absence of glucose but was largely dissociated

from the promoter when glucose is present; however, Ssn6-Tup1

was constitutively recruited to the HXT1 promoter in cells expressing

LexA-Rgt1 (5SA), suggesting that blocking glucose-induced PKA phos-

phorylation of Rgt1 enables it to recruit Ssn6-Tup1 ( Fig. 4 A, right). 

Finally, we explored the effect of the phosphorylation defective

mutation of Rgt1 (5SA) on the interaction between LexA-Rgt1 and
Ssn6-Tup1. To do so, we coexpressed LexA-Rgt1 or LexA-Rgt1 (5SA)

and Ssn6-TAP, and performed co-immunoprecipitation experiments

with the anti-LexA antibody. The interaction of LexA-Rgt1 with Ssn6-

TAP was strongly detected in galactose-grown cells, but significantly

reduced in glucose-grown cells. Notably, the interaction between

LexA-Rgt1 (5SA) and Ssn6-TAP occurred constitutively, reinforcing

the view that the ability of LexA-Rgt1 to recruit Ssn6-Tup1 is regu-

lated by its phosphorylation state ( Fig. 4 B). 

4. Discussion 

In this study, we provide evidence that glucose induction of HXT

gene expression results primarily from the disruption of the Rgt1-

Ssn6-Tup1 interaction, rather than from Rgt1 removal from the HXT

promoters. It has been well established that Rgt1 binds DNA in a

glucose-dependent manner. Rgt1 binds to its target promoters in the

absence of glucose and dissociates from DNA in cells grown in high

glucose [ 3 , 8 , 11 , 19 , 30 , 31 ]. An in vitro experiment showed that nu-

clear extracts from cells grown in glucose-depleted medium, but not

in glucose-containing medium, can make a DNA–protein complex

with a synthetic DNA sequence containing an Rgt1 recognition site

(Rgt1 HXK2 probe) [ 23 ]. Here, we used three Rgt1 constructs—Rgt1-

HA, LexA-Rgt1 and GFP-Rgt1 fusions—to study glucose regulation of

Rgt1 function. Rgt1-HA behaves like the native, untagged Rgt1, as
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Fig. 5. Glucose regulates the function of the two major glucose responsive repressors 

Rgt1 and Mig1 in a similar manner. (A) A proposed model for glucose induction of 

HXT gene expression. Rgt1 recruits Ssn6-Tup1 in an Mth1-dependent manner to form 

a repressor complex in the absence of glucose. High glucose appears to disrupt this 

complex by inducing three distinct events: (1) proteasomal degradation of Mth1 via 

the Rgt2 / Snf3 pathway; (2) repression of MTH1 gene expression by the Snf1 (AMPK)- 

Mig1 pathway; and (3) Rgt1 phosphorylation by PKA (cAMP-PKA pathway). The PKA 

phosphorylation sites in the amino terminal region of Rgt1 become available for phos- 

phorylation after Mth1 is degraded. Phosphorylated Rgt1 is dissociated from Ssn6-Tup1 

and released from DNA, leading to expression of HXT genes. (B) In glucose-limited con- 

ditions, the Snf1 kinase phosphorylates and negatively regulates Mig1 by preventing 

the interaction between Mig1 and Ssn6-Tup1. In high glucose condition, however, Snf1 

is inactive, and thereby Mig1 is dephosphorylated and recruit Ssn6-Tup1 to mediate 

the repression of its target genes. Therefore, the role of phosphorylation of Mig1 and 

Rgt1 repressors in inducing conditions is to prevent their interaction with Ssn6-Tup1 

[ 18 ]. 
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eported previously [ 11 , 19 , 25 ]. However, results of the ChIP exper- 

ments using anti-LexA or anti-GFP antibody show that LexA-Rgt1 

nd GFP-Rgt1 bind to the HXT1 promoter constitutively ( Fig. 1 ), and 

hus suggest that the N-terminal LexA or GFP moiety of the Rgt1 

usion modulates its DNA-binding property by affecting the zinc clus- 

er DNA-binding domain at its N-terminus (aa 46–76). It should be 

oted that the DNA-binding of LexA-Rgt1 fusion is not detected in 

igh glucose-grown cells by ChIP experiments using an antibody that 

pecifically recognizes the C-terminus of Rgt1 [ 3 , 13 ]. Perhaps, this 

iscrepancy is not due to the quality of these antibodies but due to 

he location of the epitopes in the Rgt1 protein to which each anti- 

ody binds. Glucose induces an intramolecular interaction between 

he central region of Rgt1 and its N-terminal DNA-binding domain 

 13 ], suggesting the view that the C-terminus of LexA-Rgt1 may be 

idden and unavailable for antibody recognition in the presence of 

lucose. 

Glucose induces the expression of the HXT1 gene in cells express- 

ng Rgt1-HA, LexA-Rgt1 and GFP-Rgt1 by ∼50-, ∼10-, and ∼15-folds, 

espectively. Thus, taken at face value, DNA-binding alone (by LexA- 

gt1 and GFP-Rgt1) accounts for ∼4–5-fold repression ( Fig. 1 F). How- 

ver, we argue that this repression may be associated with the ability 

f the Rgt1 constructs to interact with Ssn6-Tup1, rather than their 

bility to bind DNA. The supporting evidence is that, in response to 

lucose, Ssn6-Tup1 largely dissociates from Rgt1-HA but substantially 

ssociate LexA-Rgt1 ( Fig. S2 ). The Rgt1 interaction with Ssn6-Tup1 is 

egulated by its phosphorylation state [ 25 ]. Hence, LexA-Rgt1 may 

e less efficiently phosphorylated by PKA than Rgt1-HA, enabling it 

o recruit Ssn6-Tup1 even in the presence of glucose. This may ex- 

lain the repression of HXT1 gene expression mediated by LexA-Rgt1 

nd GFP-Rgt1 in high glucose conditions. Our observations provide 

ignificant insights into the mechanism of glucose regulation of Rgt1 

unction: (1) Mth1 does not directly regulate the DNA-binding abil- 

ty of Rgt1; rather, it mediates the Rgt1 interaction with Ssn6-Tup1 

y modulating Rgt1 phosphorylation by PKA [ 25 ], (2) Rgt1 dissoci- 

tion from DNA occurs in a glucose-dependent manner, but is not 
absolutely required for the derepression of its target genes, (3) dis- 

ruption of the Rgt1-Ssn6-Tup1 interaction is necessary and sufficient 

to lift Rgt1-mediated repression, and (4) the interaction of Rgt1 with 

Ssn6-Tup1 may be regulated by its phosphorylation state. 

In Kluyveromyces lactis , expression of the glucose transporter gene 

RAG1 is repressed by the Rgt1 ortholog kl Rgt1 in the absence of glu- 

cose. Of note, glucose induction of RAG1 gene expression does not 

require dissociation of kl Rgt1 from the RAG1 promoter; kl Rgt1 re- 

mains bound to the RAG1 promoter even in high glucose conditions 

[ 32 ]. These results reinforce the view that the primary mechanism 

of glucose induction of HXT gene expression is not Rgt1 release from 

HXT promoters but its dissociation from Ssn6-Tup1. Glucose regulates 

Rgt1 function in a similar manner, as it does to the glucose repressor 

Mig1 ( Fig. 5 ). Mig1 recruits Ssn6-Tup1 for repression in high glucose 

conditions [ 33 ]; however, it dissociates from Ssn6-Tup1 upon phos- 

phorylation by the Snf1 kinase in glucose-depleted conditions, result- 

ing in derepression of its target genes [ 34 , 35 ]. Thus, Mig1 binds to its 

target promoters under either repressing or inducing condition, sup- 

porting the view that Snf1 controls glucose repression by modulating 

the Mig1-Ssn6-Tup1 interaction [ 36 ]. Likewise, PKA regulates glucose 

induction by controlling the Rgt1 interaction with Ssn6-Tup1. 
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