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Repetitive stress negatively affects several brain functions and neuronal networks. Moreover, adult neurogenesis is consistently
impaired in chronic stress models and in associated human diseases such as unipolar depression and bipolar disorder, while it is
restored by effective antidepressant treatments. The adult neurogenic niche contains neural progenitor cells in addition to
amplifying progenitors, neuroblasts, immature and mature neurons, pericytes, astrocytes, and microglial cells. Because of their
particular and crucial position, with their end feet enwrapping endothelial cells and their close communication with the cells of
the niche, astrocytes might constitute a nodal point to bridge or transduce systemic stress signals from peripheral blood, such as
glucocorticoids, to the cells involved in the neurogenic process. It has been proposed that communication between astrocytes
and niche cells depends on direct cell-cell contacts and soluble mediators. In addition, new evidence suggests that this
communication might be mediated by extracellular vesicles such as exosomes, and in particular, by their miRNA cargo. Here,
we address some of the latest findings regarding the impact of stress in the biology of the neurogenic niche, and postulate how
astrocytic exosomes (and miRNAs) may play a fundamental role in such phenomenon.

1. The Relevance of the Hippocampus in the
Stress Response

Stressful life events are strong precipitating factors of neuro-
psychiatric pathologies including mood disorders such as
major depression (MD) or bipolar disorder (BD) [1]. Stress
can be defined as any adaptive mechanism triggered to
recover the organism’s homeostasis, composed of a vast array
of modifications in the physiology of different organs, includ-
ing the central nervous system (CNS) at different scales, that
is, plastic changes which range from molecular dynamics to
behavioral adaptations [2].

The proper adaptive response to stressors is known as
“stress resilience” and the multiple biological processes
underlying resilience are collectively termed allostasis [3].

Nevertheless, plastic changes can be deleterious to cerebral
and overall body health under prolonged stress (reviewed in
[4]). Furthermore, increasing evidence shows that stress
impacts the induction not only of psychiatric but also
systemic pathologies such as cardiovascular diseases, cancer,
and inflammation-related diseases [5–7].

The mechanisms that participate in the stress response
involve the CNS, where the hypothalamus-pituitary-
adrenal axis (HPA) has a central role. HPA activation
leads to an increase in the systemic levels of glucocorti-
coids (GCs) (cortisol in humans and corticosterone in
rodents) in concomitance with changes in the activity of
the autonomic system, with norepinephrine and epineph-
rine as final products [2]. GCs are key hormones of the
stress response that are able to cross the blood-brain
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barrier due to their lipophilic nature. Receptors in target
cells include the high-affinity mineralocorticoid receptor
[8] or the low-affinity glucocorticoid receptors [9]. In the
brain, both receptors are mainly occupied by GCs and
translocate to the nucleus after binding to their ligand,
where they modify the expression of different genes that
govern the stress response. The brain area profoundly
affected during chronic stress is the hippocampus. The
human and rodent hippocampi correspond to a CNS
region where glucocorticoid receptors (GRs) are expressed
in neurons, astrocytes as well as in some neural stem cells
[10–12], conferring a high sensitivity of this forebrain
structure to changes in glucocorticoids levels [13]. A neg-
ative feedback loop mediated by cortisol regulates the
activity of the HPA by targeting structures such as the
paraventricular nucleus and the hippocampus. In the lat-
ter, synaptic inputs can directly exert an overall inhibitory
effect on the activity of the HPA [14]. Stress triggers
molecular and structural changes in the hippocampus,
including dendritic and spine atrophy that is concomitant
to downregulation of specific synaptic protein [15, 16].
Many of these glucocorticoid-mediated changes can be
mimicked by exogenous application of these corticoste-
roids (extensively reviewed by [13]).

Intriguingly, the hippocampus harbors one of the
two identified brain structures in mammals that retains
the capacity to generate new neurons in adulthood, that
is, the neurogenic niche of the subgranular zone (SGZ)
in the dentate gyrus (DG). The process by which new
neurons are continuously generated in the SGZ of adults
is known as adult neurogenesis and implies the self-
renewal, proliferation/activation of neural stem/precursor
cells, their differentiation into neurons, as well as their
migration, maturation, and even their integration into
the hippocampal functional circuits [17–19]. Any modifi-
cation in one of these stages can influence (positively or
negatively) the generation of new neurons, and diverse
pathological conditions including chronic stress have
been described to decrease adult hippocampal neurogen-
esis [20]. Conversely, antidepressant interventions show
an increase in the number of neural stem/precursor cells
in the DG. In fact, some antidepressant drugs depend
on neurogenesis to induce recovery from depressive
symptoms [21–24].

Hippocampal newborn neurons are essential for the
proper endocrine and behavioral adaptation to stress
[25], and SGZ neurogenesis contributes to the negative
feedback on the HPA axis, as its disruption induces a
larger response to a mild stressor [26]. Consistently, it
has been described that altered neurogenesis leads to a
slower recovery of GC levels after stress [27], suggesting
a cross talk between hippocampal neurogenesis and the
HPA axis. Likewise, reduced neurogenesis is associated
with impaired responsiveness of the HPA axis in the
dexamethasone suppression test [28]. Thus, any process
that restores hippocampal neurogenic activity might con-
tribute to better cope with stress. This could take place
at the various stages involved in this process, from cell
proliferation to the generation of mature DG neurons.

2. The Adult Hippocampal Neural Stem/
Precursor Cells

Seri and coworkers [29] observed for the first time that neural
stem cells that undergo proliferation in the SGZ display
radial glia characteristics expressing the glial fibrillary acidic
protein (GFAP), in addition to markers of undifferentiated
cells such as vimentin, SOX2, and Nestin. SGZ stem cells
are called type 1 cells (reviewed by Ming and Song [30]).
These give rise, through asymmetric division, to highly
proliferative intermediate progenitors known as type 2a
(positive for Nestin and PSA-NCAM and negative for GFAP)
and 2b cells (positive for Tbr2 and PSA-NCAM). The latter
cells give rise to neuroblasts or type 3 cells (positive for
doublecortin, PSA-NCAM, and NeuN) that migrate into
the inner granular layer. Within days, type 3 cells will become
immature neurons that, after about 4 weeks, extend dendrites
towards the molecular layer and project axons through the
hilus toward the CA3 (reviewed by Zhao et al., Covic et al.,
and Bonaguidi et al. [17, 31, 32]). In summary, both neural
stem and progenitor cells coexist in the SGZ and can generate
new granule neurons [33, 34]. In the present review, we will
use the acronym NSPCs to describe both neural stem cells
and precursor cells.

3. Magnitude of Adult
Hippocampal Neurogenesis

It has been estimated that in the rat hippocampus 9000 new
cells are generated every 25 hours [35]. In mice, on the other
hand, the number is much lower: only 2700 new cells per day
are generated [36]. After 30 days, ~30% of new cells survive
and differentiate into mature neurons with complex dendritic
and axonal structure. In humans, direct evidence of adult neu-
rogenesis has been provided first by the use of the synthetic
analog BrdU (bromodeoxyuridine, 5-bromo-2′-deoxyuri-
dine) [37] and later on by an elegant publication which pre-
sented an integrated model of cell turnover dynamics in the
hippocampus by measuring the concentration of nuclear
bomb test-derived 14C in hippocampal cells. This work shows
that one-third of human hippocampal neurons are exchanged
throughout life and that 700 new neurons are added per day.
The authors calculated a turnover of 1.75% newborn neurons
peryear thatdecreasedmodestlyduringaging.Taken together,
this data indicates that adult hippocampal neurogenesis is not
a minor process and may contribute significantly to human
brain function during physiology and disease [38].

4. Adult-Born Hippocampal Neurons and the
Impact of Stress

After stressful experiences, the activation of the HPA axis
and the elevation of systemic GC levels lead to the impair-
ment of NSPC proliferation in the SGZ both in developmen-
tal stages as well as in adulthood [39, 40].

Consistently, adrenalectomy increases the formation of
new neurons in young and aged rodents [41–43]. Further-
more, the hyporesponsive stress period in rats (from 2 days
after birth to 2 weeks old), characterized by low basal levels
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of GCs and a diminished response to stress [44], is associated
with the maximal neurogenesis period in the SGZ [45, 46].
Likewise, adrenalectomy prevents the suppression of neuro-
genesis induced by stress [47, 48]. The effect of GCs on the
neurogenic potential has shown to be dose-dependent in a
human hippocampal progenitor cell line. Interestingly, low
concentrations of cortisol stimulate proliferation and
gliogenesis and decrease neurogenesis by signaling through
mineralocorticoid receptors. On the other hand, high doses
of cortisol decreased proliferation through glucocorticoid
receptor signaling, with no effect on gliogenesis [49]. Simi-
larly, decreased neurogenesis has been observed in different
stress models, including chronic and acute stress, for exam-
ple, subordination stress [50], resident-intruder stress [51],
footshock [52], restraint stress [53, 54], or stress-induced by
isolation [55] and predator odor [56]. It is worth remarking
that stress has been shown to affect neurogenesis in a reduced
window of time. Tanapat et al. observed that animals may
experience a rebound in cell proliferation after the initial
stress-induced suppression to compensate the alteration
[47]. These results agree with several publications in which
acute stressful experiences increases neurogenesis [57–60].

Despite significant advances in the field of neurogenesis
and stress over the past two decades, detailed mechanisms
underlying the inhibition of cell proliferation under stress
conditions and its adaptations remain unknown.

5. Astrocytes Are Key Players in Adult
Neurogenic Niche

Neurogenesis is regulated through its specialized microenvi-
ronment, the neurogenic niche. In adult mammals, including
humans, neurogenic niches are concentrated in restricted
areas; the most commonly described are the subventricular
zone (SVZ) of the lateral ventricles and, mentioned above,
the SGZ of hippocampal DG [61, 62]. The regulation of neu-
rogenesis in the neurogenic niche is such that NSPCs
obtained from exogenous SVZ and grafted into another
SVZ host are able to generate new neurons; but NSPCs from
the SVZ grafted into nonneurogenic brain regions show a
scarce neurogenic potential, suggesting that here, a very par-
ticular cellular and molecular context accounts for the con-
trol of neurogenesis [63, 64].

Any cellular type within the niche can influence the neu-
rogenic process by diffusible signals or by cell-cell interac-
tions. In the SGZ, the main cellular components are
astrocytes, endothelial cells, pericytes, oligodendrocytes,
microglia, different types of neurons present in the DG, and
the aforementioned NSPCs [65]. Although each cell type
may have a significant contribution to the neurogenic pro-
cess, in the present review, we will focus on the role of astro-
cytes as key elements in the control of the neurogenic process
under stress.

Astrocytes subserve a myriad of functions that have been
described both in vitro and in vivo (extensively reviewed by
Khakh and Sofroniew [66]). In the hippocampus, protoplas-
mic astrocytes extend their processes radially and some of
them contact blood vessels to form perivascular end feet of
the blood-brain barrier (BBB), while others may contact

neurons (e.g., tripartite synapse) or be coupled to oligoden-
drocytes through connexins [67]. In addition, astrocytes
may connect with other astrocytes through connexins, gener-
ating a sort of functional syncytium able to signal by propa-
gating calcium waves along several distant cells in vivo [68].
It is therefore not surprising that they are thought to have a
central role in the functional output of the neurogenic pro-
cess [69]. For example, astrocytes negatively influence the
differentiation of NSPCs after the activation of jagged1-
mediated Notch pathway by cell-cell contact [70] or by the
secretion of growth factors such as insulin-like growth factor
binding protein 6 (IGFBP6) and decorin [71]. On the con-
trary, released factors such as Wnt3a, neurogenesin-1, and
different interleukins such as IL-1β and IL-6 or cell-to-cell
contact mediated by ephirn-B2 signaling positively regulate
neurogenesis [29, 71–74]. Thus, it is possible that, depending
on the physiological and anatomical context, the astrocyte
secretome has distinct effects on the neurogenic process
[71]. In this line, hippocampal astrocytes are more efficient
than cortical astrocytes in promoting neuronal differentia-
tion of NSPCs [75].

The secretory activity of astrocytes in the DG mediates
the synaptic and network integration of newborn neurons
in vivo, highlighting their role as key mediators of the func-
tional output of neurogenesis [76]. Previous data supports
this view, as astrocytes promote the differentiation of progen-
itor cells and control the maturation and synaptic integration
of newborn neurons in vitro [77, 78].

6. Stress, Astrocyte Plasticity, and Neurogenesis

Awide body of evidence has shown that acute and/or chronic
stress can alter the morphology and functionality of different
glial cell types in the brain, such as microglia [79, 80], oligo-
dendroglia [81], and astrocytes [82].

Czéh et al. observe that tree shrews subjected to 5
weeks of psychosocial stress showed a 25% reduction in
the intermediate filament protein of astrocytes GFAP, as
well as a 25% reduction in the somatic volume of hippo-
campal astrocytes [83]. In the past few years, several
publications using other stress protocols have led to simi-
lar observations [84–86]. Nevertheless, some publications
using the chronic restraint model have reported an
increase in GFAP positive cell number and in the protein
level in the hippocampus [87, 88].

Other proteins expressed by astrocytes such as connexin
30 and 43 (gap junction proteins), the water channel
aquaporin-4 (AQP4), the calcium-binding protein S100β
and the amino acid transporters 1 and 2 (EAAT1, EAAT2),
and glutamine synthetase have altered expression levels in
both animals models of stress and in human brain samples
analyzed postmortem compared with controls (reviewed in
[89]). Despite the importance of some of these proteins in
calcium homeostasis, there is a lack of studies showing how
astrocytic calcium metabolism is regulated under stress
conditions.

Moreover, a recent publication by Zhao et al. has shown
that a decrease in glycogen content is associated with chronic
stress, being one of the main mechanism in astrocytes
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capable of inducing their structural and molecular alter-
ations. This result may be of importance as it moves away
from the GC-centered theory of stress [90].

On the other hand, different publications have reported
that when astrocytes are exposed to high levels of GCs, GC
bound to GRs translocates to the nucleus and enhances the
expression of genes related with neurogenesis, one example
is the Fgf2 gene [91]. FGF2, the protein encoded by Fgf2, is
a potent and necessary proliferative factor in adult NSPCs
[92]. Nevertheless, other different effects mediated by astro-
cytes over the adult neurogenesis after a stressful condition
have not been fully unveiled. In Table 1, we resume the main
effects described for this issue, both in vivo and in vitro.

7. Exosomes Biogenesis and the Relevance of
Their Content in Controlling
Cellular Function

In addition to soluble components (see Section 5), the astro-
cyte secretome contains extracellular vesicles (EVs) such as
exosomes [93] that represent a different source of cell-cell
communication [94, 95]. Exosomes are generated in the
endocytic pathway after the invagination and subsequent fis-
sion of a domain in the endosomal membrane that give rise
to an exosome precursor called intraluminal vesicle (ILV)
of the multivesicular body (MVB). After the fusion with the
plasma membrane, the ILVs are released into the extracellu-
lar space as spherical vesicles of 40–100 nm, called exosomes
[96]. The biogenesis of exosomes requires different molecular
components including the mechanisms dependent of the
ESCRT (endosomal sorting complex required for trans-
port) machinery [97, 98] and lipid-dependent mechanisms
[99, 100]. Proteins that participate in their biogenesis are fre-
quently used as positive markers of exosomes, as well as pro-
teins associated with lipid rafts and tetraspanins such as Alix,
flotillin, TSG101, and CD63 [101].

Exosomes contain a complex molecular cargo that
include proteins, lipids, and nucleic acids that may be

biologically active on recipient cells [102]. The protein
composition is diverse and depends on the cellular type and
the physiological context; nevertheless, as they originate in
the endocytic pathway, the most common proteins indepen-
dent of the cell type of origin are related to vesicular transport
and fusion (Rab GTPasas, SNAREs, annexins, and flotillin),
different integrins and tetraspanins (CD63, CD9, CD81,
and CD82), and heat shock proteins (Hsc/Hsp 70 and
90) and proteins implicated in the biogenesis of MVB
(Alix and TSG 101) [103]. Regarding their lipidic content,
one characteristic of the exosomes is their enrichment in
lipid rafts including cholesterol, sphingolipids (such as
ceramide), and glycerophospholipids with long and satu-
rated fatty acyl chains [101]. Finally, among the most
relevant biologically active molecules present in exosomes
are nucleic acids, particularly small noncoding RNAs such
as miRNAs (see below).

Exosomes play a significant role in the secretome of a
given cell, subserving functions in the communication
between cells [104]. Furthermore, virtually all eukaryotic
cells release exosomes and are capable of taking them up
[105, 106]. Regarding the CNS, oligodendrocytes, neurons,
astrocytes, and microglia are capable of releasing exosomes
with functional consequence on neuronal physiology [107].
Actually, exosomes have been proposed to be key players in
the pathogenesis of different CNS diseases, including neuro-
degenerative diseases, infectious diseases, neuroinflamma-
tion, and even psychiatric disorders such as depression
[108, 109]. Considering the high molecular diversity and
complexity of their cargo, a fundamental question to under-
stand the biological relevance of astrocytic exosomes in neu-
rogenesis is a critical analysis of the relevant molecular cargo
that could potentially control the fate of NSPCs and the neu-
rogenic process.

So far, the functional transfer/interaction of exosomes to
target cells has been shown mostly in vitro, but there is
increasing data being obtained in vivo. Analysis of in vivo evi-
dence is crucial as it settles the basis to propose that astro-
cytes within the neurogenic niche might be able to modify

Table 1: Effect of stress over neurogenesis mediated by astrocytes.

Type of stress Type of study Cellular effect Molecular mechanism References

Acute and chronic induced by
dexamethasone

In vivo Growth inhibition of astrocytes
After inducing cell cycle exit by reduction of

cyclin D1 and increase of p27

[128]
In vitro

Inhibition of NSPC proliferation
(cultured with CM of stressed

astrocytes)

By altered expression of neurotrophic
factors (BDNF, NGF) and mitogenic factors
(BFGF, VEGF) and death-inducing factors

(FasL, Trail, Tweak, and TNFα)

Acute induced by
dexamethasone or
corticosterone

In vitro
Inhibition of astrocytes

proliferation
By inducing reduction of GR expression

[129]
Chronic induced by
administration of ACTH

In vivo
Inhibition of astrocytes

proliferation
By inducing reduction of GR expression

Acute and chronic In vivo
Regulation of mRNAs in a cell

type-dependent fashion
By glucocorticoids receptors [130]

Acute In vivo
Increase hippocampus cellular

proliferation
Increase of astrocytes FGF2 expression [131]
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NSPCs’ physiology through functional transfer of exosomal
cargo in physiological conditions and during diseases. In this
regard, an outstanding result came from the work of Zhang
et al. where they found in vivo that tumor cells lose the
expression of the tumor suppressor protein phosphatase
and tensin homolog (PTEN) after incorporating astrocytic

exosomes, due to the presence of a microRNA (miRNA) that
targets PTEN [110].

Thus, although still speculative, we discuss a putative sce-
nario where astrocytes in the neurogenic niche modulate the
cellular behavior of NSPCs on the virtue of exosome transfer.
It is important to notice that, in the literature, several of the

Table 2: miRNA associated with neurogenesis present in astrocytes- and astrocytes-derived exosomes.

miRNA Expression level Cellular process Molecular target References

miR-9 Overexpression Reduces axonal branching and neurite outgrowth MAP1b [132]

miR-9
Upregulation/
overexpression

Promotes neuronal differentiation Notch signaling, several targets [133]

miR-9
Upregulation/
overexpression

Promotes neuronal differentiation and dendritic
branching, inhibits migration

TLX, REST, Rap2a, and stathmin [134]

miR-9
Upregulation/
overexpression

Suppresses astrogliogenesis
Lifr-beta, Il6st (gp130), and Jak1

(jack/stat pathway)
[135]

miR-9
Upregulation/
overexpression

Promotes neuronal differentiation and migration
TLX/Nre1, Foxg1, REST/NRSF,
CoREST, Meis2, Gsh2, Islet1, Id4,

and stathmin
[136]

miR-9 Overexpression Mediates neural differentiation of ES cell STAT3 [137]

miR-9 Overexpression Promotes neuronal differentiation
Foxg1, Gsh2, SIRT1,
and REST/NRSF

[138]

miR-9 Overexpression
Inhibits NSPC proliferation and facilitates NSPC

differentiation
TLX [118]

miR-9 Overexpression
Inhibits NSPC proliferation and facilitates NSPC

differentiation
Hes1 (notch signaling) [139]

miR-26a Upregulation Inhibits spine enlargement RSK3 [140]

miR-26a Downregulation Prevents axonal regeneration GSK3β [141]

miR-26b Upregulation Promotes neuronal differentiation Ctdsp2 [142]

miR-29a Upregulation Increase axonal branching DCX [143]

miR-34a Upregulation Promotes neural differentiation and synaptogenesis
TAp73, synaptotagmin-1, and

sintaxin-1A
[144]

miR-34a Upregulation Inhibits neuronal differentiation, promotes proliferation Numbl, NeuroD1, and Mash1 [134]

miR-34a Upregulation
Promotes apoptosis, inhibits cell cycle progression and

synaptic development
BCL-2, Cdk-4 Cyclin D2

synaptotagmin syntaxin-1A
[134]

miR-34a Upregulation
Negatively regulate neurite outgrowth and dendritic

branching
[134]

miR-125b Upregulation Promotes neuronal differentiation BMP/TGFβ signaling [133]

miR-125b Upregulation Promotes neuronal differentiation Nestin [145]

miR-125b Upregulation
Inhibits NSPC proliferation and promotes

differentiation
Musashi1 [146]

miR-129 Upregulation Determination of the bipolar cell identity in retina Xotx2, Xvsv1 [147]

miR-135b
Upregulation/
Overexpression

Promotes neuronal induction BMP/TGFβ signaling [148]

miR-145 Upregulation Promotes neuronal differentiation OCT4, SOX2, and KLF4 [149]

miR-145 Upregulation Promotes neuronal differentiation SOX2, Lin28/let7 [150]

miR-221 Downregulated Neurite guidance [151]

Let-7
family

Upregulation
Pluripotency inhibitor promoting neural lineage,

promotes neuronal differentiation
Lin28 [133]

Let-7
family

Upregulation Promotes NSPCs differentiation c-Myc, Lin28 [136]

Let-7b Upregulation
Inhibits proliferation and promotes the differentiation

of NSPCs
TLX, Cyclin D1 [152]

miR-543 Upregulation
Promotes neural stem cell differentiation and neuronal

migration
N-Cadherin, TrappC8 [153]
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functional effects described for exosomes are attributed to
mRNA or miRNA transfer rather than proteins or lipids
(as an example see [111]), though there is a growing
interest to examine the relevance of these molecules in
the exosomal cargo.

8. miRNAs in Astrocyte-Derived Exosomes as
Modulators of Adult Neurogenesis and Stress
Response

miRNAs are small noncoding RNAs (20–22 nucleotides) that
cause deadenylation as well as translational repression of
mRNAs by binding to their 3′ untranslated region (3′UTR).
They have been proposed to be integral regulatory molecules
in both physiological conditions and in disease states,
because a single miRNA molecule can repress several hun-
dreds (and even thousands) of mRNA molecules [112, 113].
Furthermore, the targeting of a single mRNA by a miRNA
can potentially modulate the transcription of a vast array of
proteins [114].

miRNAs are known to be a key element for neuronal
differentiation; for example, Kawase-Koga et al. observed
that NSPCs undergo cell death and affecting also the neuro-
nal differentiation and their maturation after conditionally
deleting the expression of the RNAse III enzyme DICER,
an enzyme that processed miRNA precursor into mature
miRNAs in specific stages of mice development [115].
Another miRNA that has also proved to modulate neuronal

differentiation is miR-124, which contributes to the
downregulation of Ezh2, a histone H3 Lys-27 histone meth-
yltransferase that governs the transcription of several
neuron-specific genes, diminishing the differentiation of
mouse embryonic NSPCs as a final outcome [116, 117].

On the other hand, an increase in the expression of miR-9
in neurogenic regions leads to a reduction of NSPC prolifer-
ation and accelerated neural differentiation due to its modu-
lation of TLX, a key regulator of NSPCs self-renewal, whereas
the knock-in of miR-9 leads to increased proliferation of
NSPCs [118]. Other miRNAs such as miR-128 and miR-
137 promote differentiation of NSPCs, while their knock-
down compromises their self-renewal [119].

Recently, Han et al. have shown that miRNA-19 (a mem-
ber of polycistronic miRNA genes critical for brain develop-
ment) is enriched in NSPCs and decreases during neuronal
development. They found that this miRNA controls the mat-
uration and positioning of newborn neurons in the granular
cell layer of the DG by suppressing Rap guanine nucleotide
exchange factor 2 (Rapgef2) [120]. In another study, the
authors found that miR-20 downregulates the transcriptional
repressor gene REST, inhibiting the differentiation of NSPCs
[121]. Other miRNAs controlling both proliferation and
differentiation of adult NSPCs are miR-137 [122] and rno-
miR-592 [123]. Taken together, these data indicate an impor-
tant participation of miRNAs in adult neurogenesis.

Multiple evidence has shown a relationship between
miRNAs and stress, both in animal models of stress and in
human patients with depression. Furthermore, some

Table 3: miRNA associated with neurogenesis enriched in astrocytes derived exosomes.

miRNA Expression level Cellular process Molecular target Reference

miR-25b Overexpression Promotes proliferation and differentiation of NSPCs IGF signaling [154]

miR-17-92 Overexpression Increase axonal outgrowth PTEN [123]

miR-92a
Upregulation/
overexpression

Inhibits the transition from radial glial cells to intermediate
progenitors

Tbr2 [155]

miR-184 Upregulation Inhibits differentiation and promotes proliferation of NSPCs Numbl [156]

miR-302 Upregulation Block neural progenitor induction
BMP/TGFβ,

NR2F2
[157]

miR-96 Upregulation Block neural progenitor induction PAX6 [158]

Table 4: miRNA associated with neurogenesis modified after different stimulus.

miRNA Expression level Cellular process Molecular target Reference

miR-181a
Upregulated
by morphine

Promote astrocyte-preferential differentiation
of NSPCs

Prox1/Notch2 [159]

miR-23b
Upregulated
by morphine

Adult neurogenesis Morphine receptor expression (MOR1) [160]

miR-190
Downregulated
by fentanyl

Adult neurogenesis NeuroD [161]

miR-143
Upregulation
by IGF-1

Promotes proliferation, neural differentiation,
and cell survival

PDGFRA, PRKCE, MAPK7, DSSP, DMP-1,
KRAS, and BCL-2

[162]

miR-181c
Upregulation
by IGF1/LIF

Enhanced self-renewal of NSPCs
PTPN11, PTPN22, PTEN, Dusp6, PBX3,

ZEB2, and IRF8
[162]
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miRNAs have been postulated as potential biomarkers of
stress/depression (extensively reviewed by Dwivedi and
Brites and Fernandes [124, 125]). miRNAs also may play
important roles in the mechanism of action of antidepres-
sants: for example, in early-life stress models, the downregu-
lation of miR-451 was reversed after antidepressant
treatment [126].

Regarding astrocytes, although the information available
about the differential cargo of astrocyte-derived exosomes
after stressful conditions is scarce, it is worth pointing out
that several miRNAs that are up or downregulated in stress
conditions are contained in exosomes secreted by astrocytes.
These miRNAs have also been described to play a role in the
neurogenic process (Tables 2 and 3). Interestingly, miRNAs
contained in astrocyte-derived exosomes are differentially
enriched as compared to their levels in astrocytes [127], sug-
gestive of their unique role in cellular communication. More-
over, many of the miRNAs contained in astrocytes can be
modulated by different stimuli (see Table 4). All these data
lead us to postulate astrocyte-derived exosomes as potential

modulators of proliferation, migration, and/or differentiation
of NSPCs within the neurogenic niche, and that changes in
exosomal release as well as in their miRNA cargo can play a
role in neurogenesis under stress conditions, in a similar
fashion as it has been described for other CNS pathologies.

9. Conclusions and Future Perspectives

The production and proliferation of neural lineages (neu-
rons, astrocytes, and oligodendrocytes) are a complex phe-
nomenon tightly regulated by a multiplicity of factors. This
regulation is susceptible to profound modifications when
the homeostasis of the environment changes due to acute
or chronic disorders. In the case of chronic stress, the
observed modifications in the neurogenic niche (i.e., a
decrease in NSPC proliferation/differentiation) lack a solid
molecular explanation. Astrocytes may be key players to fur-
ther understand on how and why the neurogenic niche
responds the way it does in physiological and pathophysio-
logical conditions. This is especially true in the case of the
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Figure 1: Blood-borne soluble factors reach astrocytes in the neurogenic niche, thus triggering the release of exosomes. In physiological
conditions, the content of their cargo may exert a positive modulatory effect over one or more neurogenic stages (e.g., enhancing
proliferation, and differentiation). During pathological conditions such as chronic stress, astrocytes respond to blood-borne soluble factors
(e.g., corticosteroids and cytokines) by releasing exosomes with a cargo that may have a negative modulatory influence over one or more
neurogenic stages. Astrocytes may in turn communicate with each other through gap junctions and/or by exosomal release. This may
partly explain the decrease in differentiation and proliferation observed under such conditions. Note that the exosomal content under
pathological or physiological conditions may differ in terms of the identity of the molecules (e.g., different types of miRNAs or proteins)
and/or in their overall quantity. GCL: granule cell layer; SGZ: subgranular zone; NPSC: neural stem/precursor cell.
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SGZ, where, due to their proximity with the vasculature,
astrocytes may respond to factors in circulation (e.g., cortico-
steroids) to influence the behavior of the neurogenic niche
[18]. We propose that a putative mechanism by which astro-
cytes exert their influence is through exosomal delivery of
specific miRNAs. This could provide a finely tuned regula-
tory system, acting through two mechanisms: the first one
is related to the unique membrane protein footprint that
would enable astrocyte-derived exosomes to target specifi-
cally some, but not all, cell types of the neurogenic niche,
and the second one is related with the miRNA cargo that
most probably is unique under certain conditions. This could
provide an exquisite temporal and spatial regulation for every
single cell type implicated during the whole process of neuro-
genesis (Figure 1).
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