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Studies on regulation of gene expression have contributed substantially to understanding

mechanisms for the long-term activity-dependent alterations in neural connectivity

that are thought to mediate learning and memory. Most of these studies, however,

have focused on the regulation of mRNA transcription. Here, we utilized high-

throughput sequencing coupled with ribosome footprinting to globally characterize

the regulation of translation in primary mixed neuronal-glial cultures in response to

sustained depolarization. We identified substantial and complex regulation of translation,

with many transcripts demonstrating changes in ribosomal occupancy independent of

transcriptional changes. We also examined sequence-based mechanisms that might

regulate changes in translation in response to depolarization. We found that these are

partially mediated by features in the mRNA sequence—notably upstream open reading

frames and secondary structure in the 5′ untranslated region—both of which predict

downregulation in response to depolarization. Translationally regulated transcripts are

also more likely to be targets of FMRP and include genes implicated in autism in humans.

Our findings support the idea that control of mRNA translation plays an important role in

response to neural activity across the genome.
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INTRODUCTION

Stimulated neurons show an activity-mediated gene expression program that ultimately results in
the remodeling of brain circuitry (Goelet et al., 1986; Sheng and Greenberg, 1990). Because this
program contributes to essential functions such as learning and memory, extensive transcriptomic
studies in vitro and in vivo have defined the genes transcribed in response to neuronal activity
as well as molecular mechanisms regulating such activity-dependent transcription (Ghosh and
Greenberg, 1995; Kim et al., 2010; West and Greenberg, 2011; Malik et al., 2014). In contrast, our
knowledge of post-transcriptional regulation, notably activity-dependent changes in translation,
is far less comprehensive. Understanding activity-dependent changes in translation is important
because new protein synthesis is associated with long-term memory (Flexner et al., 1965; Goelet
et al., 1986), synaptic plasticity (Kang and Schuman, 1996; Sutton and Schuman, 2006), growth cone
guidance (Campbell and Holt, 2001; Yao et al., 2006), and when dysregulated, neurodegenerative
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diseases (Wolozin, 2012; Ishimura et al., 2014). Indeed, memory
consolidation is blocked when translation is inhibited (Flexner
et al., 1965; Nader et al., 2000) but not when transcription is
inhibited (Squire and Barondes, 1970), suggesting that post-
transcriptional gene regulation alone is sufficient for formation
of new memories and that widespread regulation of translation
may be pervasive in the central nervous system (CNS). While
the basic machinery of translation is common to all cells, it
is regulated by myriad factors, including miRNAs and RNA-
binding proteins (RBP) (Kozak, 1992; Gebauer and Hentze, 2004;
Sonenberg and Hinnebusch, 2009) which may exhibit brain-
specific expression (Dittmar et al., 2006; Nowak and Michlewski,
2013; Ishimura et al., 2014), highlighting the importance of
studying regulation of translation in CNS derived cells. Recent
work has identified some genes that show altered translation
in response to experience dependent transient neural activity
in vivo (Cho et al., 2015). However, the relative magnitude of
transcriptional vs. translational regulation for gene expression
has not yet been defined.

Translation is subject to regulation at all steps—initiation,
elongation and termination—but most stringently at initiation.
Initiation involves first scanning of the 5′ untranslated region
(UTR) by a pre-initiation complex (PIC). When the PIC
encounters the start codon (AUG), it recruits a 60S subunit
and begins translation. Several cis-regulatory features present in
the mRNA can influence scanning and hence regulate initiation
(Sonenberg and Hinnebusch, 2009). These include upstream
open reading frames (uORFs) with AUG codons in the 5′UTR
that act as sinks for the scanning PIC (Calvo et al., 2009); 5′UTR
secondary structures that can hinder the loading of the PIC onto
the 5′UTR and subsequent scanning (Babendure et al., 2006);
and Kozak consensus sequences which facilitate the recognition
of appropriate AUGs by the PIC (Kozak, 2002). Recent work
using ribosome profiling/ribosome footprinting (RF) (Ingolia
et al., 2009), the deep sequencing of ribosome-protected RNA
fragments to quantify ribosomal occupancy across transcripts,
has led to new insights in this area. Unanticipated observations
from RF in non-CNS systems include widespread use of
alternative initiation codons (Ingolia et al., 2009; Lee et al.,
2012), and utilization of uORFs in 5′UTRs (Ingolia et al., 2011).
However, the impact of uORFs in the 5’UTRs on regulation
of translation in response to neural activity has not yet been
examined.

Here we studied regulation of translation in mixed neuron-
glia cultures, in vitro paradigms known to allow robust synaptic
maturation of neurons (Eroglu and Barres, 2010). Specifically,
we paired RF and RNAseq with KCl depolarization of these
cultures, to quantitatively compare the extent of transcriptional
vs. translational regulation, and to identify elements that might
mediate translational changes specifically. We found that: (i) an
even higher proportion of genes are altered translationally than
is evident from transcription alone, (ii) overall translation is
reduced in response to sustained neuronal stimulation, (iii) as
many as 40% of mRNAs showing a change in translation do so
independently of changes in mRNA levels, (iv) models taking
into account 5′UTR secondary structure and uORFs together
can explain a portion of this regulation, and (v) downregulated

transcripts are significantly enriched in targets of the RBP Fragile
X Mental Retardation Protein (FMRP).

MATERIALS AND METHODS

Animal Research Committees
All procedures involving animals were approved by the Animal
Studies Committee of Washington University in St. Louis.

Culture
Primary CNS cells were isolated from cortices of P0 FVB mouse
pups of both sexes. Pups were euthanized and cortices were
dissected in Hanks’s Balanced Salt Solution with glucose and
chopped into small pieces with a sterile scalpel blade. The tissue
was dissociated in papain for 30min at 37◦C. After inactivating
papain, tissue was triturated using a fire polished sterile glass
pipette and re-suspended cells were maintained in Neurobasal
medium supplemented with B27, 2mM L-glutamine, 5% heat
inactivated horse serum, 100 U/ml penicillin and 100 ug/ml
streptomycin. Live cells were counted by staining with trypan
blue dye and approximately 7.5 million cells were seeded per
well on a 6-well tissue culture plate previously coated with poly-
L-ornithine at 0.1mg/ml (Sigma P4957) and mouse laminin at
10 ug/ml (Invitrogen). Cells were maintained at 37◦C, 5% CO2,
changing half of the medium every second day for 7 days to
allow the expansion of glia and maturation of neurons. After
7 days in vitro, cells were depolarized by adding KCl to a final
concentration of 55mM in the medium for 3 h. Cells were treated
with cycloheximide (100 ug/ml; Sigma) for 7min before lysis was
performed for RNAseq and RF.

Immunofluorescence
Sterile coverslips coated with poly-L-ornithine and mouse
laminin were taken in a 12-well plate, and primary CNS cells were
cultured as described above. On day 7, cultures were fixed with
4% paraformaldehyde at room temperature for 20m and washed
twice with phosphate buffer saline (PBS). Cultures were then
blocked with 5% normal donkey serum in 0.3% Triton R© X-100
at room temperature for 1 h, incubated with primary antibody in
block at 4◦C overnight, washed three times with PBS, incubated
with Alexa fluorophore-conjugated secondary antibodies (1:500,
Invitrogen) in block at room temperature for 1 h, washed twice
with PBS, incubated with DAPI (Sigma, D9542, 300 nM) at room
temperature for 5 m, washed twice with PBS, and finally mounted
for confocal imaging. Primary antibodies and dilutions were:
Mouse anti-NeuN (Millipore, MAB337, 1:500), Rabbit anti-Aqp4
(SantaCruz, sc-20812, 1:100), and Mouse anti-GFAP (Sigma,
G3893, 1:200).

RF and RNAseq Library Construction
RF was conducted as described by Ingolia et al. (2011). Briefly,
cell lysates were treated with DNase and clarified, and a portion
was taken for RNAseq analysis. Remainder was treated with
RNase I (100 U/ul; Invitrogen) for 45min at room temperature,
followed by inactivation of the RNase I with SUPERase-In
(Thermo Fisher). Ribosomes and protected mRNA fragments
were then pelleted with ultracentrifugation on 1M Sucrose
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cushion at 200,000 g for 4 h at 4◦C. RNA was isolated from
the pellet using miRNeasy kit from Qiagen, and ribosome
protected fragments (26–34-nucleotides (nt) size) were selected
on a 15% polyacrylamide TBE-urea gel. After dephosphorylation,
linker ligation was performed at room temperature for 2.5 h
using miRNA cloning linker (NEB). Linker ligated product was
separated from unligated product on a 15% polyacrylamide gel,
and reverse transcription was performed using SuperScript III
(Invitrogen). Leftover RNA was hydrolyzed with 1N NaOH
and the cDNA was circularized using CircLigase (Epicentre).
Circularized cDNA was subjected to rRNA depletion using
subtractive hybridization with biotinylated rRNA oligo pool. The
depleted product was PCR amplified using Phusion polymerase
(NEB) and different indexing primers and the final product was
purified on 8% polyacrylamide non-denaturing gels. Libraries
were analyzed for concentration and fragment size using a high-
sensitivity DNA chip on the Agilent BioAnalyzer, and then
pooled and sequenced on two lanes of an Illumina Hiseq 2000
system (50 bp, single end).

For RNASeq libraries, DNAse I treated total RNA was purified
with RNeasy MinElute columns (Qiagen). We generated double
stranded cDNA using Nugen Ovation RNAseq system V2,
starting from 68 ng of total RNA. Standard Illumina sequencing
libraries were generated from 1 to 2 ug of cDNA, sheared to∼200
nt, and sequenced (50 bp, single end).

Analysis of Sequence Data
Using FastQC (version 0.11.2; Babraham Bioinformatics, 2010
website, http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) we checked the library size of each of the three replicate
samples, and found that replicate 3 in the KCl treatment group
had a much lower size compared to other two replicates. We
removed this sample for the downstream analysis. For remaining
libraries, we trimmed the adapters, including PCR primers, using
Trimmomatic (version 0.32) (Bolger et al., 2014). Minimum read
lengths were set to 25 nt for RF and 20 for RNAseq after trimming
adapters, and for RF, the maximum read length was set to 35.
For both RF and RNAseq, we removed reads aligning to rRNA
sequence as detected by STAR (version 2.3.1z8) (Dobin et al.,
2013). Before mapping the reads, we first removed degenerate
sequences from the mouse mm10 transcriptome (Downloaded
from Ensembl-release 75) as described (Ingolia et al., 2009; Dunn
et al., 2013). We then aligned both RF and RNAseq reads to
this non-degenerate transcriptome using bowtie2 (version 2.2.2)
(Langmead and Salzberg, 2012) retaining both uniquely mapped
andmulti-mapped reads. Then, we counted both RF and RNAseq
reads using the BEDTools (version 2.20.1) (Quinlan and Hall,
2010) intersect command. For calculating translation efficiency
(TE), the ratio of the coding sequence RF reads to RNAseq reads,
we removed several positions in the transcriptome: 9 nt before
the first nt of each start codon, 15 nt after the last nt of each start
codon, 15 nt before the first nt of each stop codon, and 15 nt after
the last nt of each stop codon, as described (Dunn et al., 2013).

Using RNAseq, we defined the levels of each transcript as the
number of reads mapping to the exonic sequence, in counts per
million reads (CPM), then normalized for the length of each
transcript, in kilobases (RPKM). For RF, we measured ribosome

footprint density for coding sequence (CDS) of each transcript,
normalized as above. For all downstream analyses, we focused
on 6960 transcripts with robust expression, defined by RNAseq
and RF RPKM values of≥ 10 for at least two samples. Consistent
with prior studies, the length of most of our protected fragments
is around 30 nucleotides—the expected footprint of a ribosome.
Differentially transcribed or translated genes were identified
using a permuted t-test with replacement after integration into a
digital gene expression object using the edgeR package (Robinson
et al., 2010).

Correlation between mRNA abundance and CDS RF levels
was based on the Gamma distribution assumption, and the
fit for this generalized linear model was calculated using the
definition R2 = 1−SSerror/SStotal. For all other linear modeling
and ANOVA tests, we ensured that model residuals were
approximately normally distributed.

Likely glial and neuronal mRNAs were defined from using
the (Zhang et al., 2014) dataset (barreslab_rnaseq.xlsx) from
http://web.stanford.edu/group/barres_lab/brain_rnaseq.html.
To identify transcripts significantly enriched in each cell type,
we used the specificity index (SI) algorithm (Dougherty et al.,
2010) with default settings, and a cutoff of pSI < 0.05. Raw and
analyzed data are available at GEO: GSE77076.

Metagene Analysis
For CDS, in addition to filtering out low expression genes, we also
excluded transcripts with a length <2000 nt first. Metagene plots
were generated using metagene R package (Beauparlant et al.,
2014).

Linear Modeling to Predict CDS TE Change
Across the 642 transcripts regulated by KCl stimulation, we
examined the relationship between log2 fold-change in CDS TE
and a number of primary sequence features known to regulate
translation using linear regression: GC content, number of
uAUGs, number of upstream Kozak matches, and length and
secondary structure of 5′UTR, CDS, and 3′UTR. To generate
a measure of the level of secondary structure, we used the
Vienna RNA package (Lorenz et al., 2011) which outputs the
free-energy value of the most stable secondary structure for each
input sequence. A lower free-energy value indicates a more stable
structure.

Specifically, we examined the effect of each predictor in a
linear model individually and then used stepwise regression
to find the subset of predictors which, when combined in
a multivariate linear model, explain the greatest amount of
variance in CDS TE change. When choosing the inputs
for stepwise regression, we eliminated highly correlated or
redundant predictors. For example, we selected number of
upstream Kozak matches and omitted number of uAUGs, since
the two variables are largely redundant, and the former is a better
individual predictor. Additionally, since secondary structure and
length were highly correlated (Pearson r = 0.94 for 5′UTR,
0.99 for CDS, 0.98 for 3′UTR), we considered a new variable:
secondary structure normalized by length. For the 5′UTR, this
variable performed better than length or secondary structure
alone as an individual predictor and thus was selected as an
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input to stepwise regression. For the CDS, we selected secondary
structure, as it performed better than length or normalized
secondary structure in a univariate model. For the 3′UTR, we
selected the categorical length variable, as it performed better
than continuous length, secondary structure, or normalized
secondary structure in a univariate model. Finally, we included
a term for the interaction between normalized 5′UTR secondary
structure and number of upstreamKozakmatches in the stepwise
regression input.

Comparison to miRNA and RBP Targets
Predictions for targets of all available mouse miRNAs were
downloaded from miRDB (v5.0) (Wong and Wang, 2015).
This included 634,009 target predictions for 1912 mouse
miRNAs across 18,639 RefSeq transcripts. However, to
prevent statistical inflation (Kopp et al., 2015) for all overlap
analyses, only the 6960 robustly measurable transcripts
were considered. Any target prediction for one of our 6960
transcripts with a confidence of 80 or above was included.
BiomaRt was used to map RefSeq IDs from mirDB from
Ensembl gene IDs used in our analysis. The set of each
miRNAs predicted targets was then tested for overlap with
TE regulated genes using a one-tailed Fisher’s exact test.
Results were corrected for multiple testing correction using
Benjamini-Hochberg.

For overlap with CELF4 targets, we used the high-confidence
candidates defined by Wagnon et al. (2012), specifically the 2000
highest ranked transcripts from their file S2. For FMRP, we used
the 842 transcripts defined as high confidence (p < 0.01) targets
by Darnell et al. (2011) from their supplemental table 2. For rare
de novo variant genes in autism, we used the genes in table 4
from Sanders et al. (2015). In each case these were filtered to
consider only those transcripts that were robustly measurable in
our cultures, then tested using a one-tailed Fisher’s exact test for
overlap with the translationally regulated genes.

RESULTS

Ribosome Footprinting of Primary Cultures
To study regulation of translation in response to neuronal
activity, we performed parallel RF and RNAseq in primary
neuron-glia mixed cultures (Figures 1A–C). Activity of neurons
in vitro or in vivo has long been known to regulate transcription
of specific genes. For example, depolarization of neuronal
cultures with KCl induces transcription of immediate early genes
such as c-Fos (Sheng andGreenberg, 1990; Ghosh andGreenberg,
1995; West et al., 2002). Here, we used the same stimulation
paradigm coupled to RF to allow a comparative investigation of
translational regulation (Figures 1A,D).

First, we established that RF allows for reproducible measures
of translation (ribosomal occupancy) in this culture system.
Normalization and removal of transcripts with low read counts
as described in prior RF studies (Ingolia et al., 2009, 2011;
Dunn et al., 2013; Gonzalez et al., 2014) resulted in 6960
measurable transcripts. Replicates showed high reproducibility
in our measures of transcript abundance (RNAseq) or ribosomal
occupancy (RF) with or without KCl treatment (Pearson r >

0.966, Figures 1E,F). To identify transcripts subject to translation
regulation, we also calculated a measure of ribosomal density—
“translation efficiency” (TE): the ratio of CDS ribosomal
occupancy to transcript abundance. As such, it is an estimate
of the number of ribosomes bound to each copy of a particular
mRNA in the cells. TE was also highly reproducible (Pearson
r > 0.965, Figure 1G).

Next, we examined the basic features of translation in
this culture system. Similar to RF studies in other systems
(Ingolia et al., 2009, 2011; Dunn et al., 2013; Gonzalez et al.,
2014) the distribution of TE spans more than three orders
of magnitude (Figure 2A), indicating substantial differences in
baseline TE across different transcripts. We also calculated
ribosomal occupancies and densities in the 5′ and 3′UTRs. We
found that TEs of the CDS and 5′UTRs are higher than 3′UTR
(Figure 2B), consistent with prior studies. Also, a metagene
analysis of our RF data showed the expected peaks at both the
start codon and stop codons (Figure 2C).

Finally, we sought to compare the relative contribution of
transcript abundance vs. translational regulation in the baseline
translation levels as estimated from ribosome occupancy. While
we found that transcript abundance and ribosomal occupancy
are highly correlated (Spearman ρ = 0.643); a generalized linear
regression analysis indicates that transcript abundance only
predicts ∼60% of the overall ribosomal occupancy across genes
(p < 2e-16, Figure 2D). This indicates that roughly 40% of the
variance in translation levels is regulated by mechanisms beyond
simple alteration of mRNA abundance.

KCl Stimulation of Primary Neuron-Glia
Cultures Alters Translation of Specific
Coding Sequences
Next, to quantify the extent of regulation of translation by
depolarization, we compared the transcript abundance and
ribosomal occupancy of stimulated and unstimulated cultures.
This allowed us to examine both the global response to
stimulation across the genome and study the responses of
individual transcripts.

Overall, KCl stimulation resulted in a significant alteration
in the abundance of 1811 transcripts, corresponding to
1175 genes (Figures 3A,D), and the ribosomal occupancy
on CDS of 2446 transcripts, corresponding to 1526 genes
(Figures 3B,D). Thus, the cultures show more alterations
at the level of translation than are apparent at the level of
transcription alone. This difference is largely accounted for
by the 642 transcripts, corresponding to 450 genes, that
significantly alter their TE (Figures 3C,D), indicating substantial
activity-dependent regulation of translation of specific
transcripts.

Individual transcripts responded to depolarization in a variety
of ways, as illustrated in Figure 3E. For example, the immediate
early gene Fos is induced transcriptionally by depolarization. It
is representative of genes (magenta line) where both transcript
abundance and ribosomal occupancy were increased in a fairly
proportional manner, but TE was not significantly affected
(Figure 3F). Thus these genes appear to be upregulated primarily
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FIGURE 1 | Ribosome footprinting of primary cultures is reproducible. (A) Illustration of the experimental design. Primary cultures were derived from mouse

brains, matured for 7 days, then replicate cultures were exposed to depolarizing stimuli. Parallel RNAseq (not shown) and RF were conducted to measure transcript

abundance and ribosomal occupancy of mRNA, respectively. RF entails harvesting cycloheximide (CHX)-stalled ribosomes, then digesting with RNAse I all mRNA

(Continued)
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FIGURE 1 | Continued

except fragments physically protected by ribosomes. Libraries were prepared from protected fragments and aligned to the transcriptome, enabling downstream

computational analyses. (B,C) 7-day primary cultures containing a mixture of neurons and glia. (B) Immunostaining for NeuN confirms the presence of neurons (white

arrows) as well as non-neuronal cells (yellow arrowheads). (Blue is DAPI staining for nuclei; Scale bar = 17µM) (C) Double immunostaining for Aqp4 and GFAP reveals

astrocytes (white arrows) and putative non-glial cells (yellow arrowheads). (Blue is DAPI staining for nuclei; Scale bar = 70 µM). (D) Screenshot of RNASeq read depth

in counts per million (CPM), showing fragments covering the entirety of a representative mRNA (bottom), and RF read depth, showing coverage only of CDS and

5’UTR (top) using Map2 gene. (E–G) Scatterplots comparing the replicate cultures show high levels of reproducibility for (E) transcript levels, (F) RF densities as well

as (G) TE in both untreated (gray) and KCl-treated samples (red) (all Pearson r > 0.96).

by increasing transcript levels, with increases in translation
largely following passively. Likewise, Transforming Growth
Factor Beta 1 Induced Transcript 1 (Tgfb1i1) is representative
of genes (tan line) that are transcriptionally downregulated
without significant change in TE, and thus exhibit a simple
corresponding downregulation of translation (Figure 3G). In
contrast, there are genes that appear to be regulated only via
alteration in translation without change in transcript levels (red
and yellow lines). For example, administration of iron is known
to upregulate Ferritin protein by inducing the recruitment of
existing Fth1 mRNA to ribosomes, thus increasing translation
(Zähringer et al., 1976). In our cultures, we see a robust increase
in TE of the Fth1 mRNA in response to stimulation, without
change of transcript abundance (Figure 3H), suggesting that
one of the effects of KCl stimulation of neurons and glia is
enhanced recruitment of Fth1mRNA to ribosomes. Similarly, the
orphan cyclin Ccni (Figure 3I) is representative of translationally
downregulated genes with decreased ribosomal occupancy, yet
no observed change in transcript abundance measured by
RNASeq. Furthermore, there are classes of genes that show
even more complicated regulation (purple and green lines). For
example, genes such as Srf (Figure 3J) or Ociad2 (Figure 3K)
show homeostatic-like regulation, whereby an increase (or
decrease) in ribosomal occupancy upon stimulation appears
to compensate for a decrease (or increase) in transcription
as measured by changes in RNASeq. Thus, RNA abundance
can change but putative protein synthesis remains relatively
unaltered with no net change of RF levels. Finally, genes like
Nfat5 (Figure 3L) and Ccl2 (Figure 3M), show an amplification
response, whereby both transcript abundance and TE change in
concert to either dramatically amplify (cyan line) or suppress
(orange line) translation levels.

Overall, this provides additional evidence for the importance
of activity-dependent regulation of translation as a mechanism
for regulating protein levels following stimulation. Fitting a linear
model to predict the fold-change in translation level (RF) by
change in transcript abundance indicates that roughly 40% of
the change in ribosomal occupancy in response to stimulation
is not due to changes in mRNA abundance (Figure 3N). This
supports the existence of substantial regulation of translation of
specific transcripts in response to activity that parallels the well-
characterized epigenetic and transcriptional responses (Sheng
and Greenberg, 1990; West et al., 2002; Malik et al., 2014).
While we have highlighted examples that have relatively simple
interpretations (Figures 3F–M), we note that the responses
across transcripts do not fall into discrete clusters, but represent
a continuum of different transcriptional and translational

responses (Figures 4A,B). Nevertheless, the diversity of different
responses indicates that there are multiple mechanisms of
translational control downstream of stimulation, and that they
are sequence specific.

As our cultures contained both neurons and glia
(Figures 1B,C) we also examined separately the responses
of transcripts that are likely derived from each cell type.
First, using benchmark data from the major CNS cell types
in vivo (Zhang et al., 2014), we defined sets of transcripts
typically enriched in each cell type (e.g., Gfap, in astrocytes,
Snap25 in neurons, Table S1), and separately assessed the
ability of mRNA abundance to predict ribosome occupancy
for the neuronal and glial transcript lists. For the glial specific
transcripts, mRNA abundance predicted 67% of the variance in
occupancy at baseline and 69% of the change in RF in response
to stimulation (Figure S1). Interestingly, for the neuronal
specific transcripts, mRNA abundance was less predictive of
ribosome occupancy: predicting 43% at baseline and 53%
of the change in occupancy with depolarization (Figure S1).
This is consistent with post-transcriptional regulation being
more important in neurons than in glia generally, with
>50% of the variance in the baseline ribosome occupancy
on the neuronal transcripts not being explained by transcript
abundance.

UTR Sequence Mediates Changes in CDS
Translation in Response to KCl Stimulation
5′UTR sequence features have been shown to allow for dynamic
regulation of CDS translation in response to other stimuli
(Watatani et al., 2008; Lohse et al., 2011; Gerashchenko et al.,
2012; Young and Wek, 2016). Therefore, we focused on the
642 transcripts showing significant regulation of translation
(regardless of changes in transcript abundance) to identify
sequence specific mechanisms of this regulation in the UTRs.
We tested the hypothesis that primary sequence features of the
transcript mediate regulation of CDS TE by KCl stimulation
(Figure 5A). Specifically, we tested the predictive ability of linear
models incorporating the GC content, length and secondary
structure of 5′UTR, CDS, and 3′UTR and the number of uORFs
(estimated from either number of uAUGs or number of upstream
canonical Kozak sequences). Examining each factor individually,
the number of uAUGs, number of upstream Kozak sequences,
5′UTR secondary structure, 5′UTR GC content, 5′UTR length,
short 3′UTR (defined as <492 nt), and 5′UTR, and 3′UTR
secondary structure normalized by length were each significant
predictors (p < 0.001) explaining measurable fractions of
the change in TE. However, several of these independent
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FIGURE 2 | Ribosome footprinting of primary cultures allows nucleotide resolution analysis of translation levels and efficiency. (A) The distribution of TE

measures across CDS of all transcripts spans more than three orders of magnitude (log10 scale). (B) Comparison of TE distributions between UTRs and CDS

indicates efficient ribosomal occupancy of both CDS and 5′UTR, but not 3′UTR. (C) Metagene analysis at nucleotide resolution indicates a peak of ribosome

footprints at the start codon and stop codon consistent with initiation and termination being slower than elongation rates (y-axis: mean CPM across all transcripts with

CDS length >= 2000 bps. x-axis: nucleotide position relative to start/stop codons). (D) Scatterplot comparing transcript levels for mRNAs (RNAseq, in log10 RPKM

scale) to translation levels (RF, in log10 RPKM scale). Fitting a model indicates variation in transcript levels can account for 62.8% of the variance in translation levels

(p < 2e–16).

predictors were correlated. Thus, in the context of a multivariate
linear model, most of the explanatory power only requires
three variables: number of upstream Kozak sequences, a short

3′UTR, and 5′UTR secondary structure normalized by length.
Overall, the three-variable model predicted∼16.5% of the change
in TE, indicating a moderately sized but significant (p <
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FIGURE 3 | Depolarization alters the translation of specific transcripts. (A) Cumulative distribution showing the alteration of transcript levels (RNAseq) by KCl

stimulation in culture. One thousand one hundred and fifty-one transcripts, corresponding to 724 genes, were significantly upregulated (orange), and 660 transcripts,

corresponding to 451 genes, downregulated (blue) (all unadjusted p < 0.05, permuted t-statistic). (B) Cumulative distribution showing alteration of translation levels

(RF) by KCl stimulation. One thousand three hundred and twenty five transcripts, corresponding to 826 genes, were upregulated, and 1121 transcripts, corresponding

to 700 genes, downregulated (all unadjusted p < 0.05, permuted t-statistic). (C) Cumulative distribution showing alteration of TE by KCl stimulation. Two hundred and

eighteen transcripts, corresponding to 164 genes, were upregulated, 424 transcripts, corresponding to 286 genes, downregulated (all unadjusted p < 0.05, permuted

t-statistic). (D) Bar plot summarizing number of transcripts being up/downregulated. (E) Heatmap of fold-changes (log2 scale) for highly altered transcripts (showing

those genes with fold-change in top or bottom 5% for RNAseq, RF or TE. In total, there are 344 transcripts as rows, corresponding to 229 unique genes). (F–J) KCl

(Continued)
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FIGURE 3 | Continued

stimulation (red boxplots) can separately regulate transcript levels and translation levels of individual CDS shown in E [*represents unadjusted p < 0.05, permuted

t-statistic; num_of_sample = 3 for untreated (pink-dots) and num_of_sample = 2 for KCl-treated (blue-dots) samples]. (F) The immediate early gene, Fos, is

representative of a class of genes (magenta line) where both transcript levels (RNAseq) and translation levels (RF) were increased by KCl stimulation, but TE wasn’t

significantly affected. (G) Tgfb1i1 exemplifies those CDS (tan line) that decreased transcription and translation levels after KCl stimulation, but didn’t alter TE. (H) Fth1

is representative of the class of genes (red line) that specifically increased TE in response to KCl stimulation. (I) Ccni downregulated translation levels (RF) while

transcript levels were constant (yellow line). (J) Srf (purple line) and (K) Ociad2 (green line) show a homestatic-like response where large magnitude changes in

transcript abundance are countered by changes in TE resulting in relatively less change in overall translation (RF) (L) Nfat5 (cyan line) and (M) Ccl2 (orange line) show

synergistic-like responses where changes in both transcript abundance and TE occur in concert resulting in an amplification of the change in translation overall. (N)

Scatterplot comparing the log2 fold-changes in transcript levels and translation levels following KCl stimulation. Fitting a linear model indicates that changes in

transcript level can account for 59.5% of the change in translation level (p < 2e-16). Red diagonal line represents intercept = 0, slope = 1. Red horizontal and vertical

lines represent fold-change = 2 and 1/2. Dots represent transcripts highlighted in (F–M) with consistent pattern-coding colors.

FIGURE 4 | KCl stimulation results in a continuum of different

transcriptional and translational responses. (A,B) Two different

perspectives of a three-dimensional scatterplot showing the distribution of

RNAseq changes, RF changes, and TE changes (all in log2 scale) in response

to KCl stimulation for all 6960 measurable transcripts. Points for transcripts

changing significantly in any dimension are bold. Colors correspond to

patterns in Figure 3 (Note: Darker-gray dots represent the rest of 6616

transcripts). Though a range of patterns is seen, responses do not fall into

apparently discrete clusters.

0.001) effect of simple primary sequence features on translation
regulation. Model coefficients and statistics are included in
Table 1.

Consistent with these results, regulated transcripts were more
likely to contain an upstream Kozak sequence than expected by
chance, and an ANOVA indicates that TE is downregulated as
the number of upstream Kozak sequences increases (Figure 5B).
Likewise, we examined the relationship between TE change and
the remaining high-performing individual predictors. Binning
each predictor into quartiles, we found thatmore downregulation
occurs with increasing 3′UTR length (Figure 5C) and 5′UTR
GC content (Figure 5D). Notably with 3′UTR length, the largest
change is between transcripts with very short UTRs (<500 bp)
and the rest. Additionally, we found that more upregulation
occurs with decreasing length-normalized secondary structure in
the 3′UTR (Figure 5E) and 5′UTR (Figure 5F). Thus, general
features of the primary sequences themselves, particularly the
presence of 5′UTRKozak sequences and secondary structure, can
explain a fair proportion translation regulation in response to
KCl.

KCl Stimulation Alters Ribosomal
Occupancy of 5′UTR
Consistent with our findings above, specific examples of uORFs
have been shown, in concert with RNA secondary structure, to
serve as regulators of the translation of the CDS (Kozak, 2002;
Yaman et al., 2003). Therefore, we examined our RF data to
determine whether KCl stimulation also regulated the ribosomal
occupancy of the 5′UTR, and whether alterations in ribosome
binding in this region was a predictor of changes in translation
in the CDS.

Similar to the CDS, stimulation resulted in the alteration of
ribosomal occupancy and TE of specific 5’UTRs (Figures 6A–D).
Furthermore, as with CDS, individual transcripts might be
altered at the level of transcription, translation, or both
(Figure 6E). We found that a transcript with a significant
alteration in TE of the CDS was more likely to also show a
significant alteration of TE in the 5′UTR (Figure 6F). Overall
there is a weak positive correlation in TE across the two regions
(Spearman ρ = 0.29, Figure 6G). However, individual transcripts
(Figure 6H) demonstrated different patterns of responses, with
some genes showing correlated and others showing uncorrelated
or anticorrelated relationships between 5′UTR and CDS TE. This
is in contrast to transcript abundance or ribosomal occupancy
counts, which are both strongly correlated across the 5′ UTR
and CDS (Spearman ρ > 0.52), as expected because of the
many transcripts where translational upregulation is passively
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FIGURE 5 | Primary sequence features alter the response to KCl stimulation. (A) Normalized 3′UTR secondary structure, 5′UTR length, short 3′UTR, 5′UTR

GC content, 5′UTR secondary structure, the number of uAUGs, the number of upstream Kozak matches, and normalized 5′UTR secondary structure score were

each significant individual predictor in a univariate linear model (p < 0.001). The number of upstream Kozak matches, normalized 5′UTR secondary structure, and

short 3′UTR all contributed significantly to the ability of a multivariate linear model to predict the change in CDS TE in response to KCl stimulation. (B) Among

transcripts that change CDS TE in response to KCl stimulation, more down-regulation of TE occurs with increasing number of upstream Kozak matches (ANOVA

F-test, p = 7.379e-14, F = 31.715). Specifically, transcripts containing increasing numbers of upstream Kozak matches are disproportionately downregulated by KCl

stimulation (Chi-square test, p = 2.6e-11, χ2 = 48.713). (C,D) More down-regulation of TE occurs with increasing 3′UTR length (ANOVA F-test, p = 7.069e-05,

F = 7.3975) (C) and 5′UTR GC content (ANOVA F-test, p = 6.72e-09, F = 14.084) (D). (E,F) More up-regulation of TE occurs with decreasing absolute value of

length-normalized 3′UTR secondary structure (ANOVA F-test, p = 6.221e-06, F = 9.1461) (E) and 5′UTR (ANOVA F-test, p = 3.695e-16, F = 26.492) (F).

following an increase in transcript abundance (Figures 6I,J).
Thus, while there is a significant overlap between the transcripts
showing alterations of 5′ UTR and CDS TE, there is not a simple
rule that relates the direction of changes in all transcripts in
response to activity.

FMRP-Bound Transcripts Are
Disproportionately Downregulated by KCl
Stimulation
Finally, additional regulation may be mediated by the presence of
motifs for miRNAs or RBPs. Previously, it has been shown that
mir128/128b regulates translation of a variety of transcripts in
concert to control neuronal excitability (Lin et al., 2011; Tan et al.,
2013). Thus, the concerted changes in translation seen here in
response to depolarization might be mediated by a small number
of “master regulator” miRNAs targeting sets of transcripts
and suppressing their translation. Therefore, we tested whether

mir128 or other miRNAs were predicted to disproportionately
bind regulated transcripts. In our analysis, several miRNAs
were nominally significant, but none of these findings survived
multiple-testing correction. While this analysis does not rule
out a given microRNA mediating changes in translation for a
particular transcript, it does rule out the possibility of one or two
“master regulator” miRNAs being responsible for a significant
proportion of the changes seen in this study.

In contrast to miRNA, binding by RBPs is not easily
predicted from primary sequence and must be measured
empirically using biochemical approaches such as cross-linking
and immunoprecipitation with high throughput sequencing
(HITS-CLIP). Notably, two RBPs have been well characterized
as regulators of translation in the CNS and analyzed by HITS-
CLIP: CELF4 (Wagnon et al., 2012, p. 4) and FMRP (Darnell
et al., 2011). Both are widely expressed in the brain and are
essential for normal CNS function. Loss of either leads to
epileptic syndromes in both mice and humans (Yang et al.,
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TABLE 1 | Linear modeling results.

Predictor(s) R2 (adjusted) P-value

Number of upstream Kozak matches + normalized

5′UTR SS + short 3′UTR

0.165275 <2.2E-016

Normalized 5′UTR secondary structure 0.097196 3.70E-16

Number of upstream Kozak matches 0.067561 1.36E-11

Number of uAUGs 0.062601 7.67E-11

5′UTR secondary structure 0.053138 2.06E-09

5′UTR GC content 0.035272 9.82E-07

Short 3′UTR 0.030568 4.96E-06

5′UTR length 0.028148 1.14E-05

Normalized 3′UTR secondary structure 0.027991 1.21E-05

3′UTR secondary structure 0.017547 4.48E-04

3′UTR length 0.008997 9.23E-03

CDS secondary structure 0.00768 1.49E-02

CDS length 0.006239 2.53E-02

CDS GC content −0.00131 6.86E-01

Normalized CDS secondary structure −0.00155 0.9337

Adjusted R2 and p-values reported for the best multivariate model and for each univariate

model.

2007; Hagerman and Stafstrom, 2009; Halgren et al., 2012).
We tested whether the translationally regulated genes in our
analysis are disproportionately targets of these RBPs. While there
was no significant overlap with CELF4 targets (Figure 7A), the
regulated genes were significantly enriched in targets of FMRP
(Figure 7B), and this effect was driven by the downregulated
genes (Figures 7C,D). As known FMRP target genes tend to
be longer and more highly expressed in the brain than other
genes in the genome, spurious overlap with the FMRP targets can
occur when candidate genes are similarly biased for length and/or
expression levels (Ouwenga and Dougherty, 2015). However, the
translationally regulated genes show no such bias (Figures 7E,F).
This suggests that these genes are indeed disproportionately
downregulated by FMRP. Finally, FMRP targets have been
reported to overlap with the 65 recently identified de novo
deleterious single-nucleotide variants that are associated with
autism (Sanders et al., 2015). Therefore, we also checked whether
these were significantly enriched amongst the regulated genes.
We indeed found a significant 2-fold enrichment, though only
24 of the ASD genes were robustly measured in our cultures, so
the number of genes overlapped is modest: these include Tcf712,
Phf2, Wdy3, Dnmt3a, andMib1 (Figure 7G).

DISCUSSION

In this study, we performed genome wide nucleotide-level
analysis of transcription and translation to quantify the extent of
translational regulation in response to sustained KCl stimulation.
It is well established that neuronal depolarization triggers the
transcription of activity-depended genes (Ghosh and Greenberg,
1995; West and Greenberg, 2011) and this was also seen in
our study. However, in our study, substantially more genes
were regulated post-transcriptionally: we found that nearly

36% of the robustly measured transcripts altered ribosomal
occupancy following neuronal activity, and 10% of transcripts
significantly changed their TE, thus showing regulation of
translation independent of mRNA abundance. Indeed, 40% of
the translational variance overall could not be explained by
changes in mRNA abundance. These findings suggest that the
translational machinery has substantial regulation independent
of transcription.

We also found that the change in TE of an mRNA depends
partially on the cis-regulatory elements present in the sequence
itself. Features such as 5′UTR secondary structure and uORFs
each independently accounted for more than 5% of the variance
in this regulation. In a combined model, these and other
features could account for 15–20% of the change in TE. These
features largely acted additively: thus, two or more cis-regulatory
elements driving the TE in the same direction may couple
so as to achieve a greater control over protein synthesis.
Our model did leave a large fraction of the change in TE
unexplained. Given the detection of an enrichment of known
FMRP targets seen in our analysis, we think the remaining
fraction may be attributable to other RBPs (Abaza and Gebauer,
2008) or translation initiation mechanisms that circumvent
standard regulatory elements (Komar and Hatzoglou, 2011;
Paek et al., 2015). One distinct possibility is that a number of
these transcripts share regulation by Eif4e—a known regulator
of translation initiation in response to cellular stress. Indeed
mutations impacting this regulation have been shown to cause
autism like phenotypes in mice (Gkogkas et al., 2013). However,
only the targets in fibroblasts have been identified thus far
(Mamane et al., 2007), and these do not overlap significantly
with the regulated genes detected here (not shown), though
baseline differences in transcript expression between fibroblasts
and neurons make this an imperfect analysis. Nonetheless, our
study provides a resource for further modeling as the regulatory
targets of Eif4e and other RBPs in the CNS are identified. We
also found that TE was more downregulated in those transcripts
with increased 3′UTR length. It is interesting to note that
prior work suggested a similar depolarization paradigm led to a
shortening of 3′UTRs by selection of an earlier polyadenylation
signal (Flavell et al., 2008). If longer UTRs lead to deceased
translation during depolarization, subsequent use of an earlier
polyadenylation signal could serve as a homeostatic mechanism
to allow for the recovery of translation levels.

Our data revealed that the overall translation is reduced in
response to neural depolarization. Of the transcripts exhibiting
activity-dependent change in TE, 64% showed a reduction in
TE. This finding is consistent with a previous study which,
using [35S]Methionine labeling and polysome profiling, reported
15–30% decrease in global translation after 2 h of neuronal
depolarization with 50mM KCl (Krichevsky and Kosik, 2001).
Also in line with our finding is a recent study which used
the RF/RNAseq approach and reported a pervasive translational
downregulation in the hippocampus after 30min as well as 4 h
after fear learning (Cho et al., 2015). Translation of proteins,
generation and propagation of action potential, and reversal
from the depolarization-induced high cytoplasmic [Ca2+] are all
extremely energy-demanding processes (Buttgereit and Brand,
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FIGURE 6 | Depolarization of cultures also alters ribosomal occupancy of the 5′UTR of specific transcripts. (A) Cumulative distribution showing the

alteration of 5′UTR transcript levels by KCl stimulation in culture. One thousand four hundred and five transcripts were significantly upregulated (orange), and 895

downregulated (blue) (all unadjusted p < 0.05, permuted t-statistic). (B) Cumulative distribution showing alteration of 5′UTR translation levels by KCl stimulation. Four

hundred and seventy one transcripts were upregulated, and 149 downregulated. (C) Cumulative distribution showing alteration of TE (5′UTR) by KCl stimulation. Two

hundred and eighty five transcripts were upregulated, 135 downregulated. (D) Bar plot of summary of number of transcripts being up/downregulated. (E) Heatmap of

(Continued)
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FIGURE 6 | Continued

log2 fold-changes for highly altered transcripts (showing those genes with fold-change in top or bottom 5% for 5′UTR RNAseq, RF or TE, n = 283). (F) Transcripts

showing a significant change in TE in their CDS (black circle) are more likely to also show a significant change in the TE of their 5′UTR (red circle) (p < 2.2e-16.

Chi-square statistic = 2333, two-sided). (G) Scatterplot of TE fold-change in 5′UTR and CDS shows weak correlation. (H) Heatmaps for the fold-changes of the 187

overlapping transcripts from (F). There is no consistent relationship in TE fold-change between CDS and 5′UTR across all transcripts. (I) Scatterplot of RNAseq

fold-change in 5′UTR and CDS shows high correlation. (J) Scatterplot of RF fold-change in 5′UTR and CDS shows high correlation.

FIGURE 7 | Regulated transcripts are disproportionately targets of FMRP. (A) Bar chart illustrating percent of genes overlapping between the translationally

regulated genes (significantly changed in TE: dTE+) and published CELF4 targets, compared to expectation by chance. Numbers of observed genes overlapped

(n = 63), does not differ from chance (Fisher’s exact Test, p > 0.1). (B) FMRP targets significantly overlapped (p < 7.7e-08) with genes showing a change in TE (dTE

genes, n = 71 genes overlapped). (C) Specifically, the genes with TE downregulated were found on the FMRP target list ∼3-fold more than expected by chance

(p < 3.2e-10, Odds Ratio 2.97, 95% CI:2.24-Inf), (D) while the upregulated genes were not. (E) Distribution of CDS lengths (in log10) for measured FMRP targets

shows they are substantially longer than a random sample of measured genes. The translationally regulated genes (dTE) do not share this bias. (F) All three gene

categories show similar levels of transcript abundance in the neural cultures. (G) Genes associated with autism by analysis of rare de novo variation also modestly

overlapped with translationally regulated genes (p < 0.04).

1995; Attwell and Laughlin, 2001; Clapham, 2007). Therefore,
the reduction of translation during neuronal activity may be
a homeostatic response to allow devotion or more resources
to repolarization. Interestingly, translation downregulation is
also a hallmark of seizure, a disease characterized by sustained
neuronal excitation (Fando et al., 1979; Collins and Nandi,
1982). Future studies monitoring activity-dependent translation
across different time points for a prolonged period may reveal
differences between physiological and pathological translational
dynamics.

One important feature of our study is the inclusion of
glia in neuronal culture. We believe that this allowed glial
modulation of neuronal activity, as is the case in vivo, thus
making our findings more physiological. On the other hand,
it imposed a major limitation on our study by causing many
neuronal genes to be excluded from analysis because of low
read counts. In part, lack of sensitivity for low abundance
transcript has as much to do with the inherent challenges of

RF library preparation as it does with the presence of glia.
In RF experiments more than 80% of reads are frequently
consumed by rRNAs (Ingolia et al., 2009, 2012). Regardless,
having multiple cell types present challenges to interpretation
as the upregulation of a transcript by RF or RNAseq in one
cell type could be nullified by a stronger downregulation in
another.We presented some findings computationally separating
transcripts to those likely derived from either neurons or glia
based on their specificity in in vivo profiles, and discovered
evidence for a greater degree of translational regulation in
neurons. However, true confirmation of this finding awaits future
studies leveraging either more purified cultures or cell-type
specific assessments of translation in vivo. In sum, our current
findings describe the holistic effect of KCl on neuron/glia mix
culture.

Finally, our data also provide a resource to considering
the response of individual transcripts to a strong depolarizing
stimulus. Across the genome, we detected transcripts showing
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numerous combinations of mRNA level, ribosomal occupancy
and TE changes following neuronal depolarization. These are
provided as a supplemental Table (Table S2).
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Figure S1 | Transcript abundance is less predictive of ribosome

occupancy for neuronal transcripts than for glial transcripts. Transcripts

were subsetted into neuronal and glial specific lists as described in the methods.

(A,C) mRNA abundance predicts only 43% variance in ribosome occupancy at

baseline and 53% variance in translation following KCl stimulation in neurons.

(B,D) mRNA abundance predicts more than 65% of the variance in ribosome

occupancy at baseline as well as following KCl depolarization in glia.

Table S1 | Transcript ID, Gene symbol, and likely originating cell type for

each transcript, based on pSI calculation from Zhang et al. (2014).

Table S2 | RNA-seq, RF, and TE levels without (noKCl) and with (yesKCl)

depolarization.

REFERENCES

Abaza, I., and Gebauer, F. (2008). Trading translation with RNA-binding proteins.

RNA 14, 404–409. doi: 10.1261/rna.848208

Attwell, D., and Laughlin, S. B. (2001). An energy budget for signaling in the grey

matter of the brain. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood

Flow Metab. 21, 1133–1145. doi: 10.1097/00004647-200110000-00001

Babendure, J. R., Babendure, J. L., Ding, J.-H., and Tsien, R. Y. (2006). Control

of mammalian translation by mRNA structure near caps. RNA 12, 851–861.

doi: 10.1261/rna.2309906

Babraham Bioinformatics (2010). FastQC. A Quality Control Tool for High

Throughput Sequence Data. Available online at: http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/

Beauparlant, C. J., Lamaze, F. C., Samb, R., Deschenes, A. L., and Droit, A. (2014).

Metagene: A Package to Produce Metagene Plots. R package version 1.0.0.

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible

trimmer for Illumina sequence data. Bioinforma. Oxf. Engl. 30, 2114–2120.

doi: 10.1093/bioinformatics/btu170

Buttgereit, F., and Brand, M. D. (1995). A hierarchy of ATP-consuming processes

in mammalian cells. Biochem. J. 312, 163–167.

Calvo, S. E., Pagliarini, D. J., and Mootha, V. K. (2009). Upstream open

reading frames cause widespread reduction of protein expression and are

polymorphic among humans. Proc. Natl. Acad. Sci. U.S.A. 106, 7507–7512.

doi: 10.1073/pnas.0810916106

Campbell, D. S., and Holt, C. E. (2001). Chemotropic responses of retinal growth

cones mediated by rapid local protein synthesis and degradation. Neuron 32,

1013–1026. doi: 10.1016/S0896-6273(01)00551-7

Cho, J., Yu, N.-K., Choi, J.-H., Sim, S.-E., Kang, S. J., Kwak, C., et al.

(2015). Multiple repressive mechanisms in the hippocampus during memory

formation. Science 350, 82–87. doi: 10.1126/science.aac7368

Clapham, D. E. (2007). Calcium signaling. Cell 131, 1047–1058.

doi: 10.1016/j.cell.2007.11.028

Collins, R. C., and Nandi, N. (1982). Focal seizures disrupt protein synthesis in

seizure pathways: an autoradiographic study using [1-14C]leucine. Brain Res.

248, 109–119.

Darnell, J. C., Van Driesche, S. J., Zhang, C., Hung, K. Y. S., Mele, A., Fraser,

C. E., et al. (2011). FMRP stalls ribosomal translocation on mRNAs linked

to synaptic function and autism. Cell 146, 247–261. doi: 10.1016/j.cell.2011.

06.013

Dittmar, K. A., Goodenbour, J. M., and Pan, T. (2006). Tissue-specific

differences in human transfer RNA expression. PLoS Genet. 2:e221.

doi: 10.1371/journal.pgen.0020221

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al. (2013).

STAR: ultrafast universal RNA-seq aligner. Bioinforma. Oxf. Engl. 29, 15–21.

doi: 10.1093/bioinformatics/bts635

Dougherty, J. D., Schmidt, E. F., Nakajima, M., and Heintz, N. (2010).

Analytical approaches to RNA profiling data for the identification of genes

enriched in specific cells. Nucleic Acids Res. 38, 4218–4230. doi: 10.1093/nar/

gkq130

Dunn, J. G., Foo, C. K., Belletier, N. G., Gavis, E. R., and Weissman, J. S. (2013).

Ribosome profiling reveals pervasive and regulated stop codon readthrough in

Drosophila melanogaster. Elife 2:e01179. doi: 10.7554/eLife.01179

Eroglu, C., and Barres, B. A. (2010). Regulation of synaptic connectivity by glia.

Nature 468, 223–231. doi: 10.1038/nature09612

Fando, J. L., Conn, M., and Wasterlain, C. G. (1979). Brain protein synthesis

during neonatal seizures: an experimental study. Exp. Neurol. 63, 220–228.

doi: 10.1016/0014-4886(79)90119-5

Flavell, S. W., Kim, T.-K., Gray, J. M., Harmin, D. A., Hemberg, M., Hong, E. J.,

et al. (2008). Genome-wide analysis of MEF2 transcriptional program reveals

synaptic target genes and neuronal activity-dependent polyadenylation site

selection. Neuron 60, 1022–1038. doi: 10.1016/j.neuron.2008.11.029

Flexner, L. B., Flexner, J. B., and Stellar, E. (1965). Memory and cerebral protein

synthesis in mice as affected by graded amounts of puromycin. Exp. Neurol. 13,

264–272. doi: 10.1016/0014-4886(65)90114-7

Gebauer, F., and Hentze, M. W. (2004). Molecular mechanisms of translational

control. Nat. Rev. Mol. Cell Biol. 5, 827–835. doi: 10.1038/nrm1488

Gerashchenko, M. V., Lobanov, A. V., and Gladyshev, V. N. (2012). Genome-

wide ribosome profiling reveals complex translational regulation in response

to oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 109, 17394–17399.

doi: 10.1073/pnas.1120799109

Ghosh, A., and Greenberg, M. E. (1995). Calcium signaling in neurons: molecular

mechanisms and cellular consequences. Science 268, 239–247.

Gkogkas, C. G., Khoutorsky, A., Ran, I., Rampakakis, E., Nevarko, T., Weatherill,

D. B., et al. (2013). Autism-related deficits via dysregulated eIF4E-dependent

translational control. Nature 493, 371–377. doi: 10.1038/nature11628

Goelet, P., Castellucci, V. F., Schacher, S., and Kandel, E. R. (1986). The long and

the short of long–termmemory—amolecular framework.Nature 322, 419–422.

doi: 10.1038/322419a0

Frontiers in Molecular Neuroscience | www.frontiersin.org 14 January 2017 | Volume 10 | Article 9

http://journal.frontiersin.org/article/10.3389/fnmol.2017.00009/full#supplementary-material
https://doi.org/10.1261/rna.848208
https://doi.org/10.1097/00004647-200110000-00001
https://doi.org/10.1261/rna.2309906
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1073/pnas.0810916106
https://doi.org/10.1016/S0896-6273(01)00551-7
https://doi.org/10.1126/science.aac7368
https://doi.org/10.1016/j.cell.2007.11.028
https://doi.org/10.1016/j.cell.2011.06.013
https://doi.org/10.1371/journal.pgen.0020221
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/nar/gkq130
https://doi.org/10.7554/eLife.01179
https://doi.org/10.1038/nature09612
https://doi.org/10.1016/0014-4886(79)90119-5
https://doi.org/10.1016/j.neuron.2008.11.029
https://doi.org/10.1016/0014-4886(65)90114-7
https://doi.org/10.1038/nrm1488
https://doi.org/10.1073/pnas.1120799109
https://doi.org/10.1038/nature11628
https://doi.org/10.1038/322419a0
http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Dalal et al. Activity Dependent Regulation of Translation

Gonzalez, C., Sims, J. S., Hornstein, N., Mela, A., Garcia, F., Lei, L., et al.

(2014). Ribosome profiling reveals a cell-type-specific translational landscape

in brain tumors. J. Neurosci. 34, 10924–10936. doi: 10.1523/JNEUROSCI.0084-

14.2014

Hagerman, P. J., and Stafstrom, C. E. (2009). Origins of epilepsy in fragile

X syndrome. Epilepsy Curr. 9, 108–112. doi: 10.1111/j.1535-7511.2009.

01309.x

Halgren, C., Bache, I., Bak, M., Myatt, M. W., Anderson, C. M., Brøndum-

Nielsen, K., et al. (2012). Haploinsufficiency of CELF4 at 18q12.2 is associated

with developmental and behavioral disorders, seizures, eye manifestations,

and obesity. Eur. J. Hum. Genet. 20, 1315–1319. doi: 10.1038/ejhg.

2012.92

Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M., and Weissman, J. S.

(2012). The ribosome profiling strategy for monitoring translation in vivo

by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7,

1534–1550. doi: 10.1038/nprot.2012.086

Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S., and Weissman, J.

S. (2009). Genome-wide analysis in vivo of translation with nucleotide

resolution using ribosome profiling. Science 324, 218–223. doi: 10.1126/science.

1168978

Ingolia, N. T., Lareau, L. F., and Weissman, J. S. (2011). Ribosome profiling of

mouse embryonic stem cells reveals the complexity of mammalian proteomes.

Cell 147, 789–802. doi: 10.1016/j.cell.2011.10.002

Ishimura, R., Nagy, G., Dotu, I., Zhou, H., Yang, X.-L., Schimmel, P.,

et al. (2014). Ribosome stalling induced by mutation of a CNS-specific

tRNA causes neurodegeneration. Science 345, 455–459. doi: 10.1126/science.

1249749

Kang, H., and Schuman, E. M. (1996). A requirement for local protein

synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science

273, 1402–1406.

Kim, T.-K., Hemberg,M., Gray, J.M., Costa, A.M., Bear, D.M.,Wu, J., et al. (2010).

Widespread transcription at neuronal activity-regulated enhancers.Nature 465,

182–187. doi: 10.1038/nature09033

Komar, A. A., and Hatzoglou, M. (2011). Cellular IRES-mediated translation. Cell

Cycle 10, 229–240. doi: 10.4161/cc.10.2.14472

Kopp, N., Climer, S., and Dougherty, J. D. (2015). Moving from capstones

toward cornerstones: successes and challenges in applying systems biology

to identify mechanisms of autism spectrum disorders. Front. Genet. 6:301.

doi: 10.3389/fgene.2015.00301

Kozak, M. (1992). Regulation of translation in eukaryotic systems. Annu. Rev. Cell

Biol. 8, 197–225. doi: 10.1146/annurev.cb.08.110192.001213

Kozak, M. (2002). Pushing the limits of the scanning mechanism for initiation of

translation. Gene 299, 1–34. doi: 10.1016/S0378-1119(02)01056-9

Krichevsky, A. M., and Kosik, K. S. (2001). Neuronal RNA granules: a link between

RNA localization and stimulation-dependent translation. Neuron 32, 683–696.

doi: 10.1016/S0896-6273(01)00508-6

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie

2. Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923

Lee, S., Liu, B., Lee, S., Huang, S.-X., Shen, B., and Qian, S.-B. (2012).

Global mapping of translation initiation sites in mammalian cells at single-

nucleotide resolution. Proc. Natl. Acad. Sci. U.S.A. 109, E2424–E2432.

doi: 10.1073/pnas.1207846109

Lin, Q., Wei, W., Coelho, C. M., Li, X., Baker-Andresen, D., Dudley, K., et al.

(2011). The brain-specific microRNA miR-128b regulates the formation of

fear-extinction memory. Nat. Neurosci. 14, 1115–1117. doi: 10.1038/nn.2891

Lohse, I., Reilly, P., and Zaugg, K. (2011). The CPT1C 5′UTR contains a repressing

upstream open reading frame that is regulated by cellular energy availability

and AMPK. PLoS ONE 6:e21486. doi: 10.1371/journal.pone.0021486

Lorenz, R., Bernhart, S. H., Höner zu Siederdissen, C., Tafer, H., Flamm, C.,

Stadler, P. F., et al. (2011). ViennaRNA Package 2.0. Algorithms Mol. Biol. 6:26.

doi: 10.1186/1748-7188-6-26

Malik, A. N., Vierbuchen, T., Hemberg, M., Rubin, A. A., Ling, E., Couch,

C. H., et al. (2014). Genome-wide identification and characterization

of functional neuronal activity-dependent enhancers. Nat. Neurosci. 17,

1330–1339. doi: 10.1038/nn.3808

Mamane, Y., Petroulakis, E., Martineau, Y., Sato, T.-A., Larsson, O.,

Rajasekhar, V. K., et al. (2007). Epigenetic activation of a subset of

mRNAs by eIF4E explains its effects on cell proliferation. PLoS ONE 2:e242.

doi: 10.1371/journal.pone.0000242

Nader, K., Schafe, G. E., and Le Doux, J. E. (2000). Fear memories require

protein synthesis in the amygdala for reconsolidation after retrieval. Nature

406, 722–726. doi: 10.1038/35021052

Nowak, J. S., and Michlewski, G. (2013). miRNAs in development and

pathogenesis of the nervous system. Biochem. Soc. Trans. 41, 815–820.

doi: 10.1042/BST20130044

Ouwenga, R. L., and Dougherty, J. (2015). Fmrp targets or not: long, highly brain-

expressed genes tend to be implicated in autism and brain disorders. Mol.

Autism 6:16. doi: 10.1186/s13229-015-0008-1

Paek, K. Y., Hong, K. Y., Ryu, I., Park, S. M., Keum, S. J., Kwon, O. S., et al. (2015).

Translation initiation mediated by RNA looping. Proc. Natl. Acad. Sci. U.S.A.

112, 1041–1046. doi: 10.1073/pnas.1416883112

Quinlan, A. R., and Hall, I. M. (2010). BEDTools: a flexible suite of utilities

for comparing genomic features. Bioinforma. Oxf. Engl. 26, 841–842.

doi: 10.1093/bioinformatics/btq033

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: a Bioconductor

package for differential expression analysis of digital gene expression data.

Bioinforma. Oxf. Engl. 26, 139–140. doi: 10.1093/bioinformatics/btp616

Sanders, S. J., He, X., Willsey, A. J., Ercan-Sencicek, A. G., Samocha, K.

E., Cicek, A. E., et al. (2015). Insights into autism spectrum disorder

genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233.

doi: 10.1016/j.neuron.2015.09.016

Sheng, M., and Greenberg, M. E. (1990). The regulation and function of c-fos

and other immediate early genes in the nervous system. Neuron 4, 477–485.

doi: 10.1016/0896-6273(90)90106-P

Sonenberg, N., and Hinnebusch, A. G. (2009). Regulation of translation

initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745.

doi: 10.1016/j.cell.2009.01.042

Squire, L. R., and Barondes, S. H. (1970). Actinomycin-D: effects on memory

at different times after training. Nature 225, 649–650. doi: 10.1038/225

649a0

Sutton, M. A., and Schuman, E. M. (2006). Dendritic protein synthesis, synaptic

plasticity, and memory. Cell 127, 49–58. doi: 10.1016/j.cell.2006.09.014

Tan, C. L., Plotkin, J. L., Venø, M. T., von Schimmelmann, M., Feinberg,

P., Mann, S., et al. (2013). MicroRNA-128 governs neuronal excitability

and motor behavior in mice. Science 342, 1254–1258. doi: 10.1126/science.

1244193

Wagnon, J. L., Briese, M., Sun, W., Mahaffey, C. L., Curk, T., Rot, G., et al. (2012).

CELF4 regulates translation and local abundance of a vast set of mRNAs,

including genes associated with regulation of synaptic function. PLoS Genet.

8:e1003067. doi: 10.1371/journal.pgen.1003067

Watatani, Y., Ichikawa, K., Nakanishi, N., Fujimoto, M., Takeda, H.,

Kimura, N., et al. (2008). Stress-induced translation of ATF5 mRNA is

regulated by the 5′-untranslated region. J. Biol. Chem. 283, 2543–2553.

doi: 10.1074/jbc.M707781200

West, A. E., and Greenberg, M. E. (2011). Neuronal activity-regulated gene

transcription in synapse development and cognitive function. Cold Spring

Harb. Perspect. Biol. 3:a005744. doi: 10.1101/cshperspect.a005744

West, A. E., Griffith, E. C., andGreenberg,M. E. (2002). Regulation of transcription

factors by neuronal activity.Nat. Rev. Neurosci. 3, 921–931. doi: 10.1038/nrn987

Wolozin, B. (2012). Regulated protein aggregation: stress granules and

neurodegeneration.Mol. Neurodegener. 7:56. doi: 10.1186/1750-1326-7-56

Wong, N., and Wang, X. (2015). miRDB: an online resource for microRNA target

prediction and functional annotations. Nucleic Acids Res. 43, D146–D152.

doi: 10.1093/nar/gku1104

Yaman, I., Fernandez, J., Liu, H., Caprara, M., Komar, A. A., Koromilas, A. E.,

et al. (2003). The zipper model of translational control: a small upstream ORF

is the switch that controls structural remodeling of an mRNA leader. Cell 113,

519–531. doi: 10.1016/S0092-8674(03)00345-3

Yang, Y., Mahaffey, C. L., Bérubé, N., Maddatu, T. P., Cox, G. A., and Frankel,

W. N. (2007). Complex seizure disorder caused by Brunol4 deficiency in mice.

PLoS Genet. 3:e124. doi: 10.1371/journal.pgen.0030124

Yao, J., Sasaki, Y., Wen, Z., Bassell, G. J., and Zheng, J. Q. (2006). An essential role

for β-actin mRNA localization and translation in Ca2+-dependent growth cone

guidance. Nat. Neurosci. 9, 1265–1273. doi: 10.1038/nn1773

Frontiers in Molecular Neuroscience | www.frontiersin.org 15 January 2017 | Volume 10 | Article 9

https://doi.org/10.1523/JNEUROSCI.0084-14.2014
https://doi.org/10.1111/j.1535-7511.2009.01309.x
https://doi.org/10.1038/ejhg.2012.92
https://doi.org/10.1038/nprot.2012.086
https://doi.org/10.1126/science.1168978
https://doi.org/10.1016/j.cell.2011.10.002
https://doi.org/10.1126/science.1249749
https://doi.org/10.1038/nature09033
https://doi.org/10.4161/cc.10.2.14472
https://doi.org/10.3389/fgene.2015.00301
https://doi.org/10.1146/annurev.cb.08.110192.001213
https://doi.org/10.1016/S0378-1119(02)01056-9
https://doi.org/10.1016/S0896-6273(01)00508-6
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1073/pnas.1207846109
https://doi.org/10.1038/nn.2891
https://doi.org/10.1371/journal.pone.0021486
https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1038/nn.3808
https://doi.org/10.1371/journal.pone.0000242
https://doi.org/10.1038/35021052
https://doi.org/10.1042/BST20130044
https://doi.org/10.1186/s13229-015-0008-1
https://doi.org/10.1073/pnas.1416883112
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1016/j.neuron.2015.09.016
https://doi.org/10.1016/0896-6273(90)90106-P
https://doi.org/10.1016/j.cell.2009.01.042
https://doi.org/10.1038/225649a0
https://doi.org/10.1016/j.cell.2006.09.014
https://doi.org/10.1126/science.1244193
https://doi.org/10.1371/journal.pgen.1003067
https://doi.org/10.1074/jbc.M707781200
https://doi.org/10.1101/cshperspect.a005744
https://doi.org/10.1038/nrn987
https://doi.org/10.1186/1750-1326-7-56
https://doi.org/10.1093/nar/gku1104
https://doi.org/10.1016/S0092-8674(03)00345-3
https://doi.org/10.1371/journal.pgen.0030124
https://doi.org/10.1038/nn1773
http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Dalal et al. Activity Dependent Regulation of Translation

Young, S. K., and Wek, R. C. (2016). Upstream open reading frames differentially

regulate gene-specific translation in the integrated stress response. J. Biol.

Chem. 291, 16927–16935. doi: 10.1074/jbc.R116.733899

Zähringer, J., Baliga, B. S., and Munro, H. N. (1976). Novel mechanism for

translational control in regulation of ferritin synthesis by iron. Proc. Natl. Acad.

Sci. U.S.A. 73, 857–861.

Zhang, Y., Chen, K., Sloan, S. A., Bennett, M. L., Scholze, A. R., O’Keeffe,

S., et al. (2014). An RNA-sequencing transcriptome and splicing database

of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci.

Off. J. Soc. Neurosci. 34, 11929–11947. doi: 10.1523/JNEUROSCI.1860-

14.2014

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Dalal, Yang, Sapkota, Lake, O’Brien and Dougherty. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Molecular Neuroscience | www.frontiersin.org 16 January 2017 | Volume 10 | Article 9

https://doi.org/10.1074/jbc.R116.733899
https://doi.org/10.1523/JNEUROSCI.1860-14.2014
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive

	Quantitative Nucleotide Level Analysis of Regulation of Translation in Response to Depolarization of Cultured Neural Cells
	Introduction
	Materials and Methods
	Animal Research Committees
	Culture
	Immunofluorescence
	RF and RNAseq Library Construction
	Analysis of Sequence Data
	Metagene Analysis
	Linear Modeling to Predict CDS TE Change
	Comparison to miRNA and RBP Targets

	Results
	Ribosome Footprinting of Primary Cultures
	KCl Stimulation of Primary Neuron-Glia Cultures Alters Translation of Specific Coding Sequences
	UTR Sequence Mediates Changes in CDS Translation in Response to KCl Stimulation
	KCl Stimulation Alters Ribosomal Occupancy of 5'UTR
	FMRP-Bound Transcripts Are Disproportionately Downregulated by KCl Stimulation

	Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


