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Abstract

Background: It is challenging for current statistical models to predict clinical progression of Parkinson’s disease
(PD) because of the involvement of multi-domains and longitudinal data.

Methods: Past univariate longitudinal or multivariate analyses from cross-sectional trials have limited power to
predict individual outcomes or a single moment. The multivariate generalized linear mixed-effect model (GLMM)
under the Bayesian framework was proposed to study multi-domain longitudinal outcomes obtained at baseline,
18-, and 36-month. The outcomes included motor, non-motor, and postural instability scores from the MDS-UPDRS,
and demographic and standardized clinical data were utilized as covariates. The dynamic prediction was performed
for both internal and external subjects using the samples from the posterior distributions of the parameter
estimates and random effects, and also the predictive accuracy was evaluated based on the root of mean square
error (RMSE), absolute bias (AB) and the area under the receiver operating characteristic (ROC) curve.

Results: First, our prediction model identified clinical data that were differentially associated with motor, non-motor,
and postural stability scores. Second, the predictive accuracy of our model for the training data was assessed, and
improved prediction was gained in particularly for non-motor (RMSE and AB: 2.89 and 2.20) compared to univariate
analysis (RMSE and AB: 3.04 and 2.35). Third, the individual-level predictions of longitudinal trajectories for the testing
data were performed, with ~80% observed values falling within the 95% credible intervals.

Conclusions: Multivariate general mixed models hold promise to predict clinical progression of individual outcomes
in PD.

Trial registration: The data was obtained from Dr. Xuemei Huang’s NIH grant R01 NS060722, part of NINDS PD
Biomarker Program (PDBP). All data was entered within 24 h of collection to the Data Management Repository (DMR),
which is publically available (https://pdbp.ninds.nih.gov/data-management).
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Background
Parkinson’s disease (PD) is an age-related neurodegener-
ative disorder marked by dopaminergic cell loss in the
substantia nigra of the basal ganglia [1, 2]. In the US,
nearly half a million people are living with PD and the
number is expected to increase over the next decade due
to aging alone [3]. Although there are effective medical
and surgical procedures to treat the disease, it progresses
relentlessly and causes both motor and non-motor dys-
function that lead to significant disability and decreases
in quality of life [4–6].
Developing disease-modifying agents to slow, halt, or

reverse disease progression has been a focus of PD re-
search. Testing potential neuroprotective agents, how-
ever, is hindered by the heterogeneous clinical
presentation and progression of PD. A method that can
predict the longitudinal trajectories of motor and non-
motor symptoms based on information that physicians
can obtain easily in a clinical setting will be useful for: 1)
stratifying patients according to their progression speed
for clinical trials [1], which in turn increases the power
of studies; 2) consultation regarding PD prognosis in a
clinical setting. Limited work exists, however, for dy-
namic prediction in PD due to the computational chal-
lenge in multivariate set-ups [7].
In the past, mixed-effect models were used commonly

for longitudinal data analysis [8–10], however, these
were based only on univariate analyses. Extension from
a univariate to a multivariate model is straightforward
mathematically under the framework of generalized lin-
ear mixed effects models (GLMM) to accommodate dif-
ferent types of longitudinal outcomes (continuous or
discrete) by adopting different link functions (e.g., iden-
tity, logit, or log) [10, 11]. Multivariate GLMM can be
fitted for inference simultaneously, incorporating not
only the correlation of repeated measures for each out-
come within a subject, but also the association of mul-
tiple outcomes by utilizing the random effects. This
method, however, has limited application for clinical
data analysis, particularly in Parkinson’s disease for dis-
ease progression prediction. Although the extension is
relatively easy, the main practical issue is not trivial and
there are several complex layers for the computation
due to the numerical integration with respect to the ran-
dom effects and the increasing dimensionality of param-
eters involved as more longitudinal outcomes are
considered ([7, 12]). Several strategies have been pro-
posed to reduce this burden. For instance, a Bayesian
technique based on the Markov Chain Monte Carlo
(MCMC) algorithm was applied for parameter estima-
tion and inference instead of the likelihood approach
due to its flexibility [13, 14]. In addition, literature exists
regarding proposals for reducing the dimensionality of
parameters by considering the realization of a single

latent process, which is continuous (called a “latent
trait”) and represents the unobserved disease severity
score that combines information from multivariate lon-
gitudinal outcomes [15], and this work has been ex-
tended to joint modeling of multivariate longitudinal
data and time-to-event outcomes [7]. The limitation of
these studies, however, is that the association structure
among multiple outcomes is restricted since only a sin-
gle set of random effects accounts for the interrelation-
ships between them. In addition, some work based on
machine learning approaches (i.e., principle component
analysis) has emerged for longitudinal data analysis, but
has not yet been generalized to multivariate settings with
mixed types [12]. Recently, Komárek and Komárková
[18] conducted a data-driven clustering analysis based
on multivariate continuous and discrete longitudinal
data under the Bayesian framework and developed an R
package “mixAK” for public usage. To implement multi-
variate GLMM in predicting chronic disease progression,
we adopted this package for analysis because of the reli-
able and efficient computing performance compared to
alternative computing packages/software [16, 17].
To ensure our method applicable to a real clinical set-

ting, we obtained clinical data (Common Data Elements)
longitudinally from PD subjects recruited from a tertiary
movement disorders clinic [18]. First, we defined three
outcome measures for our study: motor, non-motor, and
postural instability scores. Second, we established a
multivariate GLMM for prediction based on demo-
graphic and standardized clinical data. Third, we evalu-
ated our model’s predictive accuracy and further
compared its performance with univariate analyses.
Lastly, the individual-level prediction of longitudinal tra-
jectories for multiple outcomes was performed. Of note,
the prediction of outcomes and their trajectories has not
been investigated rigorously to date. These types of ana-
lyses may lead to a better understanding of PD hetero-
geneity and progression. The subjects enrolled in the
study were relatively early in their disease (<10 years
since their diagnosis), making them an effective cohort
for identifying factors that may be amenable to early, ef-
fective treatments that may improve clinical manage-
ment for PD patients. In addition, this work can
interrogate questions that are clinically and transnation-
ally important, particularly predicting clinical progres-
sion for individual patients.

Methods
Clinical and demographic data for PD longitudinal study
A PD cohort with sample size of 76 was followed longi-
tudinally and completed comprehensive study visits at
baseline, 18-, and 36-months (Huang R01 NS060722)
[19]. PD patients were from a tertiary movement disor-
ders clinic and were free of major or acute medical
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issues other than PD. The diagnosis of PD was made by
movement disorder specialists according to published
criteria [20, 21]. Multi-domain clinical scales were ob-
tained at each visit, including the Movement Disorders
Society Unified PD Rating Scale (MDS-UPDRS) I-II,
Hamilton Depression Rating Scale (HAMD) measuring
depression, the Montreal Cognitive Assessment (MoCA)
measuring global cognitive function, and the Hoehn and
Yahr (HY) Scale. Levodopa equivalent daily dose (LEDD)
reflecting dopaminergic drug usage was calculated at
each study visit based on published conversion factors
[22], and duration of illness (DOI) was defined as the
time since PD diagnosis by a medical professional [18].
Besides these clinical measures, important demographic
information also was collected at the baseline visit for
confounding adjustment. This was a retrospective study,
and no power analysis was performed.

Coding data and defining outcomes for PD longitudinal
study
First, the predictor variables including time (months)
since baseline visit, age at baseline (years), gender
(1 = Male; 0 = Female), education (years), DOI (years),
HAMD, MoCA, and LEDD were included to build up a
prediction model after controlling for medication quan-
tified by LEDD. Of note is that one point was added to
the MoCA raw score if the subject’s education was less
than 13 years, and HAMD and LEDD were standardized
before analysis [23].
We considered three major clinical outcomes: 1) the

MDS-UPDRS-II score that quantified motor aspects of
daily living activities using a 5-point scale (0–4). The
total sum score from 13 items was treated as a continu-
ous variable with integer scores ranging from 0 (normal)
to 52 (the most severe); 2) MDS-UPDRS-I that quanti-
fied non-motor aspects of daily living activities. This also
was treated as a continuous variable and used the same
scale and range of scores as the MDS-UPDRS-II; 3) im-
balance, which is known to mark an important func-
tional disability regarding balance and walking. This was
a binary outcome with a value of 1 if the HY scale or
item 2.12 from the MDS-UPDRS-II (issues with walking
and balance) was > = 3, otherwise the term was scored
0. The reason we chose the MDS-UPDRS-I and II
subscales as outcome measures is that they are less
rater- and drug-state dependent. In particular, the
MDS-UPDRS-II was used to assess PD motor symp-
toms unlike other studies that focused on the MDS-
UPDRS-III because of the recent finding that MDS-
UPDRS-II was a better predictor for quality of life
than the traditional MDS-UPDRS-III motor scale, which
depends heavily on the timing of the exam, the medication
status of the subject (“on,” “off,” or “transitional”), and the
rater [24].

Statistical methods
Demographic information was summarized using the
mean ± SD for continuous variables and the frequency
for categorical variables. The normality assumption was
investigated for continuous variables (i.e., MDS-UPDRS-
I or II) based on graphical checking (e.g., histogram,
QQ-plot) and the Anderson-Darling (AD) test. The p-
values for repeated measures comparisons were obtained
from mixed-effect models with random intercepts and a
significance level of 0.05.
We randomly split the complete dataset into two sets,

the training data and the testing data. Joint modeling of
multivariate longitudinal scales was performed using
multivariate GLMM because of two main advantages: 1)
both continuous and discrete types of outcomes can be
analyzed jointly and simultaneously; 2) the correlation
among repeated measures and multiple response out-
comes can be incorporated into the model. The param-
eter estimation and inference were obtained from the
Bayesian approach by utilizing the package “mixAK” in
R software [17]. Then, the individual-level prediction of
longitudinal trajectories for each outcome was per-
formed. Note that the prediction methods within the
training and testing dataset were different. The details of
the statistical model and inference are shown next.
Let Dtrain and Dtest denote a training dataset with sam-

ple size N and a testing dataset with sample size N∗,
where N may or may not be equal to N∗and the two
datasets are independent of each other. Dtrain is used to
build the prediction model and Dtest is used to evaluate
the prediction for new subjects. For observation i in
Dtrain,we denote Yikj as the jth measure of the kth type of
scale for the ith subject at time point tij, which could be
continuous or discrete, i = 1 , 2 , ⋯N ; k = 1 , 2 , ⋯ K ; j =
1 , 2 , ⋯ ni. Given Yikj following a distribution from the
exponential family with the dispersion parameter ϕk, we
have the following mean model

g EðY ikjjX ikj;Zikj; γ ik

� �Þ ¼ XT
ikjβk þ ZT

ikjγ ik

where Xikj is the p-dimentional covariate for fixed ef-
fects with βk as the associated p × 1 vector of parame-
ters, Zikj is the q-dimentional covariate for random
effects with γik as the associated q × 1 vector of pa-
rameters, g is a monotone link function depending on
the type of outcomes (e.g., identity function for con-
tinuous outcomes, logit function for binary outcomes,
and log function for count outcomes), and the random
effects γ i ¼ γT

i1; γ
T
i2;⋯γT

iK

� �TeMVN μ;Σð Þ . Note that Σ
not only takes into account the correlation of repeated
measures of each outcome, but also incorporates the
association between multiple outcomes. In addition,
this is a hierarchically centered GLMM [25], thus Xikj and
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Zikj may not contain the same variables due to the iden-
tifiability problem. Of note, Yi ⊥ Yj , γi ⊥ γj for i ≠ j and
given γik,the random variables Y ik1;Y ik2;⋯Y ikni are inde-
pendent of each other for the ith subject. Given that the
parameter vector is Θ ¼ βTk ;μ;Σ;ϕk

� �K

k¼1 , the likelihood
is shown as below

L Θ;Y;X;Zð Þ ¼
YN
i¼1

Z YK
k¼1

Yni
j¼1

f ðY ikjjβk ;ϕk ; γ ikÞf γ ijμ;Σð Þdγ i

Here, we utilize the Bayesian approach based on
MCMC for parameter estimation, inference, and predic-
tion. The vague priors are used for all elements in Θ,
and M (i.e., M = 2000 after burn in) posterior samples
are obtained for the parameters and random effects de-

noted by Θ mð Þ; γ mð Þ
ik ;m ¼ 1; 2;⋯M

n o
: The procedures

for prediction are performed as follows:

I. Internal prediction for PD subjects using the
training dataset

For the lth PD subject in the training set Dtrain (l = 1,
2,⋯N), we aim to predict the measures at a future time
point t′ given the outcome history Yl t′ð Þ ¼
Y lkj; 0 ≤ tij < t′

� �
and the covariate history X l t′ð Þ ¼

{Xlkj , Zlkj , 0 ≤ tij ≤ t′}. The prediction can be achieved by
plugging in the estimates of the parameters and random
effects from the posterior samples. For a continuous out-
come, the predicted value based on the mth posterior
sample is

Y mð Þ
lk t

0
� �

¼ XT
ik t

0
� �

β mð Þ
k þ ZT

ik t
0

� �
γ mð Þ
ik þ ε mð Þ

ik t
0

� �

where ε mð Þ
ik t′ð ÞeN 0; σ2 mð Þ

ε

� �
. Thus, the predicted estimate

is shown as below

Ŷ ik t
0

� �
¼ 1

M

XM

m¼1
Y mð Þ

lk t
0

� �

Similar procedures can be followed for the other types
of outcomes.

II. External prediction of PD subjects using the testing
dataset

For the lth new PD subject in the testing data-
set Dtest (l = 1, 2,⋯N∗), we also aim to predict the
measures at a future time point t′ given the outcome
history Yl t′ð Þ and the covariate history X l t′ð Þ defined
the same as above, and the expectation can be calcu-
lated with respect to the posterior distribution of the

parameters f(Θ|Dtrain). The key issue is to obtain the
estimate of random effects [26] as shown below

f γ ljYl t
0

� �
;Θ

� �
∝f Yl t

0
� �

jγ l;Θ
� �

f γ ljΘð Þ

The sample of random effects can be drawn from the
above posterior distribution after replacing Θ by Θ(m),

denoted by γ mð Þ
l for m = 1 , 2 , ⋯M. The procedures to

obtain the predictive measure Ŷ ik t′ð Þwill be the same as
above.
In addition, univariate longitudinal analyses were con-

ducted with a different specification in Σ, where the cor-
relation among outcomes was assumed to be 0.
Finally, we evaluated the predictive accuracy for con-

tinuous outcomes by using the statistical criteria, the
root mean square error (RMSE) and the absolute bias
(AB), with less values indicating better goodness-of-fit
[27, 28] and defined by

RMSEk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Pni
j¼1 Y ikj − EðY ikjjX ikj;ZlkjÞ

	 
2
PN

i¼1ni

vuut

ABk ¼
PN

i¼1

Pni
j¼1∣Y ikj − EðY ikjjX ikj;ZlkjÞ∣PN

i¼1ni

where N is the sample size, and ni is the number of re-
peated observations for the ith subject. With regards to
binary outcomes, we evaluated the predictive accuracy
by assessing the discrimination ability using the receiver
operating characteristic (ROC) curve with varied thresh-
old on the predictive probabilities. The area under the
curve (AUC) can be calculated, and the comparison be-
tween the AUCs can be tested based on the DeLong’s
method [29].

Results
Multivariate GLMM under Bayesian framework for PD
longitudinal study
To evaluate the prediction ability for internal (existing)
and external (new) subjects, we randomly selected the ma-
jority of PD patients (N = 70) as the training data to de-
velop the prediction model and avoid convergence issues,
and the remaining PD patients (N = 6) as the testing data
due to the relatively small overall sample size. Provided
that three outcomes for the ith subject at the jth time
visit, MDS-UPDRS-II (denoted by Yi1j), MDS-UPDRS-I
(denoted by Yi2j), and imbalance status (denoted by
Yi3j), the multiva:

E Y i1j; jγ i1
� � ¼ β10 þ β11timeþ β12Agebaseline

þ β13Gender þ β14Education
þ β15DOI þ β16HAMDþ β17MoCA
þ β18LEDDþ γ i1
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E Y i2j; jγ i2
� � ¼ β20 þ β21timeþ β22Agebaseline

þ β23Gender þ β24Education
þ β25DOI þ β26HAMDþ β27MoCA
þ β28LEDDþ γ i2

logit Pr Y i3j ¼ 1jγ i3
� �� � ¼ β30 þ β31timeþ β32Agebaseline

þβ33Gender þ β34Education

þβ35DOI þ β36HAMD

þβ37MoCAþ β38LEDDþ γ i3

where only random intercepts were considered and the
mechanism of missing at random is assumed. We ran
the MCMC algorithm for 4000 burn-in and 2000 subse-
quent iterations with 1:10 thinning to get samples from
the joint posterior distribution (two sampled chains with
different sets of initial values using the function
“GLMM_MCMC”). Under default options in the R pack-
age of “mixAK,” the shift vector and the scale matrix
were pre-specified. The prior distributions for the
shifted-scaled means and the β parameters were normal
distributions, the inverse of the covariance matrix
followed a Wishart distribution, and the dispersion par-
ameter ϕ was a gamma distribution, which are non-
informative.

Baseline and longitudinal demographic and clinical data
The summary results for all PD subjects are provided in
Table 1. For the overall PD cohort, the mean ± SD for
age at baseline and education years were 63.2 ± 8.4 and
14.9 ± 2.7 years, respectively. Subjects were 61.8% male,
although only 57.4% of the males remained at the 36-
month follow-up visit. There was less attrition for fe-
males, whose rate of return at the 36-month visit was
86.2%. At baseline, the mean ± SD disease duration was
5.1 ± 5.5 years (range 0.1–25.3 years). Two subjects had
missing values for item 2.12 on the MDS-UPDRS-I

subscale at baseline. Of the remaining 74 subjects, 4 had
balance problems at baseline (item 2.12 ≥ 3), 5 had bal-
ance problems at the 18-month visit, and 7 did at the
36-month visit. There was a significant trend for MoCA
scores to decrease (p-values = 0.03), along with a signifi-
cant increase in LEDD values (p-value < 0.001), over the
36-month study period. The MDS-UPDRS-I and II
scores were not significantly different at the three study
visits. Imbalance, however, had a significant trend of im-
provement over time, with the highest rate at the 18-
month visit that then decreased at the 36-month visit,
possibly due to informative dropouts (e.g., people who
have balance issues may have a harder time continuing
in the study) or inaccuracy of coding (see more discus-
sion in the limitation section). The subject-level trajec-
tories of the MDS-UPDRS-I and II (treated as
continuous variables), and the percentages of imbalance
over time (binary variable), were shown in Fig. 1. The
normality assumptions were satisfied with p-
values = 0.07 for MDS-UPDRS-I and 0.18 for MDS-
UPDRS-II based on the AD tests. Of note is that there
was substantial heterogeneity across PD subjects and
thus mixed-effect models with subject-level random ef-
fects (e.g., a random intercept) were adopted for model
fitting.

Impact of demographic and clinical data on outcome
measures
The estimation results were summarized by the median
and 95% credible intervals from the posterior distribu-
tion based on the multivariate GLMM under the
Bayesian framework, which are shown in Table 2. The
HAMD and DOI were associated positively with the
MDS-UPDRS-II motor scores of daily living, whereas
MoCA scores were associated negatively. Higher HAMD
scores were associated positively with MDS-UPDRS-I,
but education was associated negatively with this out-
come measure of the non-motor aspects of daily living.
Also, there was a significant temporal trend for the risk
of imbalance that was consistent with the initial analysis
of the data (Table 1). MoCA scores also were associated
significantly and negatively with imbalance. Higher
LEDD values appeared to significantly improve imbal-
ance but did not affect MDS-UPDRS-I or II subscale
scores. Interestingly, there also was a gender difference
regarding imbalance, where male subjects were less
likely to have imbalance problems. We also investigated
the associations between MoCA and various factors in-
cluding age at baseline, education, gender, DOI, HAMD,
and LEDD based on a linear mixed-effect model and
found no significant effects except for age at baseline
and gender. This implies that the significant effect of
MoCA on the outcome measures was not due to collin-
earity or confounding issues from the other factors (i.e.,

Table 1 Data summary for PD subjects across time. Note that
the p-values for repeated measures were obtained from the
mixed-effect models with random intercepts

Baseline
(N = 76)

18-month
(N = 65)

36-month
(N = 52)

P-value

Age at baseline (years) 63.2 ± 8.4 NA NA NA

Education (years) 14.9 ± 2.7 NA NA NA

Gender, Male: Female 47:29 NA NA NA

DOI (years) 5.1 ± 5.5 NA NA NA

HAMD 7.7 ± 4.6 7.4 ± 4.5 6.8 ± 6.4 0.35

MoCA 24.9 ± 3.6 24.7 ± 4.2 24.3 ± 4.1 0.03

LEDD 608 ± 465 823 ± 547 917 ± 578 <0.001

H&Y Scale, 0:1:2:3:4:5 2:29:33:12:0:0 0:14:29:14:5:1 2:7:34:8:1:0 0.66

MDS-UPDRS

Part I 10.9 ± 7.7 10.2 ± 7.0 10.2 ± 8.1 0.56

Part II 9.0 ± 7.5 9.4 ± 7.6 9.0 ± 8.1 0.27
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education, gender, DOI, HAMD, and LEDD). Using the
multivariate GLMM method, the correlation estimate
between the MDS-UPDRS-II and I was 0.55, which
seemed smaller than the empirical estimate of 0.66 re-
ported by He et al. [11], and this could be due to the fact
that we adjusted for potential confounding variables in
our current model, whereas He et al. did not.

Prediction accuracy of the GLMM and comparison with
univariate models
The predictive accuracy, RMSE and AB, were 2.01 and
1.53 for the MDS-UPDRS-II and 2.89 and 2.20 for the
MDS-UPDRS-I, respectively, and also ROC-AUC was
0.992 for the imbalance outcome, using the GLMM
under the Bayesian framework. For comparison, similar
strategies were applied for the data but assuming zero
correlations among three types of outcomes, and the
RMSE and AB for the MDS-UPDRS-II were 1.98 and
1.52, and 3.04 and 2.35 for the MDS-UPDRS-I, and also
ROC-AUC was 0.996 (p = 0.29). It showed that the
multivariate GLMM had improved performance in pre-
diction particularly for MDS-UPDRS-I compared to uni-
variate models; however, a larger trial or cohort study is
needed for further validation.

Individual-level predictions based on the multivariate
GLMM
Lastly, we conducted subject-level predictions based on
our multivariate GLMM for the testing data that in-
cluded 6 subjects. We conducted prediction of each
measure for each subject at the 18-month and 36-month
visits shown in Fig. 2, and the majority (~80%) of the
95% credible intervals included the true observed values.
Table 3 shows the results for one PD subject randomly
selected from the testing cohort including the prediction
at 18- and 36-month visits using only baseline data, and
also at the 36-month visit alone by incorporating both
baseline and18-month data. As expected, the inclusion
of additional information (e.g., both the baseline and 18-
month visits) improved the prediction (less bias) and de-
creased the 95% credible intervals.

Discussion
Similar to many chronic diseases, PD presents with het-
erogeneous symptoms that may coexist and progress at
different rates. Thus, identifying factors to predict dis-
ease progression in multiple domains for this population
is challenging due to the limited number of longitudinal
studies using uniform data collection procedures and
few advanced statistical approaches. In the current study,

Fig. 1 Plots for PD subjects on the three outcome measures over time. For the spaghetti plots of MDS-UPDRS subscales I (a) and II (b),
each solid line in red represents each PD subject and the dots show the measurement at each visit. For the Box plots of imbalance (c),
each column corresponds to each visit, and the two areas (white and red) within each of the columns correspond to the proportion of
the corresponding imbalance categories (Yes/No)
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we sought to identify critical factors associated with PD
progression while accounting for the heterogeneous and
longitudinal nature of motor and non-motor symptoms
by using NIH Common Data Elements (Table 1) devel-
oped for PD research. We then adopted a joint multi-
variate GLMM to establish a prediction model for
assessing the longitudinal progression of motor and
non-motor aspects of daily living activities and balance.

The present results demonstrated that the HAMD
and DOI significantly impacted MDS-UPDRS-II sub-
scale scores, with higher HAMD scores and increased
DOI leading to higher MDS-UPDRS-II scores. MoCA
had a significant negative effect on this outcome
measure, indicating that deteriorating cognitive func-
tion resulted in increased difficulties with motor as-
pects of daily living activities. The HAMD and
education significantly affected MDS-UPDRS-I sub-
scale scores such that subjects with more severe de-
pression and less education were more likely to
report increased difficulties with non-motor aspects of
daily living activities. The current findings make intui-
tive sense in a clinical setting and are consistent with
previous literature reporting that disease duration,
severe depressive symptoms, and cognitive impair-
ment negatively impact PD patients overall ([30–33]).
For example, depression previously was reported as a
significant predictor of non-motor aspects of daily living
activities [32]. In addition, DOI was a significant predictor
of motor aspects of daily living activities (i.e., MDS-
UPDRS-II) [31].
The negative association of total MoCA scores not

only with motor symptoms (MDS-UPDRS-II) but also
imbalance is intriguing. In the past, cognitive functions
(performance on frontal-executive tasks or global cogni-
tive functions assessed by total MMSE or MoCA scores)
were reported to be correlated with symptoms assessed
by MDS-UPDRS total scores or sub-scores (i.e., bradyki-
nesia or postural instability) ([33–36]). These past stud-
ies, however, were based mainly on simple correlation
analyses using cross-sectional data with limited variables
of interest. The current finding of a significant associ-
ation between global cognitive function and MDS-
UPDRS-II and imbalance using longitudinal multivariate
modeling confirms the importance of cognitive ability in
quality of life and clinically-important outcomes. Most
importantly, the differential contribution of the common
clinical variables (DOI, depression, and MoCA) on
MDS-UPDRS-II and I provides a foundation for models
to predict the individual trajectory of motor and/or non-
motor symptoms.
In our study, we established a prediction model of PD

progression based on multivariate longitudinal outcomes
by considering important demographic and clinical risk
factors, and conducted both internal (the training data-
set) and external (the testing dataset) predictions for
evaluation. As shown in Fig. 2 and Table 3, the model
led to a well-accepted prediction for external individual
patients with the majority (~80%) of predictive credible
intervals including the observed values. In addition, the
bias for prediction of the MDS-UPDRS-II is small; how-
ever, the prediction bias at the 36-month visit for the
MDS-UPDRS-I is relatively large but tends to get

Table 2 Results from the multivariate generalized linear mixed
modeling under the Bayesian framework. The data represent
the median and 95% credible intervals for the outcome
measures MDS-UPDRS-II, MDS-UPDRS-I, and Imbalance

Median 2.50% 97.50%

MDS-UPDRS-II (motor)

Intercept 13.522 0.076 25.197

Time −0.042 −0.095 0.011

Age at Baseline 0.035 −0.147 0.211

Education −0.108 −0.604 0.419

Gender (=Male) 0.805 −2.381 3.904

DOI* 0.549 0.169 0.919

HAMD* 0.283 0.087 0.492

MoCA* −0.320 −0.584 −0.052

LEDD 1.066 −0.570 2.612

MDS-UPDRS-I (non-motor)

Intercept 26.351 10.126 38.947

Time −0.016 −0.075 0.046

Age at Baseline 0.075 −0.098 0.250

Education* −0.575 −1.075 −0.107

Gender (=Male) −1.925 −5.203 1.036

DOI 0.037 −0.306 0.397

HAMD* 0.439 0.217 0.693

MoCA −0.311 −0.609 0.008

LEDD 0.360 −1.250 1.993

Imbalance

Intercept 6.096 −6.903 23.289

Time* −0.109 −0.579 −0.001

Age at Baseline 0.181 −0.021 0.853

Education −0.148 −1.184 0.823

Gender (=Male)* −4.657 −21.182 −0.790

DOI 0.312 −0.027 2.233

HAMD 0.023 −0.302 0.541

MoCA* −0.589 −2.336 −0.164

LEDD* 2.827 0.675 11.893

Abbreviations: MDS-UPDRS the Movement Disorder Society-sponsored Unified
Parkinson’s Disease Rating Scale, DOI duration of illness, HAMD Hamilton
Depression Rating Scale, MoCA the Montreal Cognitive Assessment, LEDD
Levodopa equivalent daily dose
*95% credible interval does not include 0, indicating the signifiance
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smaller when more information is incorporated (i.e., a
combination of the baseline and 18-month data). It is in-
teresting to note that the variability for the MDS-
UPDRS-I is larger than that for the MDS-UPDRS-II (i.e.,
the mean of individual-level standard deviations for
MDS-UPDRS-I and II: 3.61 and 2.78) since the MDS-
UPDRS-I is a composite score of multiple non-motor
symptoms that are more subjective. The current ap-
proach introducing a Bayesian framework gains more
power for prediction by incorporating the correlations
not only among repeated measures, but also among
multiple outcomes. Demonstrating the ability of our
model to predict these outcomes simultaneously is a
novel finding. Compared to univariate longitudinal ana-
lysis, our method achieved non-inferior predictive accur-
acy. In particular, borrowing information from motor
symptoms and imbalance can improve the prediction of
non-motor symptom progression from using only a sub-
ject’s own history/observed data.
This work has several limitations: 1) at the time of the

current data analysis, the data collection time period
was up to 36-months and included only three visits,
which may have contributed to the lack of a clear, sig-
nificant, temporal trend for clinical progression. A longi-
tudinal cohort with well-characterized clinical features
and measures of progression over a longer follow-up
time-frame is important for us to build a prediction

Fig. 2 Plots for precition results for all subjects in the testing data. The above two figures (a) are for the prediction of 18-month and 36-month
mesuares based on baseline data only; the bottom two figures (b) are for the prediction of 36-month measures based on both of baseline and
18-month data

Table 3 The prediction results for one PD subject. Test data
represent the predicted values for the outcome variables, with
95% credible intervals in parentheses

18-month 36-month

MDS-UPDRS-II (motor)

True value from subject 24 25

Based on Baselinea 25.53 (20.08, 30.9) 27.63 (22.30, 33.10)

Based on Baseline and
18-monthb

27.17 (23.18, 31.17)

MDS-UPDRS-I (non-motor)

True value from subject 25 33

Based on Baselinea 23.14 (17.47, 28.75) 25.86 (20.04, 31.76)

Based on Baseline and
18-monthb

26.16 (21.32, 30.95)

Imbalance

True value 1 0

Based on Baselinea 1.00 (0.52, 1.00) 1.00 (0.35, 1.00)

Based on Baseline and
18-monthb

1.00 (0.34, 1.00)

a Each prediction for the 36-month outcome measure was based on baseline
data alone
b a combination of the baseline and 18-month data
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model that will increase in accuracy. 2) The drop out
rate was >20% from baseline to the 36-month visit, and
preferentially male. The differential drop out may influ-
ence our results and ability to predict individual out-
comes. In addition, although postural instability is a
major clinical feature, our outcome measurement con-
sisted only of very limited information from a single
source (MDS-UPDRS-II, item 2.12). This limitation may
contribute to the insensible finding of “improved bal-
ance” over time, and low prediction accuracy in this do-
main. 3) Identifying the baseline risk factors that can
predict PD progression continues to be a work in pro-
gress. For the current study, we used some of the fea-
tures collected under the NIH CDE for PD. Future
models should integrate new information as state-of-
the-art biomarker discoveries yield more information
(e.g., from fluid and imaging research). 4) The linear
temporal trend commonly is considered for the current
analysis (see the fitted models above), but this would be
less plausible in practice. A flexible strategy can be ap-
plied to relax it by adopting a spline regression in a
semi-parametric framework but at the expense of more
computation load.

Conclusions
In the current study, we applied multivariate generalized
linear mixed effect models that incorporated not only
the correlation among repeated measurements but also
the correlations among multiple outcome variables to
predict disease progression. This is the first study to
conduct a prediction study of PD progression by consid-
ering multiple, longitudinal, and clinically meaningful
outcomes (i.e., MDS-UPDRS subscales II, I, and imbal-
ance). Using the real clinical data collected via NIH
CDEs, the predictive accuracy of joint multivariate mod-
eling was evaluated and compared to univariate model-
ing. The non-inferiority of the joint multivariate
modeling with regards to bias and RMSE compared to
univariate modeling demonstrated the promise of the
proposed model for predicting PD progression in a clin-
ical setting and/or for subject selection into clinical
trials.
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