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Background. Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers, but in clinical practice, the
lack of precise biomarkers often results in an advanced diagnosis. Hence, it is crucial to explore novel biomarkers to improve the
clinical outcome of HNSCC patients. Methods. We downloaded RNA-seq data consisting of 502 HNSCC tissues and 44 normal
tissues from the TCGA database, and lncRNA genomic sequence information was downloaded from the GENECODE database
for annotating lncRNA expression profiles. We used Cox regression analysis to screen prognostic lncRNAs, the threshold as HR
>1 and p value <0.05. Subsequently, three survival outcomes (overall survival, progress-free interval, and disease-specific
survival)-related lncRNAs overlapped to get the common lncRNAs. (e hub biomarker was identified using LASSO and random
forest models. Subsequently, we used a variety of statistical methods to validate the prognostic ability of the hub marker. In
addition, Spearman correlation analysis between the hub marker expression and genomic heterogeneity was conducted, such as
instability (MSI), homologous recombination deficiency (HRD), and tumor mutational burden (TMB). Finally, we used en-
richment analysis, ssGSEA, and ESTIMATE algorithms to explore the changes in the underlying immune-related pathway and
function. Finally, the MTTassay and transwell assay were performed to determine the effect of LINC01615 silencing on tumor cell
proliferation, invasion, and migration. Results. Cox regression analysis revealed 133 lncRNAs with multiple prognostic sig-
nificance. (e machine learning algorithm screened out the hub lncRNA with the highest importance in the RF model:
LINC01615. Clinical correlation analysis revealed that the LINC01615 increased with increasing the T stage, N stage, pathology
grade, and clinical stage. LINC01615 could be used as a predictor of HNSCC prognosis validating by a variety of statistical
methods. Subsequently, when clinical indicators were combined with the LINC01615 expression, the visualization model
(nomogram) was more applicable to clinical practice. Finally, immune algorithms indicated that LINC01615 may be involved in
the regulation of lymphocyte recruitment and immunological infiltration in HNSCC, and the LINC01615 expression represented
genomic heterogeneity in pan-cancer. Functionally, silencing of LINC01615 suppresses cell proliferation, invasion, and migration
in HEP-2 and TU212 cells. Conclusion. LINC01615 may play an important role in the prostromal cell enrichment and im-
munosuppressive state and serve as a prognostic biomarker in HNSCC.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) can
occur in different tissues and organs (oral cavity, oro-
pharynx, and larynx regions) [1], and the illness ranks sixth
in global incidence according to the recent cancer statistics
report [2]. Although several clinical trials have shown that
combining different treatment modalities, such as surgery,

radiation, and chemotherapy, can significantly reduce the
mortality and improve the life quality of HNSCC patients
[3], the situation remains dire. (e 5-year overall survival
rate of HNSCC is about 50% [4], but in clinical practice, the
lack of precise biomarkers often results in an advanced
diagnosis. Hence, it is crucial to explore novel and effective
treatment strategies to improve the clinical outcome of
HNSCC.
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Based on the protein coding ability, RNA can be clas-
sified into the coding RNA and the noncoding RNA
(ncRNA). Long noncoding RNA (lncRNA) with a length of
more than 200 nucleotides (nt) is a significant component of
the ncRNA. lncRNA was initially thought to be “tran-
scriptional noise” [5], but subsequent research has shown
that lncRNA is often engaged in transcriptional, posttran-
scriptional, and epigenetic regulation [6–8]. In contrast to
the complicated roles of the mRNA and protein, the stable
character of lncRNAs represents that they may be more
easily accessible as a prognostic indication [9]. Feng et al.
found that iron metabolism-associated lncRNAs can be used
for postoperative assessment of ovarian cancer (OC) patients
and can effectively stratify risk [10]. Zheng et al. revealed that
LINC01134 can interact with miR-4784 to inhibit the
production of structure-specific recognition protein 1
(SSRP1) [11], consequently boosting hepatocellular carci-
noma (HCC) development. In addition to solid tumors,
lncRNAs have also been implicated in the development of
hematologic tumors; in acute myeloid leukemia (AML),
SATB1-AS1 is involved in the process of chemotherapy
tolerance. In HNSCC, HOTAIR is overexpressed and reg-
ulates PTEN methylation involved in tumor development
[12]. Numerous recent reviews detailed the biological sig-
nificance of lncRNAs and indicated that lncRNAs may
emerge as a potential therapeutic option for HNSCC in the
future [13, 14]. Recently, some lncRNAs have been reported
to be differentially expressed in HNSCC. (e lncRNA ex-
pression varies significantly across tumors,tissues, as well as
between the clinical or pathology stage. Cao et al. identified a
prognostic lncRNA signature by the least absolute shrinkage
and selection operator (LASSO) regression analysis [15],
however, they did not validate the abovementioned signa-
ture in the external dataset. (erefore, lncRNA is a potential
marker for diagnosis and prognosis compared to other
clinicopathological features.

Machine learning is a branch of artificial intelligence that
is used to do classification, regression, clustering, and ca-
nonical modeling [16]. Machine learning is a method for
choosing the best model from a collection of alternatives that
best fits a set of observations [17]. Relying on this approach,
Feng et al. performed machine learning model building,
such as Random forest (RF), to identify the hypoxic land-
scape within ovarian cancer tissues in conjunction with
radiogenomics data [18]. Although a large number of pre-
vious studies have reported the association of lncRNAs with
the pathogenesis and prognosis of HNSCC, no unique hub
biomarkers have been identified and compounded using
machine learning based on public datasets.

In this study, we hypothesized that there are lncRNA
expression patterns that are strongly linked with HNSCC
prognosis, which are attractive for therapeutic application. A
comprehensive analysis of lncRNA expression profiles of the
TCGA-HNSCC cohort with clinical information was per-
formed to investigate the prognostic value of each lncRNA.
Finally, we identified the hub marker, LINC01615, based on
overall survival (OS), progress-free interval (PFI), and dis-
ease-specific survival (DSS) data, using LASSO and RF
methods. (e prognostic value, clinicopathological

relevance, potential biological function, somatic mutations,
and immune infiltration of LINC01615 at the pan-cancer
level, especially in HNSCC, were explored in depth. Func-
tionally, we validated that LINC01615 plays a pivotal role in
head and neck squamous cell carcinoma cell proliferation,
invasion, and migration.

2. Materials and Methods

2.1. Datasets and Preprocessing. We downloaded RNA-seq
data consisting of 502 HNSCC tissues and 44 normal tissues
from the TCGA database [19] (April 22, 2022; https://
cancergenome.nih.gov/), normalized using the log(x+ 1)
method and converted it to the TPM format. (e latest
version of lncRNA genomic sequence information (April 22,
2022) was downloaded from the GENECODE database [20]
to annotate lncRNA expression profiles in the TCGA-
HNSCC cohort. (e TCGA database was used to acquire
clinical and survival data on HNSCC patients. Clinical in-
formation such as survival status (OS, PFI, and DSS), age,
gender, pathological stage, and tumor grade was combined
with RNA-seq ID. (e expression and clinical data for
LINC01615 (ENSG00000223485) were retrieved from the
UCSC Xena database [21] (https://xenabrowser.net/
datapages/) utilizing TCGA pan-cancer data. Pan-cancer
abbreviations are included in supplementary Table S1.
According to the publishing standards of TCGA, datasets are
freely used for publication.

2.2. LASSO and Random Forest Model for Screening
Biomarkers. Random forest (RF) created a huge number of
decision trees using random subsamples of the training set
and randomly altering the decision trees’ attributes [22].(e
RF model enables nonlinear effects to be modeled. Because
the RF model is composed of several decision tree models, it
is difficult to comprehend. (e RF method is an appropriate
integrated learning algorithm and machine learning tech-
nique because it has changing independent circumstances
and a greater level of accuracy and sensitivity [23]. Another
relevant prediction model for our research data is LASSO
regression. By designing a penalty function, it is possible to
compress the coefficients of the variables and so resolve the
issue of overfitting the regression model. (e minimal ab-
solute shrinkage and selection operator is a regression
method that is used to select and regularize variables in order
to increase the predicted accuracy and interpretability of the
statistical models it generates [24]. In our study, we used Cox
regression to screen out prognostic biomarkers, the
threshold as HR >1 and p value <0.05. Subsequently, the
three surviving outcome-related lncRNAs overlapped to get
the common lncRNAs.

2.3. Enrichment Analysis. (e TCGA-HNSCC cohort was
divided into high and low expression groups based on the
median value of the LINC01615 expression, and differen-
tially expressed genes (DEGs) were computed using p values
less than 0.05 and logFC values larger than 2 as the criteria in
the “limma” package. Subsequently, we conducted Gene
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Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses [25] using the the “clusterPro-
filer” package [26] (p value� 0.05, q value� 0.05). Gene set
enrichment analysis (GSEA) was also carried out using the
“clusterProfiler” package (nPerm� 1000, minGSSize� 10,
maxGSSize� 1000, and p value� 0.05).

2.4. Immune Cell Infiltration. (e ssGSEA and ESTIMATE
algorithms were used to estimate immune cell infiltration
scores in the TCGA-HNSCC cohort [27]. To examine the
amount of immune cell infiltration, the whole sample was
separated into two groups based on the median LINC01615
expression, and the correlation between LINC01615 and
different immunological scores was determined using
spearman analysis.

2.5. Nomogram and Predictive Performance Evaluation.
Cox regression analysis, both univariate and multivariate,
was conducted to determine if LINC01615 might be an
independent prognostic factor. Additionally, nomogram
[28] and calibration plots for the predicting 1-year, 3-year,
and 5-year OS were constructed using the “rms” package.
(e calibration plots analyzed visually by mapping the
predicted probability from the nomogram to the actual rates.
(e bootstrap approach was used to calculate 1000
resamples. Additionally, receiver operating characteristic
(ROC) curves were utilized to determine the predictive
accuracy in survival and diagnosis prediction.

2.6. Tumor Mutational Burden (TMB) in Different Groups.
Somatic mutations from TCGA-HNSCC were retrieved
from the TCGA database. (e tumor mutation burden
(TMB) was estimated using TCGA somatic mutation data
for each tumor as the number of mutated bases per million
bases. (e whole sample was separated into two groups
based on the median LINC01615 expression, and the
“maftools” package [29] was used to explore the difference of
the mutation frequency in the high and low group.

2.7. Comprehensive Index in Pan-Cancer. To better under-
stand the genomic heterogeneity caused by different
LINC01615 expression levels, we explored the Spearman
correlation coefficient between the LINC01615 expression
and several indicators in pan-cancer, including micro-
satellite instability (MSI), homologous recombination de-
ficiency (HRD), and TMB. Based on previous studies
[30, 31], we downloaded data for genomic heterogeneity.

2.8. Cell Lines and Culture. Two laryngeal squamous cell
carcinoma cell lines, HEP-2 and TU212, were obtained from
the National Collection of Authenticated Cell Culture of
Chinese Academy of Sciences. All cells were cultured with
DMEM containing 10% fetal bovine serum (FBS; Gibco,
Gaithersburg, MD, USA), 100U/ml penicillin, and 100 μg/
ml streptomycin in an incubator with 95% humidified air
containing 5% CO2 at 37°C.

2.9. siRNA Transfection. Cells (1× 106 per well in a 6-wells
plate) were transfected with 50 nM of the following siRNAs:
control siRNA (5′-UAAGGCUAUGAAGAGAUACUU-3′),
LINC01615 siRNA1 (5′-CUAAUCCCCACGUUGA-
CUGCUU-3′), and LINC01615 siRNA2 (5′-CUGG-
CAACGCCUGCUCUCUGCUU-3′) for 72 h according to
the manufacturer’s instructions. Four-eight hours later, cells
were trypsinized and seeded for the different functional
assays.

2.10. MTT Assay. After siRNA transfection for 48 h, 2×104
cells were seeded into a 96-wells plate and incubated with
10mL MTT of 0.5mg/ml at 37 μC for 4 h on days 0, 1, 2, 3,
and 4. (e absorbance was measured using a spectropho-
tometer (Tecan Group Ltd., Switzerland) at 570 nm.

2.11. Transwell Invasion and Migration Assay.
Twenty-four-well plate inserts (pore size: 8 μm) were pre-
coated with 25 μl of Matrigel matrix (diluted at 1 : 3 with
basic culture medium) and incubated at the cell culture
incubator to form a gel. (en, 5×104 cells were suspended
with 250 μL and added into the upper transwell chamber.
(e lower chamber was filled with a 500 μL culture medium
with 10% FBS. After incubation at 37°C for 24 h, noninvaded
cells on the upper chamber were scraped with a cotton swab.
Invaded cells were fixed with 100% methanol and stained
with 0.05% crystal violet. Images were taken, and the in-
vaded cells were counted manually. (e experiments were
performed independently in triplicate for each cell line. For
the migration assay, the inserts were directly suspended with
2×104 cells without the Matrigel matrix.

2.12. Statistical Analysis. All statistical analyses were per-
formed using R software (v.4.1.1). Detailed statistical
methods are covered in the above section. p <0.05 was
considered statistically significant.

3. Results

3.1. ScreeningofLINC01615UsingLASSOandRandomForest.
Firstly, we used Cox regression analysis to screen prognostic
lncRNAs using different dependent variables (OS, PFI, and
DSS). We overlapped the abovementioned lncRNAs to get
the 133 common lncRNAs with multiple prognostic sig-
nificance (Figure 1(a)). To further eliminate prognostic
lncRNAs, LASSO regression (10-fold) was used to further
screen out 33 lncRNAs, and −5.72 as log (minimum lambda)
value (Figure 1(b)). (e RF model (ntree� 500) constructed
by 33 lncRNAs from the LASSO model was used to calculate
the gene importance score (Figure. 1(c)). Finally, the
combined machine learning algorithm screened out the hub
lncRNA with the highest importance: LINC01615.

3.2. Expression and Prognostic Analysis of LINC01615 in the
Pan-Cancer Level. We used LINC01615
(ENSG00000223485) retrieved from the UCSC Xena data-
base for conducting different expression analyses of
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nonpaired or paired samples. Based on our results, we
revealed that LINC01615 was overexpressed in most tumors
compared to normal tissues, while it was less expressed in
OV, PRAD, SKCM, THCA, and UCEC (Figure 2(a)).
However, in the paired samples, LINC01615 was highly
expressed in the vast majority of cancers, and only KICH,

PRAD, PEAD, and PAADwere not significant (Figure 2(b)).
Importantly, LINC01615 was significantly upregulated in
HNSCC compared with normal tissues. (e differences in
the LINC01615 expression levels in different tumor types
may reflect different underlying functions and mechanisms.
In pan-cancer survival analysis, LINC01615 predicted poor
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Figure 1: Screening of the hub lncRNA using machine learning. (a) (e Venn plot of the heatmap of three survival outcomes (overall
survival, progress-free interval, and disease-specific survival)-related lncRNAs. (b) LASSO regression analysis in 133 common-lncRNAs. (c)
(e RF model was constructed by 33 lncRNAs from the LASSO model to calculate the gene importance score.
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tumor prognosis. In the forest plot of OS (Figure 2(c)),
LINC01615 was overwhelmingly present as a risk factor,
while in the PFI analysis (Figure 2(d)), it was only present as
a protective factor in DLB. Similarly, in DSS analysis,
LINC01615 could also present as a risk factor in different
cancers (Figure 2(e)).

3.3. Clinical Application Analysis in HNSCC Patients.
Kaplan–Meier analysis revealed that OS (Figure 3(a)), PFI
(Figure 3(b)), and DSS (Figure 3(c)) were all shorter in the
high-LINC01615-expressing group compared to the low-
LINC01615-expressing group, while the probability of
mortality and disease progression was increased.Meanwhile,
clinical correlation analysis revealed that the expression of
LINC01615 increased with increasing the T stage, N stage,
pathology grade, and clinical stage (Figure 3(d)). Only eight
patients in the TCGA-HNSCC cohort were at the M1 stage,
whichmay explain why no difference was seen. Additionally,
the receiver operating characteristic curve demonstrated
that LINC01615 had a perfect predictive value for tumor
diagnosis (Figure 3(e)). However, when paired with the time
variable, the AUC value of survival was low; 1-year, 3-year,
and 5-years were 0.526, 0.593, and 0.480, respectively
(Figure 3(f )). Next, the Cox regression analysis confirmed
that LINC01615 was an independent risk factor (Figures 4(a)
and 4(b)). We constructed a nomogram by combining the
LINC01615 expression with classical clinical indicators
(Figure 4(c)). (e calibration curve showed good predictive
performance in 1 year, 3 years, 5 years, and 10 years
(Figure 4(d)). Hence, we discovered that when clinical in-
dicators were combined with LINC01615, the visualization
model was more applicable to clinical practice.

3.4. Enrichment Analysis and Immunological Characteristics
Based on theLINC01615Expression. To elucidate the reasons
for the altered biological functions caused by the differential

LINC01615 expression, we performed enrichment analyses.
(e whole cohort was divided into high- and low-expres-
sion- groups based on the median value of the LINC01615
expression, and differentially expressed genes (DEGs) were
identified in the “limma” package. Finally, we screened out
209 DEGs for GO and KEGG analyses. Among them, KEGG
analysis showed that the metabolism or immune-related
pathways were enriched, such as GABAergic synapse,
complement and coagulation cascades, and cytochrome
P450 metabolism (Figure 5(a)). As evidenced by the sig-
nificant enrichment of the immunoglobin complex, , the
humoral immune response mediated by the circulating
immunoglobin also confirmed the abovementioned possi-
bility in GO analysis (Figure 5(b)). GSEA analysis showed
that LINC01615 was associated with most of the immune
pathways, such as the IL6 signaling pathway, IL1 and
megakaryocytes in obesity, and the biocarta IL10 pathway.
(Figure 5(c)). (e LINC01615 overexpression was shown to
be related with increased stromal scores in the ESTIMATE
algorithm (Figure 5(h)), while being negatively associated
with the majority of natural killer cells, such as CD8
Tcells(Figure 5(d)). (e high expression of LINC01615 may
represent a higher stromal score (Figure 5(e)), but it was not
different in the immune score (Figure 5(f)) and the ESTI-
MATE score (Figure 5(g)). (ese results indicated that
LINC01615 may be involved in the regulation of lymphocyte
recruitment and immunological infiltration in HNSCC.
(erefore, we have performed an in-depth analysis of the
possible immune regulation involved in LINC01615
(Figures S1-S2), including chemokine, receptor, MHC,
immune-inhibitor, immune-stimulator, and immune
checkpoints. (e results of the pan-cancer analysis showed
that the expression of most immunomodulatory factors and
immune checkpoint mRNA was positively correlated with
LINC01615; however, the LINC01615 expression in HNSCC
was negatively correlated with immune-stimulator genes,
such as TMIGD2, CD40LG, and TNFRSF13B,.

pvalue Hazard Ratio(95%CI)CancerCode
1.84(1.61,2.11)
1.67(1.41,1.97)
3.29(2.11,5.13)
1.53(1.26,1.86)
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1.84(1.18,2.86)
1.13(1.02,1.25)
1.28(1.03,1.60)

3.58(1.03,12.52)
1.13(0.99,1.30)
2.87(091,9.05)
1.69(0.80,3.56)
1.74(0.78,3.87)
1.07(0.97,1.20)
1.17(0.93,1.47)
1.13(0.94,1.34)
1.48(0.78,2.800
1.56(0.66,3.68)
1.26(0.81,1.96)
1.08(0.93,1.27)
1.23(0.81,1.86)
1.04(0.93,1.15)
1.08(0.80,1.46)
1.08(0.76,1.54)
1.19(0.48,2.99)
1.04(0.83,1.31)
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Figure 2: Differential expression analysis and prognostic analysis in pan-cancer. (a) Differential expression analysis of nonpaired samples.
(b) Differential expression analysis of paired samples. (c)(e forest plot of OS in pan-cancer analysis. (d)(e forest plot of PFI in pan-cancer
analysis. (e) (e forest plot of DSS in pan-cancer analysis.
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Figure 3: Clinical correlation analysis in HNSCC. (a) Kaplan–Meier survival analysis of different LINC01615 expression groups in overall
survival. (b) Kaplan–Meier survival analysis of different LINC01615 expression groups in the progress-free interval. (c) Kaplan–Meier
survival analysis of different LINC01615 expression groups in disease-specific survival. (d) Expression levels of LINC01615 in different
clinical features, including T stage, N stage, M stage, clinical stage, histologic grade, and lymphovascular invasion. (e) ROC curve for
diagnosis. (f ) ROC curve for survival prediction in 1-year, 3-years, and 5-years. ∗p< 0.05, ∗∗p< 0.01.
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3.5. Genomic Heterogeneity Based on the LINC01615 Ex-
pression in the Pan-Cancer Level. Considering the
LINC01615 expression results in the activation of different
pathways, we explored the genomic heterogeneity (MSI,
HRD, and TMB) based on the LINC01615 expression in
the pan-cancer level. Firstly, we explored the correlation
analysis between the LIN01615 expression and the MSI
score (Figure 6(a)). DLBC had the strongest positive
correlation with the MSI score, and CHOL had the
strongest negative correlation with the MSI score; how-
ever, the correlation between the LINC01615 expression
and the MSI score was not statistically significant in
HNSCC. In the analysis of the TMB score, similarly, the
correlation between the LINC01615 expression and the
MSI score was not statistically significant in HNSCC
(Figure 6(b)). In HRD score analysis, there was a strong
positive correlation between the LINC01615 expression
and score (Figure S3). Finally, we found that patients in
the high expression group had a higher frequency of

mutations in TP53 and CDKN2A, compared to the low
expression group (Figure 6(c)).

3.6. Silencing of LINC01615 Suppresses Cell Proliferation,
Invasion, and Migration in HEP-2 and TU212 Cells. To
validate the function of LINC01615 on the biological be-
havior of head and neck squamous cell carcinoma, we
transfected two independent siRNAs targeting LINC01615
in laryngeal squamous cell carcinoma cells HEP-2 and
TU212. (e MTT assay demonstrated that the numbers of
cells in the LINC01615 siRNA1 and siRNA2 groups was
significantly decreased compared with those in the control
siRNA group (Figures 7(a) and 7(b)). (e effect of
LINC01615 silencing on the invasion and migration of HEP-
2 and TU212 cells was assessed using transwell migration
and Matrigel invasion assays. We found that silence of
LINC01615 obviously decreased the invasion and migration
abilities of these cells (Figures 7(c)–7(f)).
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Figure 5: Enrichment analysis. (a) Top 10 terms of KEGG analysis. (b) Top 5 terms in each section of GO analysis. (c) (e results of GSEA.
(d) Correlation analysis between the LINC01615 expression and results of the ssGSEA algorithm. (e) Difference of the stromal score in
different LINC01615 groups. (f ) Difference of the immune score in different LINC01615 groups. (g) Difference of the ESTIMATE score in
different LINC01615 groups. (h) Correlation analysis between the LINC01615 expression and results of the ESTIMATE algorithm.
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4. Discussion

HNSCC is one of the most common cancers, and despite
significant breakthroughs in clinical research and novel
medicines, the overall survival rate remains poor [32].
lncRNAs have garnered considerable interest in recent
years as new regulatory elements with a variety of biological
roles [33]. Numerous lncRNAs have been implicated in the
etiology and prognosis of HNSCC, however, comprehensive
prognostic analysis of lncRNAs at the omics analysis of
HNSCC is absent. As a consequence, we performed Cox
regression analysis to screen potential prognostic genes
utilizing various survival outcomes as dependent variables,
resulting in the identification of 133 lncRNAs with multiple
prognostic significance. Subsequently, the machine learning
algorithm was used to further screen the hub gene with the
highest importance in the random forest model: LINC01615.
Clinical correlation analysis revealed that the expression of
LINC01615 increased with increasing the T stage, N stage,
pathology grade, and clinical stage. Only eight patients in the
TCGA-HNSCC cohort were at the M1 stage, which may
explain why no difference was seen. Meanwhile, the
Kaplan–Meier analysis revealed that OS, PFI, and DSS were
all shorter in the high LINC01615-expressing group

compared to the low LINC01615-expressing group, while the
probability of mortality and disease progression was in-
creased. Additionally, the receiver operating characteristic
curve demonstrated that LINC01615 had a perfect predictive
value for tumor diagnosis. However, when paired with the
time variable, the AUC value of survival was low; 1-year, 3-
year, and 5-years were 0.526, 0.593, and 0.480, respectively.
Hence, we incorporated other clinical indicators to construct
the nomogram. We discovered that when clinical indicators
were combined, the visualization model is more applicable
to clinical practice. Based on the abovementioned findings,
we believe that the expression of LINC01615 could be used as
a predictor of HNSCC prognosis.

LncRNAs have received increasing attention for their
function in regulating innate and adaptive immune cell
responses [34, 35]. (erefore, we have performed an in-
depth analysis of the possible immune regulation involved in
LINC01615, including chemokine, receptor, MHC, im-
mune-inhibitor, immune-stimulator, and immune check-
points. (e results of the pan-cancer analysis showed that
the expression of most immunomodulatory factors and the
immune checkpoint mRNA were positively correlated with
LINC01615; however, the LINC01615 expression in HNSCC
was negatively correlated with immune-stimulator genes,
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Figure 6: Genomic heterogeneity in pan-cancer analysis. (a) Correlation analysis between the LINC01615 expression and the MSI score.
(b) Correlation analysis between the LINC01615 expression and results of the TMB score. (c) Differences of somatic mutations in different
LINC01615 expression levels.
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such as TMIGD2, CD40LG, and TNFRSF13B. Immune cell
infiltration is a hallmark of the host to tumor cells and is
strongly connected with the genesis and progression of
cancer. Our findings revealed that the expression of
LINC01615 was strongly related with immune cell infiltra-
tion in HNSCC. A low proportion of M0 macrophages and a
high level of Treg expression have been associated with a
favorable OS and DFI in HNSCC patients [36]. (e
LINC01615 overexpression was shown to be related with
increased stromal scores in the ESTIMATE algorithm, while
being negatively associated with the majority of natural killer
cells, such as CD8 T cells. (ese results indicated that
LINC01615 may be involved in the regulation of lymphocyte
recruitment and immunological infiltration in HNSCC.

To elucidate the reasons for the altered biological
functions caused by the differential LINC01615 expres-
sion, we performed enrichment analyses. Among them,
GSEA analysis showed that LINC01615 is associated with
most of the immune pathways, such as the IL6 signaling
pathway, IL1 and megakaryocytes in obesity, and the
biocarta IL10 pathway. As evidenced by the significant
enrichment of immunoglobin complex, humoral immune
response mediated by the circulating immunoglobin also
confirmed the abovementioned possibility in GO analysis.
Unfortunately, there are very few basic studies on
LINC01615, and only one study has identified mRNA-
lncRNA pairs by gene co-expression analysis elucidating
that LINC01615 may have significant implications for
HNSCC patients [37]. Interestingly, LINC01615 may be a

lncRNA associated with ferroptosis [38, 39], and in gastric
cancer cell lines, most LINC01615 is enriched in the cy-
toplasm. In addition, only three studies have investigated
the regulatory role of LINC01615 in depth. LINC01615
functions as an oncogene and is involved in cell prolif-
eration, apoptosis, invasion, and migration in colorectal
cancer cells [40]. LINC01615 competitively binds with
miR-3653-3p to regulate ZEB2 and promote the carci-
nogenesis of colon cancer cells [41]. Particularly, Dong
et al. revealed that LINC01615 potentially affected the
extracellular matrix and had further impacts on the
metastasis of hepatocellular carcinoma [42], the findings
were consistent with our research. (e only method we
used was bioinformatics and machine learning to predict
the potential indicative value in HNSCC, so further ex-
periments are needed in the future.

In a pan-cancer analysis of genomic heterogeneity, we
explored the expression level and the prognostic value of
LINC01615 using TCGA data from the UCSC Xena da-
tabase. Based on our results, we revealed that LINC01615
was overexpressed in most tumors compared to normal
tissues, while it was less expressed in OV, PRAD, SKCM,
THCA, and UCEC. (e differences in LINC01615 ex-
pression levels in different tumor types may reflect dif-
ferent underlying functions and mechanisms. In pan-
cancer survival analysis, LINC01615 predicted poor tumor
prognosis. In the forest plot of OS, LINC01615 was
overwhelmingly present as a risk factor, while in the PFI
analysis, it was only present as a protective factor in DLB.
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Figure 7: LINC01615 knockdown inhibits cell proliferation, invasion, and migration in HEP-2 and TU212 cells. (a, b) Cell proliferation was
detected in the HEP-2 (a) and TU212 (b) cells after miR-control siRNA or LINC01614 siRNA transfection by theMTTassay. (c, d)(e effect
of LINC01615 silencing on cell invasion and migration are examined by the transwell assay. (e, f ) Count of invaded and migrated cell
numbers of 6 visual fields. ∗p< 0.05, ∗∗p< 0.01, ∗∗∗P< 0.001, vs. control siRNA.
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(ese results suggested that LINC01615 may be a prog-
nostic biomarker to predict the prognosis for most tumor
patients. More importantly, the expression status of
LINC01615 and MSI, HRD, and TMB in different tumors
also showed significant heterogeneity. Functionally, we
furtherly validated that LINC01615 plays a pivotal role in
head and neck squamous cell carcinoma cell proliferation,
invasion, and migration. (ere are major limitations, the
first being the identification and validation in the TCGA
dataset only in our study. In addition, LINC01615 needs
further confirmation of function in future basic studies. In
conclusion, LINC01615 may play an important role in the
prostromal cell enrichment and immunosuppressive state
and serve as a valuable prognostic biomarker in HNSCC.
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