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Background: Radiomics-based non-invasive biomarkers are promising to facilitate the translation of therapeuti-
cally related molecular subtypes for treatment allocation of patients with head and neck squamous cell carci-
noma (HNSCC).
Methods: We included 113 HNSCC patients from The Cancer Genome Atlas (TCGA-HNSCC) project. Molecular
phenotypes analyzed were RNA-defined HPV status, five DNA methylation subtypes, four gene expression sub-
types and five somatic gene mutations. A total of 540 quantitative image features were extracted from pre-
treatment CT scans. Features were selected and used in a regularized logistic regression model to build binary
classifiers for each molecular subtype. Models were evaluated using the average area under the Receiver Opera-
tor Characteristic curve (AUC) of a stratified 10-fold cross-validation procedure repeated 10 times. Next, an HPV
model was trained with the TCGA-HNSCC, and tested on a Stanford cohort (N = 53).
Findings: Our results show that quantitative image features are capable of distinguishing several molecular phe-
notypes. We obtained significant predictive performance for RNA-defined HPV+ (AUC = 0.73), DNA methyla-
tion subtypes MethylMix HPV+ (AUC= 0.79), non-CIMP-atypical (AUC = 0.77) and Stem-like-Smoking (AUC
= 0.71), and mutation of NSD1 (AUC = 0.73). We externally validated the HPV prediction model (AUC =
0.76) on the Stanford cohort. When compared to clinical models, radiomic models were superior to subtypes
such as NOTCH1 mutation and DNAmethylation subtype non-CIMP-atypical while were inferior for DNA meth-
ylation subtype CIMP-atypical and NSD1 mutation.
Interpretation: Our study demonstrates that radiomics can potentially serve as a non-invasive tool to identify
treatment-relevant subtypes of HNSCC, opening up the possibility for patient stratification, treatment allocation
and inclusion in clinical trials.
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Research in context

Evidence before this study

Head and neck squamous cell carcinoma (HNSCC) is a common
heterogeneous malignancy that is typically diagnosed using imag-
ing. Existing molecular phenotypes such as HPV status are crucial
in the diagnosis of HNSCC and determines treatment. In addition,
large genomic studies have shown the existence of novel molecu-
lar subtypes that have the potential to be important for treatment.
Quantitative analysis of radiographic images of HNSCC patients,
also known as radiomic analysis, has shown that prognostic is
correlated with quantitative image features. However, to date,
only a few studies applied radiomic analysis to predict HPV status
in HNSCC, while, to the best of our knowledge, there have not
been any radiomic reports studying molecular subtypes.

Added value of the study

Wepresent a comprehensive radiomic analysis of HNSCCpatients
from a multi-institutional cohort and associate them with both
existing, and novel molecular phenotypes and subtypes. We
show that radiomics signatures exist that mirror molecular sub-
types including a DNA methylation defined HPV+ HNSCC sub-
type. Next, we validate the DNA methylation HPV+ model in an
independent cohort.

Implications of all the available evidence

Our results demonstrate that radiomic analysis has potential as a
non-invasive tool of molecular subtypes potentially facilitating
treatment allocation of HNSCC patients. Our work opens up the
possibility to identify molecular subtypes of HNSCC non-
invasively opening up the possibility for patient stratification,
treatment allocation and inclusion in clinical trials in a more rapid
manner.
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is a common het-
erogeneous malignancy, accounting for N500,000 new cases every year
globally and encompassing cancers arising in oral cavity, oropharynx,
nasopharynx, hypopharynx, and larynx [1,2]. Conventional treatment
of HNSCC includes surgery, radiotherapy, and chemotherapy, employed
individually or in combination depending on TNM stage and primary
site [3]. Responses to clinical treatments vary greatly among HNSCC pa-
tients and remain disappointing, especially in advanced stage disease
[4]. Furthermore, chemotherapy and radiation often confer significant
toxicity [3]. It is therefore crucial to identify biomarkers with which to
select the best treatment strategy for each patient.

More than a decade ago, several reports showed a causal link be-
tween the rise of HNSCC cancer and human papilloma virus infection
(HPV) [5–7]. Compared to HPV negative (HPV-), HPV positive (HPV+)
HNSCC has been identified with better prognosis and response to ther-
apies including immunotherapy. Current efforts are focused on devel-
oping treatment strategies specifically for this subtype. For example
HPV+ oropharyngeal cancers are now being considered for de-
intensifying treatment strategies [8]. Accurate classification of this sub-
type would enable targeted neoadjuvant treatment, and would enable
more accurate diagnosis that is predictive of response to standard and
emerging therapies, and of prognosis.

In parallel, large-scale genomic profiling studies, such as The Cancer
Genome Atlas (TCGA) project, have been conducted and identified
several distinct molecular subtypes and clinically-relevant molecular
driver events [9,10], providing insight into different etiologies and
sources of molecular heterogeneity in HNSCC. The gene expression sub-
types proposed by TCGA group are atypical, classical, mesenchymal and
basal [9]. In addition, among the most recognized common mutations
by these studies are NOTCH1, TP53, CDKN2A, PIK3CA and NSD1 [9–19].

More recently, we introduced clinically relevant DNA methylation
subtypes [15,17,20] using a novel bioinformatics algorithm called
MethylMix [14,21]. These subtypes include an HPV subtype, a CIMP
atypical subtype that is defined by infiltration of M1 macrophages
[15], an NSD1 subtype that as immune cold and has been subsequently
experimentally validated [17,22], a non-CIMP-atypical subtype and a
stem cell subtype associated with smoking. These proposed DNAmeth-
ylation subtypes have implications for treatment, but have not been
translated to diagnostic assays that are amenable to clinical use.

Taken together, themolecular subtypes mentioned above are show-
ing potential in assisting effective clinical management of HNSCCs but
have not yet been translated to clinical use [11]. This is partly due to
lack of clinically-applicable tools to identify the molecular properties
relevant tof patient-specific selection of treatment because current mo-
lecular assays are invasive and has lower financial cost. Non-invasive
biomarkers offer the possibility of facilitating such translation.

Medical imaging is usually acquired as routine practice for cancer
patients and is promising to develop non-invasive biomarkers for the
molecular characterization as radiographical images are believed to be
representations of pathophysiology driven by underlying molecular
and tissue-level changes [23]. Radiomics is an emerging field concerned
with the high-throughput extraction of innumerable quantitative imag-
ing features, complementing and accelerating the advancement tomine
themedical images [23,24]. Radiomic features are showing great poten-
tial for predicting diagnosis [25–27], survival, treatment response
[28–34], and molecular properties of tumors [24,30,32,35].

In head and neck cancer, computed tomography (CT), magnetic res-
onance (MR) and positron emission tomography (PET) imaging are
routinely used [36]. Radiomic features extracted from these various im-
aging modalities have demonstrated to be useful during the manage-
ment of HNSCC patients. For instance, Bogowicz et al. showed the
good discriminative power of both CT and PET radiomics for local
tumor control modeling in HNSCC [37]. In this study, we focus on
radiomics analysis based on CT scans. Prediction of clinically-relevant
HNSCC subtypes using pretreatment CT images provides an early
source of information that can expedite and support the design of
treatment strategies and clinical decision-making process, and may
prepare clinicians and patients for the appropriate course of treatment.
As CT images are routinely generated, imaging-based biomarkers can
be rapidly translated for use in clinical practice and clinical trials.
Here, we present a radiomic analysis of pretreatment CT images and
multi-omics profiles, and show that we can predict molecular pheno-
types from CT images. We also validate a radiomic model for HPV sta-
tus in an independent cohort.

2. Materials and methods

2.1. Patients

In this study, we analyzed two HNSCC datasets (TCGA-HNSCC for
model development and Stanford-HNSCC for validation). The former
is part of The Cancer Genome Atlas Head-Neck Squamous Cell Carci-
noma project (TCGA-HNSCC) [38]. The genomic, demographic and clin-
ical data were acquired from the Genomic Data Commons (GDC) Data
Portal (https://portal.gdc.cancer.gov/), while CT scans of matched
TCGA-HNSCC patients (N = 163) were downloaded from The Cancer
Imaging Archive (TCIA) (https://wiki.cancerimagingarchive.net/) in
July 2017. Analysis of this dataset was conducted consistent with
TCGA and TCIA IRB approvals and agreements, and did not require addi-
tional institutional review board (IRB) approval. The Stanford-HNSCC

https://portal.gdc.cancer.gov/
https://wiki.cancerimagingarchive.net/
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data was obtained from Stanford Hospital with IRB approval from
Stanford University for this retrospective study. Data were de-
identified and informed consent from patients was waived.

For both datasets, inclusion criteria were patients with pre-
treatment contrast-enhanced CT scans and with histologically con-
firmed HNSCC. Patients with CT images obscured by dental artifacts
(N = 7), patients without a pre-treatment CT (N = 35) or without a
pre-treatment CT with contrast (N = 8) were excluded. For the
Stanford-HNSCC cohort, we only used cases for testing the HPV predic-
tion model where HPV testing was done, patients without defined HPV
status were excluded from this analysis.
2.2. Molecular phenotypes

We analyzed the following molecular phenotypes that were avail-
able for the TCGA-HNSCC cohort: HPV status, gene expression subtypes
(transcriptomics-based) [9], DNAmethylation subtypes obtained by the
MethylMix algorithm [15,17,20] (methylation-based), and a set of fre-
quently observed somatic mutations (genomics-based). For the
Stanford-HNSCC cohort HPV status defined by p16 immunohistochem-
istry was available and used as surrogate indicator of HPV infection.

HPV status for the TCGA-HNSCC cohort was determined via
VirusSeq, a computational tool measuring the presence of strain-
specific HPV RNA sequences detectable in whole-transcriptome se-
quencing (RNA-seq) data [39,40]. We denoted it as RNA-defined HPV
+ in this work.

The four gene expression based subtypes were previously reported
by TCGA group as atypical, classical, mesenchymal and basal [9,16].
The atypical subtype is defined as lacking either EGFR amplification or
deletion of 9p. The classical subtype has canonical genomic alterations
relevant to squamous cell carcinoma, e.g. focal amplification of both
EGFR and CCND1, amplification of 3q, and deletion of 3p and 9p. The
mesenchymal subtype is defined by expression of genes involved in
the epithelial to mesenchymal transition pathway, and finally the
basal subtype is characterized by expression of genes that are expressed
in basal epithelial cells [9,16].

The DNA methylation subtypes are defined by consensus clustering
after running MethylMix algorithm [14,15,17]. This resulted in five
DNA methylation subtypes based on DNA methylation aberrations de-
fined as non-CIMP-atypical, NSD1-Smoking, CIMP-atypical, MethylMix
HPV+ and stem-like-smoking [14,15,17].

In addition, a set of five common somatic mutations were analyzed
with data downloaded from GDC Data Portal (https://portal.gdc.
cancer.gov/): translocation-associated Notch homolog 1 (NOTCH1),
tumor protein p53 (TP53), cyclin dependent kinase inhibitor 2A
(CDKN2A), phosphoinositide-3-kinase catalytic alpha polypeptide
(PIK3CA), and nuclear receptor binding SET domain protein 1 (NSD1)
[10,12,17].
2.3. Tumor volume segmentation

Before feature extraction, for each patient, a head and neck radiol-
ogist (M.C., N10 years of experience) manually outlined the regions of
interest (ROIs, defined as the gross tumor volume), using the DICOM
viewer Horos (https://horosproject.org) with the pencil tool on each
axial slice. ROIs were saved with all pixels within the tumor area set
to one and pixels of the background set to zero. During the process
of segmentation, all artifacts and other tissues around the tumor, as
well as airways, were maximally avoided. Only tumor tissues - solid
or necrotic - were included in the ROIs. The ROIs were re-segmented
by the same radiologist blinded to the previous segmentations three
months after the first segmentation. Divergence in the two segmenta-
tions for each tumor volume were resolved by discussing with other
experts.
2.4. Quantitative image features extraction

Three-dimensional tumor segmentations were first resampled to
isometric voxels of size 1 by 1 by 1 mm3. A total of 540 quantitative
image features were extracted from the region of interest (ROI) of
gross tumor volume. These quantitative image features are categorized
into five groups of features: (1) first-order features, (2) shape and size
features, (3) global histogram features, (4) textural features and (5) fil-
ter based features. Group 1 (first-order features) are calculated directly
from the intensity values, including features such as minimum, maxi-
mum, mean and variance. Group 2 (shape and size features) quantify
the 3D shape and size of the tumors, including volume size and surface
area. Group 3 (global histogram features) are a group of statistical fea-
tures based on histograms of the intensity values. Group 4 (textural fea-
tures) are calculated based on the spatial relationships between voxels
and are further subdivided into Gray-Level Co-Occurrence Matrix
(GLCM), gray level run length matrix (GLRLM), Gray Level Size Zone
Matrix (GLSZM) and Neighboring Gray Tone Difference Matrix
(NGTDM) features. Finally, group 5 (filter-based features) were ob-
tained by applying wavelet transformations to CT images to extract
filter-transformed first-order features and textural features. The filter-
based features are able to capture higher-level abstraction of the imag-
ing objects.

Description of all features and the corresponding algorithms are pro-
vided in Data Supplement. All feature implementationwas done and re-
ported according to previous work and the current Image Biomarkers
Standardization Initiative (IBSI) guidelines [41–44]. The feature extrac-
tion pipeline was implemented using in-house developed pipeline in
Matlab 2018a (MathWorks, Natick, MA, USA). The feature extraction
pipeline was made publicly available at https://github.com/gevaertlab/
radiomics_pipeline.

2.5. Model construction

We assessed the feature robustness for potential bias because of var-
iations in imaging acquisition and delineation using the imageperturba-
tion strategy introduced by Zwanenburg et al. [45] The perturbation
chain applied in this work is a combination of rotation, volume adap-
tion, and contour randomization, which was one of the four highly rec-
ommended approaches. A total of 30 perturbation settings were
investigated conforming to the proposal. Intraclass correlation coeffi-
cient (ICC) and the 95% confidence interval (CI) were computed for
each radiomic feature. Features with 95% CI equal to or N0.9 were con-
sidered robust. The robustness analysis was implemented with an in-
house pipeline written in Python according to Zwanenburg et al. [45]
Besides, to minimize the potential noise derived from differences in im-
aging protocols across sites, we harmonized the radiomic features be-
fore modeling with “ComBat” [46–48]. The code was available at:
https://github.com/Jfortin1/ComBatHarmonization. The ComBat model
wasfirst introduced in genomic studies to correct batch effects inmicro-
array data [49].

After removing near-zero-variance features, we selected the most
discriminative features by implementing the minimum redundancy
maximum relevance (mRMR) algorithm. mRMR calculates mutual
information (MI) between feature and outcome, and ranks the fea-
tures by minimizing the average MI between the features and max-
imizing the MI between each feature and the outcome variable
[50,51]. mRMR has been shown to be a stable algorithm to effi-
ciently select a non-redundant highly relevant and complementary
set of features in a low sample-to-dimensionality ratio scenario
[50,52].

Multivariate logistic regressionwith least absolute shrinkage and se-
lection operator (LASSO) penalty was applied to build binary classifiers
based on the retained quantitative image features. LASSO is awidely ap-
plied method for the regression of high-dimensional data. One signifi-
cant advantage is that LASSO shrinks the regression coefficients of the

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://horosproject.org
https://github.com/gevaertlab/radiomics_pipeline
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irrelevant features to zero depending on a suitable regularization term
λ, thus only a small amount of features with non-zero coefficients are
retained, which makes it easier to interpret the model. Specifically, for
multi-class subtypes, DNA methylation subtypes, and gene expression
subtypes, it was reduced to multiple binary classification tasks – in
this “one-vs-all” approach, one classifier was built to predict each sub-
type against all others. All quantitative image features were Z-score
standardized.

To further prove the usefulness of the radiomic features, we com-
pared radiomicmodels to clinical models based on only clinical features
(i.e. age, gender, smoking status, primary tumor site and TNM staging),
as well as the combination of radiomics and clinical data defined as
radiomic+clinical models. To build a radiomic+clinical model, a
radiomics signature for each patient was first computed by multiplying
the selected features with their respective coefficients from the best
radiomic model based on LASSO. The radiomics signature was then
treated as an independent feature representing the radiomics alongside
the clinical features. Both clinical models and radiomic+clinical models
were fitted using binomial logistic regression with backward selection
of the features based on Akaike's information criterion [53].
2.6. Model selection and evaluation

We trained classifiers for the four modes of molecular phenotypes
within TCGA-HNSCC. To minimize the true error estimate bias, we ap-
plied the nested stratified 10 times repeated 10-fold cross-validation
(CV) (nested stratified 10 × 10-CV) formodel selection and assessment,
where the inner 10 × 10-CV loop was used for model developing and
the outer 10 × 10-CV loop was for testing. Here, “stratified” means, for
each target subtype, different class levels in each fold are represented
in the same proportion as that in the full dataset. The improvements at-
tributed to the stratified cross-validationwas evidenced byWitten et al.
[54]. Furthermore, to alleviate data imbalance all models were learned
by incorporating the weights of the classes to give lower weight to the
majority class and higherweight to theminority class. The performance
metric was the area under Receiver Operating Characteristic (ROC)
curve (AUC). AUCs from all the testing runs were averaged and re-
ported. The most predictive models were determined by maximizing
the CV AUCs. Fig. 1 outlines the complete data analysis workflow
using nested stratified 10 × 10-CV.
2.7. External validation of the HPV prediction model

One model was trained to predict HPV status using the stratified 10
× 10-CV in TCGA-HNSCC andwas externally tested by Stanford-HNSCC.
The ROC curve for the results was plotted. The ROC curve of the model
trained on TCGA-HNSCC was further used to determine the best cut-
off values based on Youden index, afterwards specificity, sensitivity
and accuracy were calculated and reported. External validation was
not performed for other subtypes because no data was available with
both CT images and the genomics, transcriptomics and DNA methyla-
tion data to derive these subtypes labels.

Next, we used calibration analysis to visualize calibration of the
models build on TCGA-HNSCC and the Stanford-HNSCC cohorts. We
compared the radiomic, the clinical and the radiomic + clinical models.

In spite of lacking molecular data for external validation, the best
models for somatic mutations, DNA methylation and gene expression
subtypes are also derived from the TCGA-HNSCC the same as the HPV
prediction model for validation by other investigators.

We also tested if any interactions were present between radiomic
features and clinical features using Variance Inflation Factor (VIF) anal-
ysis [55]We calculated VIFs for the clinical features and/or radiomic sig-
natures when combining these features into the above clinical models
or radiomic + clinical models.
3. Results

3.1. Patient characteristics and quantitative image features

Based on our inclusion and exclusion criteria, thiswork included 113
patients from TCGA-HNSCC and 53 patients from Stanford-HNSCC co-
horts (Table 1). There was no significant difference in the clinical char-
acteristics between the two cohorts except for anatomic site of primary
tumor, smoking status, clinical T and N stage. HPV positive rate is signif-
icantly higher in Stanford-HNSCC (P-value b 0.001, Chi-square test). Be-
fore building models, we analyzed the relationships between all
molecular phenotypes (Fig. S1). One remarkable finding is that the
MethylMix HPV+ distribution coincides strongly with the distribution
of RNA-defined HPV status, which also corresponds with our results
(see below). Next, 540 quantitative image features were extracted
from the segmented gross tumor regions. As a result of feature robust-
ness analysis, 491 out of 540 features met the robustness criteria and
were kept for further analysis. For each binary task, we collected to-
gether the features retained in the optimal model trained from each it-
eration of the outer CV loop of the nested cross-validation. In total, a
subset of 279 quantitative image features contributed to significant
radiomic models for all tasks. Next, we counted the image feature fre-
quencies of being selected through the outer CV loop for each feature,
showing that the most important features belong to the shape and
size features group (Fig. S2).

3.2. Radiomic signature of HPV

We first examined if quantitative image features could discriminate
RNA-defined HPV+ and HPV- patients [39,40]. Our radiomic models
demonstrated a significant ability to distinguish HPV+ from HPV- sta-
tus (AUC = 0.73, Fig. 2a). To ensure the robustness of our radiomic
model classification of HPV, we also tested whether it could classify
the previously-reported DNA methylation MethylMix HPV+ subtype
[14,15,21], characterized by a signature of abnormal methylation that
is observed in both HPV positive HNSCC and cervical cancer [56]. Com-
paredwith the RNA-basedmeasure for HPV status, the radiomicmodels
achieved higher performance in discriminating MethylMix HPV+ from
the remaining patients (AUC = 0.79, Fig. 2a). Next, we developed
models using clinical data for both RNA-defined HPV+ and MethylMix
HPV+ resulting in higher AUC values of 0.86 and 0.90 respectively. This
can be attributed primarily to primary tumor site (pharynx vs. other
sites) whereas the radiomic models are tumor site agnostic. Models
combining radiomics signature with clinical features did not improve
the clinical models.

Next, we investigated which feature groups are most important in
the above two radiomicmodels, showing that for bothmodels the dom-
inant features are wavelet features followed by shape and size features
and first order features (Fig. S3). To further interpret the radiomic
models of HPV, we show two examples of patients with a tumor in
the oropharynx: one HPV+ case correctly predicted and one HPV-
case correctly predicted, according to both RNA-defined HPV status
and DNA methylation subtype MethylMix HPV+ status (Fig. 2). The
HPV+ tumor is a solid enhancing lesion at the right base of tongue
(Fig. 2b). The HPV- tumor appears radiologically to be more aggressive,
with signs of pre-vertebral fascia invasion and retropharyngeal fat blur-
ring located at the posterior wall of inferior oropharynx and extending
to posterior wall of hypopharynx (Fig. 2c).

3.3. Prediction of other DNA methylation subtypes

Similar to MethylMix HPV+, we evaluated predictive modeling of
each of the other four DNA methylation subtypes. All these classifiers
attained good performance (Fig. 3a, Fig. S4), with the Non-CIMP-
Atypical model resulting in the best performance (AUC = 0.77),
followed by Stem-like-Smoking (AUC = 0.71), CIMP-Atypical (AUC =
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Fig. 1. Data analysis framework embedded with nested stratified repeated cross-validation. The inner loop is used to train and select out the optimal binary classifier based only on
quantitative image features, while the outer loop is used to generate different resampling splits to evaluate the optimal models' generalization performance.
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0.68) and NSD1-Smoking (AUC = 0.68). Next, models using only clini-
cal data showed higher performance for CIMP-Atypical (AUC = 0.75)
and NSD1-Smoking (AUC = 0.73) compared to the radiomic models,
while clinical models for Non-CIMP-Atypical (AUC = 0.53) and Stem-
like-Smoking (AUC=0.66)were inferior to the corresponding radiomic
models. Combining radiomic signature and clinical features did not im-
prove the results for the DNA methylation subtypes significantly.

Next, we explored the contributing features of radiomic models for
the non-CIMP-atypical and Stem-like-Smoking subtypes (Fig. S4). For
both subtypes, the dominant feature group was wavelet features. For
non-CIMP-atypical, the global histogram feature group was the second
most important. While for Stem-like-Smoking, textural features ranked
the second.

3.4. Prediction of gene expression subtypes

Next, we investigated the prediction of the previously defined gene
expression subtypes: atypical, classical, mesenchymal and basal
(Fig. 3b). Radiomic models were capable of predicting the subtypes
atypical (AUC = 0.65), classical (AUC = 0.69), mesenchymal (AUC =
0.67) and basal (AUC = 0.67). Compared to the radiomic models, the
clinical models were better for atypical (AUC = 0.80) and basal (AUC
= 0.78), while the ones for classical (AUC = 0.65) and mesenchymal
(AUC = 0.65) were not. Combining radiomic features and clinical fea-
tures did not showbetter results than both radiomicmodels and clinical
models for gene expression subtypes.

3.5. Prediction of somatic gene mutations

Next, we investigated if radiomic models are able to predict somatic
mutations in the most commonly mutated genes in HNSCC: NOTCH1,
TP53, CDKN2A, PIK3CA, and NSD1. The most significant performance
was obtained for NSD1 (AUC = 0.73). (Fig. 3c, Fig. S5). For NSD1, the
top contributing radiomic featureswere dominated bywavelet features,
followed by the global histogram features, textural features, and shape
and size features. Weaker performances were observed for predicting
NOTCH1 (AUC = 0.66), TP53 (AUC = 0.65), CDKN2A (AUC = 0.66)
and PIK3CA (AUC= 0.69).

Compared to radiomic models, the clinical model for NOTCH1 (AUC
= 0.58) was inferior while that for TP53 (AUC = 0.76) increased. The
clinical models for other three mutations were comparable to the
radiomic models. Models integrating radiomic signature and clinical
features did not show great improvement except for NOTCH1 (AUC =
0.69).

3.6. External validation of the HPV radiomic signature

Next, we acquired an independent cohort (Stanford-HNSCC). There-
fore, external validation was further conducted by first training models
on the TCGA-HNSCC cohort, and then testing the models on the
Stanford-HNSCC cohort. The establishedmodels were as below (all out-
put is logits):

(1) Radiomic model (the same model to extract the radiomic signa-
ture): y = −0.48–0.39*firstOrder_InterquartileRange +
0.35*waveletHHH_firstOrder_Kurtosis – 0.68*waveletLLL_
firstOrder_Maximum + 0.25*shapeSize_Solidity – 0.43*
firstOrder_QuartileCoefficientDispersion.

(2) Clinical model: y =−5.23+ 3.32*Gender (Female:0, Male:1) +
0.82*Anatomic_site1(Larynx:0, Oral cavity:1) + 5.08*Anatomic_
site2(Larynx:0, Pharynx:1).

(3) Radiomic + Clinical model: y = −4.41 + 0.61*radiomic_
signature + 2.65*Gender(Female:0, Male:1) + 0.81*Anatomic_
site1(Larynx:0, Oral cavity:1) + 4.50*Anatomic_site2(Larynx:0,
Pharynx:1).

Although we could not validate them due to lack of molecular data
for the validation cohort, the best models for somatic mutations, DNA
methylation and gene expression subtypes are also provided in Supple-
mentary Table 1 for validation by other investigators.



Table 1
Basic patient characteristics.

TCGA-HNSCC (N = 113) Stanford-HNSCC (N = 53) P-value

Clinical characteristics Age, mean ± SD, years 60.1 ± 11.1 63.3 ± 10.3 0.095
Sex (%) 0.802

Female 27 (23.9) 11 (20.8)
Male 86 (76.1) 42 (79.2)

Anatomic site (%) b0.001
Larynx 29 (25.7) 4 (7.5)
Oral-cavity 64 (56.6) 12 (22.6)
Pharynx 20 (17.7) 37 (69.8)

Smoking (%) b0.001
Non-smoker 40 (35.4) 41 (77.4)
Smoker 73 (64.6) 12 (22.6)

Clinical T stage (%) 0.002
T1 7 (6.2) 7 (13.2)
T2 23 (20.4) 21 (39.6)
T3 38 (33.6) 7 (13.2)
T4 45 (39.8) 18 (34.0)

Clinical N stage (%) 0.002
N0 49/112 (43.8) 11 (20.8)
N1 17/112 (15.2) 6 (11.3)
N2 41/112 (36.6) 31 (58.5)
N3 5/112 (4.5) 5 (9.4)
Unknown 1 (0.9) 0

Clinical M stage (%) 0.169
M0 112/113 (99.1) 48 (90.6)
M1 1/113 (0.9) 3 (5.7)
Unknown 0 2 (3.8)

Molecular subtypes HPV infection (%) b0.001
RNA-defined p16-defined

− 92 (81.4) 14 (26.4)
+ 21 (18.6) 39 (73.6)

DNA methylation subtypes (%) NA
Non-CIMP-Atypical 26 (23.0) NA
NSD1-Smoking 21 (18.6)
CIMP-Atypical 27 (23.9)
HPV+ 17 (15.0)
Stem-like-Smoking 22 (19.5)

Gene expression subtypes (%) NA NA
Atypical 28/83 (33.7)
Classical 28/83 (33.7)
Mesenchymal 10/83 (12.0)
Basal 17/83 (20.5)
Unknown 30 (26.5)

NOTCH1 (%) NA NA
− 88/109 (80.7)
+ 21/109 (19.3)
Unknown 4 (3.5)

TP53 (%) NA NA
− 34/109 (31.2)
+ 75/109 (68.8)
Unknown 4 (3.5)

CDKN2A (%) NA NA
− 83/109 (76.1)
+ 26/109 (23.9)
Unknown 4 (3.5)

PIK3CA (%) NA NA
− 89/109 (81.7)
+ 20/109 (18.3)
Unknown 4 (3.5)

NSD1 (%) NA NA
− 94/109 (86.2)
+ 15/109 (13.8)
Unknown 4 (3.5)

Note: To compare the differences in clinical characteristics between the two datasets, two-sample t test was used for age, while Chi-square or Fisher exact tests, as appropriate, were ap-
plied for categorical variables.
Definitions: Smoking: Non-smoker = never-smoker or former-smoker quitted N15 years before diagnosis; Smoker = current-smoker or former-smoker quitted b15 years before
Diagnosis.
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We also tested if any interactions were present between radiomic
features and clinical features using VIF analysis. However, all VIFs
were below 2.0 for clinical features and/or radiomic signatures which
were combined to train the clinical models or radiomic+clinical
models, suggesting absence of severe multi-collinearity between these
features (Supplementary Table 2).
The external validation of the radiomic model was good (AUC =
0.76, Figs. 4, 5a). The cut-offs of probability were obtained based on
Youden's index andwere 0.42, 0.38, 0.47 for the radiomicmodel, clinical
model, and radiomic+clinical models, respectively. The specificity, sen-
sitivity and accuracy were 0.74, 0.79 and 0.75, respectively. The clinical
model was also verified (Fig. 4, AUC= 0.86) with specificity, sensitivity
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and accuracy as 0.87, 0.79 and 0.85. When combining radiomic signa-
turewith clinical features, the performance significantly increased com-
pared to the radiomic model (Figs. 4 and 5a, AUC = 0.88) (P-value =
0.032, Delong's test). The respective specificity, sensitivity and accuracy
were 0.82, 0.79 and 0.81.

We also studied model calibration on the Stanford-HNSCC cohort,
and compared with the TCGA-HNSCC cohort. This analysis showed
that model calibration for the Stanford-HNSCC radiomic model was
poor compared to the TCGA-HNSCC (Fig. S6). In addition, for both co-
horts the radiomic+clinical model showed the best calibration.

Consistent with previous studies, we found that the primary site is a
strong indicator of HPV infection in HNSCC. To investigate whether the
radiomic model is agnostic to primary site information, we further
tested the models with a subset of Stanford-HNSCC patients whose pri-
mary tumor sites were pharynx. This showed that the radiomic model
still has comparable performance (AUC= 0.79) while the performance
of the clinical model (AUC = 0.61) deteriorates significantly, further-
more combining the radiomic signature and clinical features (AUC =
0.77) retained comparable performance regarding to the radiomic
model (Fig. 5b).

4. Discussion

In this study, we extracted quantitative image features from HNSCC
and present a comprehensive framework to develop and evaluate
machine-learning classifiers of these features to identify distinct molec-
ular phenotypes derived from genomics, transcriptomics and DNA
methylation data. Our results show that molecular phenotypes of
HNSCC tumors, especially HPV infection status, can be predicted from
quantitative features extracted from CT images. This radiomic signature
of HPV can be used to develop non-invasive tools for diagnosing HNSCC
patients.

HPV-positive cases are increasingly prevalent, usually have better
survival and benefit from specifically tailored treatment protocols
[4,13,57]. Therefore, HPV testing is important for the clinical manage-
ment for HNSCC patients. Currently, there's no standard clinical marker
or screening test for HPV-associated HNSCC. The most commonly used
screening tests are in situ hybridization to detect HPV DNA and immu-
nochemical p16 staining based on tumor biopsy [58]. P16 immunostain-
ing, the surrogate biomarker that is mostwidely used to determineHPV
status in clinic, is not sufficiently specific to ensure safe de-escalation of
treatment in clinical practice, because false positive results could lead to
undertreatment of aggressive HPV negative HNSCC [59]. Moreover, P16
overexpression fails to detect HPV in subanatomical regions apart from
the oropharynx [60]. Our results suggest that a combined clinical
+radiomic model provides an alternative strategy to determine HPV
status that is convenient, non-invasive and has lower financial cost.

The radiomic model to predict HPV was observed to be significantly
better than othermolecular subtypes and somaticmutations.Moreover,
the HPV radiomic signature was validated in an independent Stanford-
HNSCC cohort, even though the HPV detection method between both
cohorts are different, p16 immunohistochemistry in the Stanford-
HNSCC cohorts vs. RNA-seq in the TCGA-HNSCC cohort. In addition,
the two cohorts have very different prevalence of HPV+ cases (18.6%
in TCGA vs. 73.6% in Stanford, Table 1). This suggests our radiomic
model for HPV prediction is robust to the method used to determine
HPV infection and the prevalence of HPV+ in the HNSCC population.
When compared with the clinical model, the radiomic model was not
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as good in the whole HNSCC population likely due to confounding with
tumor location, however in a subset analysis of tumors in the pharynx,
radiomic features improved the performance. This suggests that
radiomic models for HPV prediction are agnostic to primary site infor-
mation, and as such might capture the molecular heterogeneity.

We also observed that the radiomic signature for the DNAmethyla-
tion subtype MethylMix HPV+ has slightly higher performance com-
pared to RNA-defined HPV status. Note that all MethylMix HPV+
cases are also RNA-defined HPV+ but only 81% of RNA-defined HPV+
patients are MethylMix HPV+ (Fig. S1), suggesting that RNA-defined
HPV+ cases are not capturing all HPV+ cases and are therefore less ac-
curately predicted by quantitative image features.

A few previous studies have reported the capability of quantitative
CT imaging features to identify HPV infection among HNSCCs [61–63].
Our work differs from these previous studies as follows. Firstly, instead
of randomly splitting a dataset into training and test set, we applied
nested stratified cross-validation framework to train and evaluate the
models, resulting in more robust estimates of the performance. We
also tested the radiomic model for HPV status in an independent
dataset. Secondly, we also compared the radiomic model to a model
built on clinical features, suggesting that the radiomic model is superior
when tumor location is removed by focusing only on pharynx tumors,
showing that a clinical-only model is suboptimal. Next, Zhu et al. used
the same source dataset as us [62], however they report inferior results.
One possible explanation is that we also extracted wavelet features
which we show are crucial for prediction (Figs. S3-S6). Another reason
could be that the nested 10 times 10 stratified cross-validation is more
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effective for this sample size scenario. Lastly, in our training datasets,
HPV status was determined with a more accurate method, RNA-seq, in-
stead of immunohistochemical p16 staining which is sensitive but not
specific enough [58]. This is backed up by the evidence that our HPV
radiomic model trained using the TCGA-HNSCC cohort, where RNA-
seq was applied to determine HPV infections, could still be validated
in an independent Stanford-HNSCC cohort, even though the HPV detec-
tionmethodwas p16. There are also a few studies working on HPV pre-
diction in HNSCC with imaging modalities other than CT. For example,
Vallières et al. identified a set of FDG-PET features that can determine
HPV status in HNSCC [64]. Next, Nakahira et al. showed that apparent
diffusion coefficients from MR could be used to predict HPV in patients
with oropharyngeal squamous cell carcinoma [65].

The gene expression atypical subtype is another subtype related to
HPV infection. In this work, radiomic models for atypical showed an ac-
ceptable performance. The subtype atypical contains all MethylMixHPV
+ cases and 86% of the RNA-defined HPV+ cases, and is thus heavily
linked with HPV infection. But, atypical contains approximately 50% of
samples that are not HPV+ by any definition (MethylMix HPV+ or
RNA-defined HPV+) suggesting that this transcriptomic subgroup has
its own radiomic signature characterizing this subtype. Besides enrich-
ment of HPV+, atypical cases are characterized by lack of chromosome
7 amplifications and mutations in the helical domain of PIK3CA.

As for non-HPV-related subtypes, our results show that quantitative
image features have moderate ability to identify the DNA methylation
subtypes including the non-CIMP-Atypical, and the mutation NSD1.
The CIMP, ‘CpG island methylator phenotype’, is a driver for cancer de-
velopments related to epigenetic silence of tumor suppressor genes
[15]. The non-CIMP-atypical subtype was mostly found with CASP8
and NOTCH1 mutations. It is interesting that radiomic models for DNA
methylation subtypes non-CIMP-atypical and Stem-like-Smoking,
gene expression subtype classical, and mutation NOTCH1 performed
better than clinical models, suggesting the CT imaging features are
more representative of the tumors and the inter-tumor and intra-
tumor characteristics can be much better captured by the imaging
than semantic clinical features for these subtypes.

Next, we explored the top contributing quantitative image features
from the radiomic signatures for each of the molecular phenotypes.
Across all prediction tasks, shape and size features, global histogram fea-
tures, and wavelet filter-based features are mostly selected feature
groups in the radiomic signatures (Fig. S2). However, the most predic-
tive and robust features varied across different molecular phenotypes,
and could source radiomics features from any feature group. Taken to-
gether, the extracted quantitative image features could capture signifi-
cant information to individualize various molecular phenotypes, thus
helping to explain how the predictive models could work.
We admit that there are several limitations residing in this study.
Firstly, there could be potential bias in quantitative image features be-
cause of the limited number of experts involved in tumor volume seg-
mentation or variability in CT image acquisition protocols for both the
two datasets included in this work. Previously Zhao et al. reported
that quantitative image features were reproducible over a broad range
of CT scan settings [66]. To minimize such noise, we only included
contrast-enhanced images resampled to isovolumetric voxels, and we
applied Z-score standardization to the quantitative image features. Be-
sides, we tested the features robustness with image perturbation ap-
proach proposed by Zwanenburg et al. [45]. The resulted robust
features were further used for the analysis. Features harmonization
was also applied to harmonize the radiomic features of images collected
from different sites. Secondly, we externally validated the prediction
model for HPV infection to evaluate if a model built on the TCGA cohort
is able to predict the same phenotype in a Stanford cohort, however,
such external validations were not performed for other molecular sub-
types for the reason of unavailability of the tissue. In addition, we did
a calibration analysis for both the TCGA-HNSCC and Stanford-HNSCC
analyses, showing that the Stanford-HNSCC radiomic model was not
well calibrated compared to the TCGA-HNSCC radiomic model
(Fig. S6). In addition, the combined clinical+radiomicmodel was better
calibrated than models only using clinical or radiomics features, sug-
gesting that integrating clinical and radiomic data does not lead to the
best models. Nevertheless, our results show good validation in terms
of predictive performance of the HPV radiomic signature, suggesting
that also other predictive models of gene expression subtypes, DNA
methylation subtypes, and somaticmutations have the potential to gen-
eralize to new cohorts.

In conclusion, our findings highlight the feasibility of non-invasive
molecular phenotyping systems to subtypeHNSCCs for both established
biomarkers such as HPV+, and proposed transcriptomic and DNA
methylation subtypes beyond HPV status. With the movement towards
stratified treatment strategies for HPV+ versus HPV- HNSCC, our
radiomic model could potentially be used to predict HPV status at the
time of diagnosis, allowing more informed planning of surgery and
treatment. More generally, this radiomic analysis opens up non-
invasive assignment of HPV+ patients prior to surgery for inclusion in
clinical trials, for de-intensification of treatment, for neoadjuvant thera-
pies and for checkpoint immunotherapies that show greater response
rates in HPV+cases. However, it is noteworthy thatmore and larger co-
horts are warranted to verify and further enhance the findings of our
study before translating the models as diagnostic tools in clinical
practice.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.06.034.
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