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ABSTRACT
Bats face many sources of acoustic interference in their natural environments, including other bats
and potential prey items that affect their ability to interpret the returning echoes of their biosonar
signals. To be able to navigate and forage successfully, bats must be able to counteract this
interference and one of the ways they achieve this is by altering the various parameters of their
echolocation. We describe these changes in signal design within the context of a modified definition
of the jamming avoidance response originally applied to the signal changes of weakly electric fish.
Both of these groups use active sensory systems that exhibit similarities in function but we take this
opportunity to highlight major differences each groups’ response to signal interference. These
discrepancies form the basis of our need for an expanded description of the jamming avoidance
response in echolocating bats.
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Jamming and the jamming avoidance response (JAR)
have long been a topic of inquiry in the domain of active
sensory systems. JAR is a phenomenon first described in
the weakly electric fish(es) (WEF) which use the electric
organ discharge (EOD) in active electrolocation [1,2] and
communication [3]. The later application of the same
concept to biosonar in bats has resulted in considerable
confusion. The goal of this paper is to briefly review JARs
and to propose an adequate description of what constitu-
tes a JAR in echolocating bats.

The traditional definition of JAR, originating with the
WEF, asserts that when faced with the interfering signals
of a nearby conspecific, individuals reflexively alter their
EOD to minimize signal similarity [4] that would other-
wise result in diminished electrolocation performance [5].
How the JAR is implemented depends on the type of
WEF. Fishes that emit wave-like signals shift their dis-
charge frequency to avoid spectral overlap with the signals
of nearby conspecifics (Figure 1(a)), while those that emit
pulse-like signals will change their inter-pulse interval to
avoid temporal overlap (Figure 1(c)).

Following this convention, studies evaluating active sen-
sing in bat models have maintained that a jamming stimu-
lus must decrease task performance and a true JAR must
act to increase signal disparity in the temporal and/or
frequency domains. We believe it is not suitable to apply
such constraining definitions to bat echolocation by virtue
of the manner in which this modality operates. Bats are
capable of adapting their biosonar emissions in a matter of

milliseconds, which is three orders of magnitude faster
than JARs seen in WEF [5]. Thus, bats could employ
a JAR mechanism rapidly enough that a decrease in per-
formance is not readily apparent in experiments. Also,
numerous studies have illustrated the extensive capability
of bats to adapt many parameters of their biosonar in the
presence of acoustic interference and these changes appear
to be highly context-dependent [9–14]. Just some of the
documented changes include bidirectional shifts in echo-
location frequencies away from a stimulus (Figure 1(b))
[15–17], changing the timing or rate of vocal emissions
(Figure 1(d)) [18–20], and altering their peak signal fre-
quencies, possibly to maximize individual differences
[21–25].

The variability in bat vocal responses can be attrib-
uted to several factors such as the species, whether the
study takes place in the field or lab, the potential jam-
ming stimulus, and the type of task being performed.
Measurement of biosonar features also varies. Some
past studies claim to find evidence in support of a bat
JAR, while others suggest the changes do not strictly fit
into some definitions [26,27], and thus should not be
considered as such.

There are two primary alternatives to the traditional
JAR. The first, the Lombard effect, typically manifests as
an increase in call amplitude in the presence of acoustic
interference along with increases in frequency [28], signal
duration and number of calls [29]. To achieve these
changes, bats continuously monitor the ambient noise
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level and this response occurs nearly instantaneously with
only a 30 ms latency [30]. However, it is not clear whether
this effect for bats is meant to increase the detectability of
echoes, or is simply part of the audiovocal feedback loop
used to construct signals. The second, the attention draw-
ing hypothesis, states that bats change their echolocation
in response to objects entering the acoustic field of view,
causing a shift in attention from another task. In studies
that support this explanation, bats always increase the
spectral frequency of calls [26,27]. However, it is difficult,
even in laboratory conditions, to know exactly what draws
a bat’s attention and if an attention drawing object hap-
pens to be one which itself produces sound (i.e. another
bat), then it can be difficult to distinguish between acous-
tic interference and attention.

Many researchers have converged on the idea that
neither traditional JARs nor the most common alterna-
tives, fully explain the variation seen in bat echolocation

when presented with jamming signals [15,26,27,31,32].
Given the studies to date, we believe that jamming in
bats includes all forms of acoustic interference that
make interpreting returning echoes more challenging
and creating difficulty in completing vital tasks such as
orienting or foraging. A JAR, therefore, is an umbrella
term encompassing all the potential ways in which a bat
may adapt their echolocation to reduce interference and
subsequently negating the jamming effects on the bats’
performance.

This is not to suggest that a JAR is necessary in every
echolocation scenario. There are several inherent proper-
ties of echolocation that make it resistant to jamming.
Bats make use of high redundancy, temporally patterned
call sequences [33] with individual-level differences
[11,34]. The brain also possesses neurons that are sensitive
only to a range of pulse-echo delays [35,36], creating
a particular time window during which the bat is most

Figure 1. Hypothetical spectral (a,b) and temporal (c,d) JARs for WEF (a,c) and echolocating bats (b,d).
When two WEF are in close proximity and their EODs are very similar, wave-type fish will shift their EOD frequency in opposite directions
while pulse-type fish alter the inter-pulse interval between EODs. We depict what this may look like in echolocating bats according to the
traditional definition modelled after the WEF. Bats using frequency-modulated echolocation calls, as shown in the figure, would potentially
face both spectral and temporal jamming. However, shifting frequencies or emission rates are not the only parameters that bats may alter.
Bats using constant-frequency echolocation calls (a.k.a high duty-cycle bats) have not received as much attention, but would likely face
challenges similar to the wave-type electric fish, who exhibit 100% duty cycle signals. These bats still exhibit changes in spectral [6,7,21,27]
and non-spectral parameters [7,8,27]. For both WEF and bats, signal changes can be elicited with man-made stimuli and recordings of
conspecifics.
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sensitive to returning echoes [37]. And lastly, there is
directionality to the sonar beam and the sensitivity of
the ears [38]. Nevertheless, there are scenarios in which
these properties are not sufficient to reduce the effects of
interference such as high-density bat emergences or fora-
ging sites or when presented with active jamming signals
[39], like those produced by insects in response to bat
echolocation [40–43] or competing conspecifics [25]. In
these instances, we would expect that individuals change
some parameter of their biosonar.

Our modified description of JARs is useful firstly
because it accounts for the vast array of responses
reported in the literature and secondly because it does
not constrain the biosonar response to only reducing
spectral or temporal overlap. This allows us to fully
encompass the flexibility of bat echolocation calls in
our analyses and take into consideration the type of
signal and context in which it occurs.
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