Exploring the Phe-Gly Dipeptide-Derived Piperazinone Scaffold in the Search for Antagonists of the Thrombin Receptor PAR1

Ángel M. Valdivielso, M. Teresa García-López, Marta Gutiérrez-Rodríguez and Rosario Herranz *

Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain;
E-Mails: angel@iqm.csic.es (Á.M.V.); iqmgl37@iqm.csic.es (M.T.G.-L.); mgutierrez@iqm.csic.es (M.G.-R.)

* Author to whom correspondence should be addressed; E-Mail: rosario@iqm.csic.es; Tel.: +34-912-587-537; Fax: +34-915-644-853.

Received: 4 February 2014; in revised form: 8 April 2014 / Accepted: 13 April 2014 / Published: 16 April 2014

Abstract

A series of Phe-Gly dipeptide-derived piperazinones containing an aromatic urea moiety and a basic amino acid has been synthesized and evaluated as inhibitors of human platelet aggregation induced by the PAR1 agonist SFLLRN and as cytotoxic agents in human cancer cells. The synthetic strategy involves coupling of a protected basic amino acid benzyl amide to 1,2 - and 1,2,4-substituted-piperazinone derivatives, through a carbonylmethyl group at the N_{1} position, followed by formation of an aromatic urea at the exocyclic moiety linked at the C_{2} position of the piperazine ring and removal of protecting groups. None of the compounds showed activity in the biological evaluation.

Keywords: peptidomimetics; regioselectivity; piperazinones; platelet antiaggregant activity; PAR1 antagonists

1. Introduction

Most cellular effects of thrombin are mediated by activation of the protease-activated receptor 1 (PAR1) [1,2]. This receptor is mainly expressed in platelets, where its activation induces aggregation. Therefore, PAR1 is considered a therapeutic target in cardiovascular diseases [1,3-5], whose inactivation could inhibit platelet aggregation without affecting thrombin's role in the coagulation cascade [3,6,7]. In addition, numerous studies have shown that PAR1 is overexpressed in invasive and
metastatic tumors and that its expression levels directly correlate with the degree of invasiveness of the cancer [8-13]. Based on these facts, this receptor is starting to be also considered a promising target for cancer therapy, particularly in the search of angiogenesis inhibitors [2].

Activation of PAR1 by thrombin involves the proteolytic cleavage of the N-terminal exodomain between Arg^{41} and Ser^{42}. This cleavage unveils the recognition sequence SFLLRN that acts as a tethered ligand, auto-activating the receptor [14]. The binding of this tethered ligand is followed by the coupling of the receptor to heterotrimeric G proteins and activation of signal transduction. This particular intramolecular activation mechanism makes PAR1 a target particularly difficult to address.

The first potent PAR1 antagonists were SFLLRN-based peptidomimetic ureas, represented by the optimized antagonist RWJ-58259 (Figure 1) [7], which is considered a standard reference in pharmacological studies on PAR1 receptor [15]. Later, a few series of antagonists have been discovered by HTS of diverse libraries of non-peptide small molecules [7,16]. Up to now, only two of these PAR1 antagonists are in advanced clinical development for the treatment of patients with acute coronary syndrome, SCH-530348 (named vorapaxar, in phase III clinical trials) [17] and E-5555 (named atopaxar, in phase II clinical trials) [18] (Figure 1).

Figure 1. Reference PAR1 antagonists in pharmacological studies and/or advanced clinical development.

RWJ-58259

Taking as reference the peptidomimetic antagonist RWJ-58259 we initiated a project directed to the search of new PAR1 antagonists using a diversity oriented synthesis (DOS) strategy. To this aim, we planned the synthesis of diverse small directed libraries of different scaffolds able to assemble, at least, one or two aromatic groups and one or two basic groups at variable distances and orientations [19]. Among the scaffolds, we focused our attention on the piperazine ring, since this system is recognized as a privileged scaffold, due to its recurrent presence in biological active compounds [20,21]. Firstly, we synthesized the series of 1,2,4,6-tetrasusbtituted-piperazinone derivatives of general formula \mathbf{A} (Figure 2). Some of these derivatives showed moderate antagonist activity [22]. Trying to improve this activity and to establish structure-activity relationships, we have synthesized and report herein the analogues B, where the basic amino acid side chain has been moved from the piperazine C_{6} position to the N_{1}. Now, the indazole moiety of the PAR1 antagonist RWJ-58259 has also been included among
the selected arylureido groups at the piperazine C_{2}-substituent. The new piperazinone derivatives \mathbf{B} have been evaluated as human PAR1 antagonists in a platelet aggregation assay and as cytotoxic agents in human cancer cell lines.

Figure 2. Piperazinone derivatives proposed as PAR1 antagonists.

$\mathrm{Ar}=\mathrm{Ph}$, Indol-3-yl; $\mathrm{n}=3,4 ; \quad \mathrm{R}^{1}=\mathrm{Boc}, \mathrm{C}\left(\mathrm{NH}_{2}\right)=\mathrm{N}-\mathrm{Pbf}$
$\mathrm{R}^{2}=\mathrm{H}, \mathrm{Bn}, \mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{t} \mathrm{Bu} ; \quad \mathrm{R}^{3}=\mathrm{H}, \mathrm{Bn} ; \quad \mathrm{R}^{4}=\mathrm{NHBoc}, \mathrm{NHCONHBn}$
Xaa $=\operatorname{Orn}\left(R^{6}\right), \operatorname{Lys}\left(R^{6}\right), \operatorname{Arg}\left(R^{7}\right) ; \quad R^{6}=Z, H ; \quad R^{7}=P b f, H$
$\mathrm{R}^{5}=\mathrm{Ph}, \mathrm{Bn}, \mathrm{Indz} ; \quad *=$ Stereochemistry (R) and (S)

2. Results and Discussion

Two alternative retrosynthetic routes were considered for the building of the desired piperazinones derivatives \mathbf{B} from the starting 1-(benzyloxycarbonyl)methyl-piperazinones $\mathbf{1}$ [23]. These routes differ in the order of incorporation of the basic amino acid and the urea moieties. Firstly, we attempted the formation of the urea at the exocyclic 1-amino-2-phenylethyl moiety, before coupling the basic amino acid residue Xaa. However, as shown in Scheme 1, the Boc removal from the (3:1) epimeric mixture of N_{4}-unsubstituted-piperazinones 1, by treatment with a 3 N solution of HCl in EtOAc, followed by reaction with benzyl isocyanate in the presence of $E t_{3} \mathrm{~N}$, led to the corresponding epimeric mixture of ureas 2 in 40% yield, along with 30% of the 1 H -pyrazino[1,2-a]pyrazines $\mathbf{3}$. These bicyclic derivatives resulted from the nucleophilic attack of the exocyclic amine, generated by the Boc removal, at the (benzyloxycarbonyl)methyl group in the N_{1}-position. To minimize this cyclization, both the Boc removal and the urea formation were carried out at $0^{\circ} \mathrm{C}$ with an excess of benzyl isocyanate (2 equiv.) to accelerate the urea formation. Nevertheless, in none of these attempts was the yield of the ureas $\mathbf{2}$ improved significantly.

Scheme 1. Synthesis of the ureas 2 and the $1 H$-pyrazino[1,2-a]pyrazines 3.

To avoid the cyclization, we decided to incorporate the basic amino acid prior to the urea formation. As shown in Scheme 2, the Pd (C) catalyzed hydrogenolysis of the benzyl ester of 1, followed by coupling with H-Orn(Z)-NHBn (6a) and H-Lys(Z)-NHBn (6b), using diisopropylcarbodiimide (DIC) and 1-hydroxybenzotriazol (HOBt) as coupling agents, provided the corresponding epimeric mixtures $\mathbf{7 a}, \mathbf{b}$ in $60 \%-70 \%$ yield. The subsequent Boc removal, followed by reaction with phenyl or benzyl isocyanate in the presence of $\mathrm{Et}_{3} \mathrm{~N}$, gave the respective epimeric mixtures of ureas $\mathbf{9 a}, \mathbf{b}$ and $\mathbf{1 0 a}, \mathbf{b}$, which were chromatographically resolved into their respective (R) - and (S)-epimers. Finally, the removal of the Z protecting group from the basic side chain, by $\operatorname{Pd}(C)$-catalysed hydrogenolysis, provided the corresponding deprotected pseudotripeptides $\mathbf{1 1 a , b}$ and 12a,b. The (3:1) epimer ratio remained constant throughout the synthetic route.

Scheme 2. Synthesis of the 4-unsubstituted-piperazinone derivatives 11a,b and 12a,b.

In view of the good results in the synthesis of the 4 -unsubstituted-piperazinone derivatives $\mathbf{1 1 a}, \mathbf{b}$ and 12a,b, a parallel synthetic scheme was applied to the synthesis of the 4-benzyl-piperazinone derivatives 19a-c and 20a,b from the (3:1) epimeric mixture of 4-benzyl-piperazinones $\mathbf{1 3}$ [23] (Scheme 3). Based on the biological results of the previous library \mathbf{A}, besides ornithine (a) and lysine (b), arginine (c) was also included in this series. The Pbf protection was used for the guanidino group of the side chain of this amino acid. This protection was removed in the last step of the synthesis by treatment with a 90% solution of TFA in $\mathrm{H}_{2} \mathrm{O}$ in the presence of triisopropylsilane (TIPS). The final arylureido derivatives 19a-c and 20a,b were obtained in $39 \%-58 \%$ overall yields from 13, as (3:1) epimeric mixtures that could not be separated in none of their synthetic steps.

Scheme 3. Synthesis of the N_{4}-benzyl-piperazinone derivatives 19a-c and 20a,b.

The 4-benzyl-piperazinones 16b,c were also used for the preparation of indazol-6-yl-ureido derivatives analogues of the reference antagonist RWJ-58259. These analogues were prepared according to our procedure developed for the synthesis of RWJ-58259 [24], which involves the in situ formation of the isocyanate $\mathbf{2 2}$ (Scheme 4), by reaction of the corresponding 6 -amino-indazole 21 with triphosgene in the presence of propylene oxide as HCl acceptor, followed by reaction with the epimeric mixture of the 4-benzyl-piperazinones 16b,c. The Z- or Pbf-removal, by hydrogenolysis and TFA treatment, respectively, provided the proposed ureas $\mathbf{2 4 b}, \mathbf{c}$ as (3:1) epimeric mixtures that, like the analogues 19 and 20, could not be resolved at any of their synthetic steps.

To evaluate the PAR1 antagonist activity, all new compounds were screened as inhibitors of human platelet aggregation induced by a $30 \mu \mathrm{M}$ concentration of the PAR1 agonist SFLLRN [22]. The antagonist RWJ-58259 was used as a reference. At $10 \mu \mathrm{M}$ concentration, this antagonist inhibited 98% the platelet aggregation. However, none of the new compounds displayed significant activity at $0.1 \mathrm{mg} / \mathrm{mL}(\approx 150 \mu \mathrm{M})$. In the structural comparison of the inactive deprotected indazole-derived ureas 24b,c with the potent peptidomimetic urea PAR1 antagonists, to which the reference antagonist RWJ-58259 belongs [25], the main difference is localized at the linkage between the aromatic and the
basic amino acids. Thus, the peptide bond of RWJ-58259 is replaced by the piperazinone ring and an additional Gly residue in 24b,c. The results show that this replacement is completely detrimental for PAR1 antagonist activity.

Scheme 4. Synthesis of the RWJ-58259 analogues 24b,c.

In a HTS of antitumor agents, none of the compound showed cytotoxicity on three representative human cancer cell lines, such as breast (MDA-MB-231), lung (A549), and colon (HT-29).

3. Experimental

3.1. General

All reagents were of commercial quality. Solvents were dried and purified by standard methods. Analytical TLC was performed on aluminum sheets coated with a 0.2 mm layer of silica gel $60 \mathrm{~F}_{254}$. Silica gel 60 (230-400 mesh) was used for flash chromatography. Analytical HPLC was performed on a Sunfire $\mathrm{C}_{18}(4.6 \times 150 \mathrm{~mm}, 3.5 \mu \mathrm{~m})$ column, with a flow rate of $1 \mathrm{~mL} / \mathrm{min}$, and using a tunable UV detector set at $214 \mathrm{~nm} .10 \%-100 \%$ gradient of $\mathrm{CH}_{3} \mathrm{CN}$ (solvent A) in 0.05% of TFA in $\mathrm{H}_{2} \mathrm{O}$ (solvent B) in 30 min was used as mobile phase. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded at 300 or 400 MHz , using TMS as reference, and ${ }^{13} \mathrm{C}$-NMR spectra were recorded at 75 or 100 MHz . The NMR spectra assignment was based on COSY, HSQC, and HMBC spectra. ESI-MS spectra were performed, in positive mode, using MeOH as solvent. MW experiments were carried out in a EmrysTM Synthesizer MW reactor (Biotage AB, surface IR sensor). Elemental analyses were obtained on a CH-O-RAOID apparatus. Optical rotations were determined in a Perkin Elmer 141 polarimeter.

3.2. Synthesis of Benzyl 2-[(2RS)-[(1S)-(3-benzylureido)-2-phenylethyl]-5-oxopiperazin-1-yl]acetate (2) and (1S,9aRS)- 1-benzyl-3,7-dioxooctahydro-1H-pyrazino[1,2-a]pyrazine (3)

The epimeric mixture of piperazinones $1[23][(R: S)=(3: 1)](500 \mathrm{mg}, 1.07 \mathrm{mmol})$ was dissolved in a solution of HCl in $\mathrm{EtOAc}(3.4 \mathrm{~N}, 20 \mathrm{~mL})$ and the mixture was stirred at room temperature for 30 min . Afterwards, the solvent was evaporated to dryness, the residue was dissolved in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (1:3, 8 mL) and the solution was lyophilized. Benzyl isocyanate ($199 \mu \mathrm{~L}, 1.61 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(224 \mu \mathrm{~L}$, $1.61 \mathrm{mmol})$ were added to a solution of the lyophilized powder in THF $(40 \mathrm{~mL})$ and the mixture was stirred for 1 h . Afterwards, the solvent was removed under low pressure and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$. The solution was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was purified by flash chromatography, with $0 \%-5 \%$ MeOH gradient in EtOAc as mobile phase, to afford the epimeric mixture of ureas 2 [$R: S$) $=(3: 1)]$ as a foam ($215 \mathrm{mg}, 40 \%$), along with the $1 H$-pyrazino[1,2-a]pyrazines $\mathbf{3}[23]$ ($83 \mathrm{mg}, 30 \%$).

Benzyl 2-[(2RS)-[(1S)-(3-benzylureido)-2-phenylethyl]-5-oxopiperazin-1-yl]acetate (2). HPLC t_{R} : $20.02 \mathrm{~min}[(\boldsymbol{R})-\mathbf{2}]$ and $21.24 \mathrm{~min}[(\boldsymbol{S})-\mathbf{2}] ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) .(\boldsymbol{R})-\mathbf{2} \delta(\mathrm{ppm}): 2.56(\mathrm{dd}, 1 \mathrm{H}$, $J=10.5$ and $\left.13.5 \mathrm{~Hz}, C H_{2}-\mathrm{Ph}\right), 2.82\left(\mathrm{dd}, 1 \mathrm{H}, J=4\right.$ and $\left.13.5 \mathrm{~Hz}, C H_{2}-\mathrm{Ph}\right), 3.06(\mathrm{dt}, 1 \mathrm{H}, J=4.5$ and $9 \mathrm{~Hz}, 2-\mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.26(\mathrm{~d}, J=18 \mathrm{~Hz}, 6-\mathrm{H}), 3.43$ (s, 2H, $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Bn}\right), 3.46$ (d, 1 H , $J=18 \mathrm{~Hz}, 6-\mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.32\left[\mathrm{~d}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right]$, $5.04[\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Bn}], 5.10\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Bn}\right)\right], 5.45(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH})$, 7.14-7.35 (m, 15H, Ar). (S)-2 $\delta(\mathrm{ppm}): 2.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.06(\mathrm{~m}, 1 \mathrm{H}$, $2-\mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.50(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 6-\mathrm{H}), 3.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Bn}\right), 3.58(\mathrm{~d}, 1 \mathrm{H}, J=17.5 \mathrm{~Hz}$, $6-\mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.32\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 5.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHBn}), 5.10$ [s, 2H, CH $\left.\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Bn}\right)\right], 5.45(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH}), 7.14-7.35(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$). (R)-2 $\delta(\mathrm{ppm}): 36.7\left[\mathrm{C}_{3}\right], 37.4\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 44.5\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 51.3$ [C_{6} and $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Bn}\right], 53.0\left[\mathrm{C}_{2}-\mathrm{CH}\right], 58.0\left[\mathrm{C}_{2}\right], 66.9\left[\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Bn}\right)\right], 127.3,127.4,127.6,128.4,128.5,128.6$, 128.7, 129.0, 129.2 [15CH (Ar)], 135.2 [C ($\left.\mathrm{CO}_{2} \mathrm{Bn}\right)$], 136.0 [C (Ph$\left.)\right], 139.3$ [C (NHBn)], 158.2 [CO (Urea)], 169.2 [C $\left.\mathrm{C}_{5}\right], 171.0\left[\mathrm{CO}_{2}\right] .(\boldsymbol{S})-\mathbf{2} \delta(\mathrm{ppm}): 36.7\left[\mathrm{C}_{3}\right], 37.4\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 44.5\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right]$, $51.3\left[\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Bn}\right], 53.0\left[\mathrm{C}_{2}-\mathrm{CH}\right], 55.6\left[\mathrm{C}_{6}\right], 58.0\left[\mathrm{C}_{2}\right], 66.9\left[\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Bn}\right)\right], 127.3,127.4,127.6$, $128.4,128.5,128.6,128.7,129.0,129.2$ [CH (Ar)], 135.2 [C (CO2Bn)], 136.0 [C (Ph)], 139.3 [C (NHBn)], 158.2 [CO (Urea)], 169.2 [C5], $171.0\left[\mathrm{CO}_{2}\right] ;$ ES-MS m/z $501.2[\mathrm{M}+1]^{+} ; \mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{5}(\%): \mathrm{C}$: 69.58, H: 6.44, N: 11.19. Found (\%): C: 69.73, H: 6.32, N: 11.45.

3.3. General Procedure for the Synthesis of the Piperazinone-Derived Acids $\mathbf{4}$ and $\mathbf{1 4}$

$\operatorname{Pd}(\mathrm{C})(10 \%)$ was added to a solution of the corresponding epimeric mixture of piperazinones $\mathbf{1}$ [23] or $\mathbf{1 3}[23][(R: S)=(3: 1)](1.00 \mathrm{mmol})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ and the mixture was hydrogenated at 1 atm of H_{2} at room temperature for 1 h . Afterwards, the reaction mixture was filtered and the solvent was evaporated under reduced pressure to obtain the epimeric mixture of the corresponding acids $\mathbf{4}$ or $\mathbf{1 4}$ $[(R: S)=(3: 1)]$.

2-[(2RS)-[(1S)-((tert-Butoxycarbonyl)amino)-2-phenyl-ethyl]-5-oxopiperazin-1-yl] acetic acid (4). Foam ($377.4 \mathrm{mg}, 100 \%$); HPLC $t_{\mathrm{R}}: 13.99 \mathrm{~min}[(\boldsymbol{R})-4]$ and $13.39 \mathrm{~min}[(\boldsymbol{S})-4] ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$,

DMSO- d_{6}). (\boldsymbol{R})-4 $\delta(\mathrm{ppm}): 1.24(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 2.56\left(\mathrm{dd}, 1 \mathrm{H}, J=10\right.$ and $\left.10.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.88(\mathrm{~m}, 1 \mathrm{H}$, $2-\mathrm{H}), 2.97$ (dd, $1 \mathrm{H}, J=3.5$ and $10.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Ph}$), 3.19 (m, 2H, $3-\mathrm{H}$), 3.30 (m, 1H, 6-H), 3.47 (d, 3 H , $J=17 \mathrm{~Hz}, 6-\mathrm{H}$ and $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 3.80(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 6.80(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}, N H B o c), 7.02-7.36$ (m, 5H, Ph), $7.76(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}) .(\boldsymbol{S})-4 \delta(\mathrm{ppm}): 1.25(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 2.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.82(\mathrm{dd}, 1 \mathrm{H}$, $J=2$ and $\left.13.5 \mathrm{~Hz}, C H_{2}-\mathrm{Ph}\right), 2.92(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.19(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 3.31(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}$, $6-\mathrm{H}), 3.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 3.80(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}, N H B o c), 7.02-7.36$ $(\mathrm{m}, 5 \mathrm{H}, \mathrm{Ph}), 7.75(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) .(\boldsymbol{R})-\mathbf{4} \delta(\mathrm{ppm}): 28.6\left[3 \mathrm{CH}_{3}(\mathrm{Boc})\right]$, $37.9\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 38.9\left[\mathrm{C}_{3}\right], 51.8\left[\mathrm{C}_{2}-\mathrm{CH}\right], 53.3\left[\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right], 54.0\left[\mathrm{C}_{6}\right], 58.4$ [$\left.\mathrm{C}_{2}\right], 78.1[\mathrm{C}(\mathrm{Boc})], 126.2$, $128.4,129.7$ [$5 \mathrm{CH}(\mathrm{Ph})], 139.6[\mathrm{C}(\mathrm{Ph})], 155.8$ [CO (Boc)], 168.3 [C $\left.\mathrm{C}_{5}\right], 172.6\left[\mathrm{CO}_{2}\right] .(\boldsymbol{S})-\mathbf{4} \delta(\mathrm{ppm}):$ $28.6\left[3 \mathrm{CH}_{3}(\mathrm{Boc})\right], 35.7\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 38.8\left[\mathrm{C}_{3}\right], 52.0\left[\mathrm{C}_{2}-\mathrm{CH}\right], 53.0\left[\mathrm{C}_{6}\right], 54.1\left[\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right], 59.0\left[\mathrm{C}_{2}\right]$, 78.0 [C (Boc)], 126.3, 128.4, 129.4 [5CH (Ph)], 139.8 [C (Ph)], 155.5 [CO (Boc)], 169.2 [C5], 172.4 [CO_{2}]; ES-MS m/z $378.0[\mathrm{M}+1]^{+} ; \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}$ (\%): C: 60.46, H: 7.21, N: 11.13. Found (\%): C: 60.60, H: 7.02, N: 11.25.

3.4. General Procedure for the Synthesis of the Piperazinone-Derived Pseudotripeptides 7a,b

HOBt ($136 \mathrm{mg}, 1.00 \mathrm{mmol}$), DIC ($309 \mu \mathrm{~L}, 2.00 \mathrm{mmol}$) and a solution of the corresponding benzylamides H-Orn(Boc)-NHBn (6a) [26] and H-Lys(Boc)-NHBn (6b) [27] (1.50 mmol) in dry DMF $(4 \mathrm{~mL})$ were added to a solution of the epimeric mixture of the piperazinone-derived acid 4 (1.00 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ and stirred for 24 h . Afterwards, the solvent was removed under reduced pressure and the residue was dissolved in EtOAc (100 mL). This solution was washed with a solution of 10% citric acid $(2 \times 20 \mathrm{~mL})$, a saturated solution of $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The residue was purified by flash chromatography, with $1 \%-10 \% \mathrm{MeOH}$ gradient in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as mobile phase to afford the corresponding epimeric mixture of piperazinone derivatives $7 \mathbf{a}, \mathbf{b}[(R: S)=(3: 1)]$.

N-[2-[(2RS)-[(1S)-((tert-Butoxycarbonyl)amino)-2-phenylethyl]-5-oxopiperazin-1-yl]acetyl]-Orn(Z)NHBn (7a). Foam ($429 \mathrm{mg}, 60 \%$); HPLC $t_{\mathrm{R}}: 21.07 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{R})-7 \mathbf{a} \delta(\mathrm{ppm})$: $1.31(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.52(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right)$, $2.86(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.12(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 3.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.34(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 3.36(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}$ and $6-\mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH})$, 4.34 [dd, $1 \mathrm{H}, J=5.5$ and $\left.15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.42$ [dd, $1 \mathrm{H}, J=5.5$ and $15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})$], $4.70(\mathrm{~m}, 3 \mathrm{H}, \alpha-\mathrm{H}$ and $N H B o c), 4.83\left[\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{Z})\right], 4.93\left[\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{Z})\right]$, $5.12(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, N H Z), 6.38(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 7.11-7.39(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ar}$ and $N H B n), 7.79(\mathrm{~d}, 1 \mathrm{H}$, $J=8 \mathrm{~Hz}, \alpha-\mathrm{NH}) .(\boldsymbol{S})-7 \mathbf{a} \delta(\mathrm{ppm}): 1.31(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.64(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 3.26(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 3.32(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.46(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.35$, 4.47 [m, 2H, CH $2(\mathrm{NHBn})], 4.82\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 4.95\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHZ}), 6.62$ (m, 1H, 4-H), 7.11-7.39 (m, 16H, Ar and NHBn), $7.79(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \alpha-\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)(\boldsymbol{R})-\mathbf{7 a} \delta(\mathrm{ppm}): 26.3\left[\mathrm{C}_{\gamma}\right], 28.2\left[3 \mathrm{CH}_{3}(\mathrm{Boc})\right], 30.3\left[\mathrm{C}_{\beta}\right], 37.6\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 39.4\left[\mathrm{C}_{3}\right], 39.7\left[\mathrm{C}_{\delta}\right]$, $43.5\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 51.3\left[\mathrm{C}_{2}-\mathrm{CH}\right], 51.5\left[\mathrm{C}_{6}\right], 54.0\left[\mathrm{C}_{6}\right], 55.7\left[\mathrm{CH}_{2} \mathrm{CO}\right], 58.8\left[\mathrm{C}_{2}\right], 66.6\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 79.9$ [C (Boc)], 126.7, 127.4, 127.7, 127.9, 128.1, 128.4, 128.6, 129.3 [15CH (Ar)], 136.4 [C (Ph)], 137.0 [C (Z)], 138.0 [C (NHBn)], 155.6 [CO (Boc)], 157.1 [CO (Z)], 168.9 [C C_{5}], 169.7 [CO], 171.5
[α-CONH]. $(\boldsymbol{S})-7 \mathbf{a} \delta(\mathrm{ppm}): 28.2\left[3 \mathrm{CH}_{3}(\mathrm{Boc})\right], 43.5\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 66.6\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 79.9$ [C (Boc)], 126.6, 127.4, 127.6, 127.9, 128.0, 128.4, 128.6, 129.3 [15CH (Ar)], 136.4 [C (Ph)], 137.0 [C (Z)], 138.0 [C (NHBn)], 155.6 [CO (Boc)], 157.1 [CO (Z)], 171.5 [α-CONH]; ES-MS m/z $715.6[\mathrm{M}+1]^{+}$; $\mathrm{C}_{39} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{7}$ (\%): C: 65.53, H: 7.05, N: 11.76. Found (\%): C: 65.71, H: 6.98, N: 11.89.
$\mathrm{N}-[2-[(2 \mathrm{RS})-[(1 \mathrm{~S})-(($ tert-Butoxycarbonyl)amino)-2-phenylethyl]-5-oxopiperazin-1-yl]acetyl]-Lys(Z)-
NHBn (7b). Foam (481 mg, 66\%); HPLC $t_{\mathrm{R}}: 21.56 \mathrm{~min}[(\boldsymbol{R})-7 \mathbf{b}]$ and $21.41 \mathrm{~min}[(\boldsymbol{S})-7 \mathbf{b}] ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{R})-7 \mathbf{b} \delta(\mathrm{ppm}): 1.27(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.29(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.44(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.65$ $(\mathrm{m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.78(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.95(\mathrm{~d}, 1 \mathrm{H}, J=10 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}-\mathrm{Ph}\right), 3.05(\mathrm{~m}, 2 \mathrm{H}, \varepsilon-\mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.23(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 3.35(\mathrm{~m}$, $1 \mathrm{H}, 6-\mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.34\left[\mathrm{dd}, 1 \mathrm{H}, J=8\right.$ and $\left.15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.40[\mathrm{dd}, 1 \mathrm{H}, J=8$ and $\left.15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.48(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.81(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, N H B o c), 5.03\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.25$ $(\mathrm{m}, 1 \mathrm{H}, N H Z), 6.85(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 7.08-7.40(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ar}$ and $N H B n), 7.79(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \alpha-\mathrm{NH})$. (S)-7b $\delta(\mathrm{ppm}): 1.27(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.29(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.44(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.83(\mathrm{~m}$, $1 \mathrm{H}, \beta-\mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.23(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 3.36(\mathrm{~m}$, $1 \mathrm{H}, 6-\mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.28,4.42\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.46(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 5.03\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ $(\mathrm{Z})], 5.25(\mathrm{~m}, 1 \mathrm{H}, N H Z), 6.77(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 7.08-7.40(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ar}$ and $N H B n), 7.73(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}$, $\alpha-\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{R})-7 \mathbf{b} \delta(\mathrm{ppm}): 22.6\left[\mathrm{C}_{\gamma}\right], 28.1\left[3 \mathrm{CH}_{3}(\mathrm{Boc})\right], 29.2\left[\mathrm{C}_{\delta}\right], 32.1$ [C C_{β}], 37.6 [$\left.\mathrm{CH}_{2}-\mathrm{Ph}\right], 39.5\left[\mathrm{C}_{3}\right], 40.5\left[\mathrm{C}_{\varepsilon}\right], 43.4\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 51.6\left[\mathrm{C}_{2}-\mathrm{CH}\right], 52.7$ [$\left.\mathrm{C}_{\alpha}\right], 53.9$ [$\left.\mathrm{C}_{6}\right], 55.7$ [$\left.\mathrm{CH}_{2} \mathrm{CO}\right], 58.7\left[\mathrm{C}_{2}\right], 66.4\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 79.6[\mathrm{C}(\mathrm{Boc})], 126.7,127.3,127.6,128.0,128.5,128.6,129.2$ [15CH (Ar)], $136.6[\mathrm{C}(\mathrm{Ph})], 137.1[\mathrm{C}(\mathrm{Z})], 138.1[\mathrm{C}(\mathrm{NHBn})], 155.6$ [CO (Boc)], 156.5 [CO (Z)], $169.4\left[\mathrm{C}_{5}\right], 169.8[\mathrm{CO}], 171.5[\alpha-\mathrm{CONH}] .(\boldsymbol{S})-7 \mathrm{bb} \delta(\mathrm{ppm}): 22.6\left[\mathrm{C}_{\gamma}\right], 28.1\left[3 \mathrm{CH}_{3}(\mathrm{Boc})\right], 29.6\left[\mathrm{C}_{\delta}\right]$, $31.8\left[\mathrm{C}_{\beta}\right], 39.4\left[\mathrm{C}_{6}\right], 43.4\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 51.9\left[\mathrm{C}_{2}-\mathrm{CH}\right], 52.7\left[\mathrm{C}_{\alpha}\right], 53.9\left[\mathrm{C}_{6}\right], 55.7\left[\mathrm{CH}_{2} \mathrm{CO}\right], 59.0\left[\mathrm{C}_{2}\right]$, $66.4\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 79.7[\mathrm{C}(\mathrm{Boc})], 126.6,127.3,127.6,128.0,128.5,128.6,129.2[15 \mathrm{CH}(\mathrm{Ar})], 136.6[\mathrm{C}$ (Ph)], $137.1[\mathrm{C}(\mathrm{Z})], 138.1[\mathrm{C}(\mathrm{NHBn})], 155.8$ [CO (Boc)], 156.5 [CO (Z)], 169.4 [C5], 170.3 [CO], $171.6[\alpha-\mathrm{CONH}]$; ES-MS $m / z 729.3[\mathrm{M}+1]^{+} ; \mathrm{C}_{40} \mathrm{H}_{52} \mathrm{~N}_{6} \mathrm{O}_{7}$ (\%): C: 65.91, H: 7.19, N: 11.53. Found (\%): C: 65.72, H: 7.40, N: 11.68.

3.5. General Procedure for the N-Boc Removal in 7a,b. Synthesis of the Hydrochlorides 8a,b

The epimeric corresponding epimeric mixture of piperazine derivatives 7a,b $[(R: S)=(3: 1)]$ $(0.60 \mathrm{mmol})$ was dissolved in 3.4 N HCl in $\mathrm{EtOAc}(15 \mathrm{~mL})$ and the mixture was stirred at room temperature for 30 min . Afterwards, the solvent was evaporated to dryness, the residue was dissolved in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(1: 3,5 \mathrm{~mL})$, and the solution was lyophilized. The desired epimeric mixture of hydrochlorides $[(R: S)=(3: 1)]$ was obtained quantitatively.

N-[2-[(2RS)-[(1S)-Amino-2-phenylethyl]-5-oxopiperazin-1-yl]acetyl]-Orn(Z)-NHBn hydrochloride (8a). Amorphous solid ($391 \mathrm{mg}, 100 \%$); HPLC $t_{\mathrm{R}}: 14.86 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\boldsymbol{R})-\mathbf{8 a}$ $\delta(\mathrm{ppm}): 1.30(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.59(\mathrm{dd}, 1 \mathrm{H}, J=9$ and 14 Hz , $\left.\mathrm{CH}_{2}-\mathrm{Ph}\right), 2.86\left(\mathrm{dd}, 1 \mathrm{H}, J=6.5\right.$ and $14 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Ph}$ and $\left.2-\mathrm{H}\right), 2.95(\mathrm{~m}, 4 \mathrm{H}, \delta-\mathrm{H}$ and $3-\mathrm{H}), 3.02(\mathrm{~d}, 1 \mathrm{H}$, $J=18 \mathrm{~Hz}, 6-\mathrm{H}), 3.23\left(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.33\left(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.52(\mathrm{~d}, 1 \mathrm{H}$, $J=18 \mathrm{~Hz}, 3-\mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.28(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.40\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.97[\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}(\mathrm{Z})\right], 7.15-7.40(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ar}$ and NHZ$), 7.63(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 8.03\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.14(\mathrm{~d}, 1 \mathrm{H}$,
$J=8.5 \mathrm{~Hz}, \alpha-\mathrm{NH}), 8.51(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, N H B n) .(\boldsymbol{S})-\mathbf{8 a} \delta(\mathrm{ppm}): 1.30(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}$, $\beta-\mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.40\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.98\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 7.15-7.40$ $(\mathrm{m}, 16 \mathrm{H}, \mathrm{Ar}$ and $N H Z), 8.03\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.20(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}), 8.57(\mathrm{~m}, 1 \mathrm{H}, N H B n) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)(\boldsymbol{R})-\mathbf{8 a} \delta(\mathrm{ppm}): 26.1\left[\mathrm{C}_{\gamma}\right], 28.8\left[\mathrm{C}_{\beta}\right], 34.9\left[\mathrm{C}_{3}\right], 36.0\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 40.5\left[\mathrm{C}_{\delta}\right], 42.0$ [$\left.\mathrm{CH}_{2}(\mathrm{NHBn})\right], 49.7\left[\mathrm{C}_{6}\right], 50.2\left[\mathrm{C}_{2}-\mathrm{CH}\right], 52.4\left[\mathrm{C}_{\alpha}\right], 55.9\left[\mathrm{C}_{2}\right], 58.5\left[\mathrm{CH}_{2} \mathrm{CO}\right], 65.1\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 126.7$, $127.0,127.7,128.3,128.4,128.6,128.8$ [15CH (Ar)], 136.6 [C (Ph)], 137.2 [C (Z)], 139.4 [C $(\mathrm{NHBn})], 156.1[\mathrm{CO}(\mathrm{Z})], 168.2\left[\mathrm{C}_{5}\right], 169.7$ [CO], $171.6[\alpha-\mathrm{CONH}] .(\boldsymbol{S})-\mathbf{8 a} \delta(\mathrm{ppm}): 26.0\left[\mathrm{C}_{\gamma}\right], 28.8$ $\left[\mathrm{C}_{\beta}\right], 42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 52.3\left[\mathrm{C}_{\alpha}\right], 65.1\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 126.6,127.1,127.8,128.3,128.4,128.6,128.8$ [15CH (Ar)], 136.6 [C (Ph)], 137.2 [C (Z)], 139.4 [C (NHBn)], 156.1 [CO (Z)], 171.6 [$\alpha-\mathrm{CONH}] ;$ ES-MS $m / z 615.8[\mathrm{M}-\mathrm{Cl}]^{+} ; \mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{5} \cdot \mathrm{HCl}(\%): \mathrm{C}: 62.71, \mathrm{H}: 6.66, \mathrm{~N}: 12.91$. Found (\%): C: 62.53, H: 6.78, N: 12.98 .

N-[2-[(2RS)-[(1S)-Amino-2-phenylethyl]-5-oxopiperazin-1-yl]acetyl]-Lys(Z)-NHBn hydrochloride (8b). Amorphous solid ($399 \mathrm{mg}, 100 \%$); HPLC $t_{\mathrm{R}}: 15.25 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\boldsymbol{R})-\mathbf{8 b}$ $\delta(\mathrm{ppm}): 1.22(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}, \beta-\mathrm{H}), 2.59(\mathrm{dd}, 1 \mathrm{H}, J=9$ and 14 Hz , $\left.\mathrm{CH}_{2}-\mathrm{Ph}\right), 2.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.88(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.94(\mathrm{~m}, 2 \mathrm{H}, \varepsilon-\mathrm{H}), 3.01(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 3.02(\mathrm{~d}, 1 \mathrm{H}$, $J=18 \mathrm{~Hz}, 6-\mathrm{H}), 3.23\left(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.37\left(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.54(\mathrm{~d}, 1 \mathrm{H}$, $J=18 \mathrm{~Hz}, 6-\mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.24\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.26(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.98[\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}(\mathrm{Z})\right], 7.14-7.41(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ar}$ and $N H \mathrm{Z}), 7.63(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 8.07\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.15(\mathrm{~d}, 1 \mathrm{H}$, $J=8.5 \mathrm{~Hz}, \alpha-\mathrm{NH}), 8.55(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, N H B n) .(\boldsymbol{S})-\mathbf{8 b} \delta(\mathrm{ppm}): 1.22(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}$, $\delta-\mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}, \beta-\mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.55(\mathrm{~m}$, $1 \mathrm{H}, 6-\mathrm{H}), 4.24\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.26(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.98\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 7.14-7.41(\mathrm{~m}, 16 \mathrm{H}$, Ar and $N H Z), 8.07\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.23(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}), 8.58(\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Bn}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ MHz, DMSO- $\left.d_{6}\right)(\boldsymbol{R}) \mathbf{- 8 b} \delta(\mathrm{ppm}): 22.9\left[\mathrm{C}_{\gamma}\right], 29.0\left[\mathrm{C}_{\delta}\right], 31.2\left[\mathrm{C}_{\beta}\right], 34.8\left[\mathrm{C}_{3}\right], 36.0\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 39.5\left[\mathrm{C}_{\varepsilon}\right]$, $42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 49.6\left[\mathrm{C}_{6}\right], 51.6\left[\mathrm{C}_{2}-\mathrm{CH}\right], 52.8\left[\mathrm{C}_{\alpha}\right], 55.9\left[\mathrm{C}_{2}\right], 58.5\left[\mathrm{CH}_{2} \mathrm{CO}\right], 65.1\left[\mathrm{CH}_{2}(\mathrm{Z})\right]$, 126.6, 127.0, 127.7, 128.2, 128.3, 128.6, 128.8 [15CH (Ar)], 136.6 [C (Ph)], 137.3 [C (Z)], 139.4 [C (NHBn)], 156.1 [CO (Z)], 168.2 [C $\left.\mathrm{C}_{5}\right], 169.6[\mathrm{CO}], 171.7$ [$\left.\alpha-\mathrm{CONH}\right] .(\boldsymbol{S})-\mathbf{8 b} \delta(\mathrm{ppm}): 22.9$ [C $\left.\mathrm{C}_{\gamma}\right], 29.0$ [$\left.\mathrm{C}_{\delta}\right], 31.2\left[\mathrm{C}_{\beta}\right], 42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 49.6\left[\mathrm{C}_{6}\right], 58.5\left[\mathrm{CH}_{2} \mathrm{CO}\right], 65.1\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 126.6,127.0,127.7$, $128.2,128.3,128.6,128.8$ [15CH (Ar)], $136.6[\mathrm{C}(\mathrm{Ph})], 137.3$ [C (Z)], 139.4 [C (NHBn)], 156.1 [CO (Z)], 171.7 [$\alpha-\mathrm{CONH}] ; \mathrm{ES}-\mathrm{MS} m / z 629.7[\mathrm{M}-\mathrm{Cl}]^{+} ; \mathrm{C}_{35} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{5} \cdot \mathrm{HCl}(\%): \mathrm{C}: 63.19, \mathrm{H}: 6.82, \mathrm{~N}: 12.63$. Found (\%): C: 63.02, H: 6.94, N: 12.74.

3.6. General Procedure for the Synthesis of the Piperazinone-Derived Ureas $\mathbf{9 a}, \mathbf{b}$ and $\mathbf{1 0 a , b}$

$\mathrm{Et}_{3} \mathrm{~N}(168 \mu \mathrm{~L}, 1.20 \mathrm{mmol})$ and the corresponding isocyanate (phenyl or benzyl isocyanate) $(1.20 \mathrm{mmol})$ were added to a solution of the corresponding hydrochloride $\mathbf{8 a}, \mathbf{b}(0.60 \mathrm{mmol})$ in dry THF (30 mL). After stirring for 1 h at room temperature, the solvent was removed under reduced pressure and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The solution was washed with $\mathrm{H}_{2} \mathrm{O}$ $(2 \times 20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The residue was purified by flash chromatography using $1 \%-8 \% \mathrm{MeOH}$ gradient in EtOAc as mobile phase. The respective (R) - and (S)-epimers were resolved in this purification. The purified compounds were dissolved in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(1: 2,2 \mathrm{~mL})$ and the solution was lyophilized, to afford the desired ureas $\mathbf{9 a}, \mathbf{b}$ and $\mathbf{1 0 a}, \mathbf{b}$.

N-[2-[5-Oxo-(2R)-[2-phenyl-(1S)-(3-phenylureido)ethyl]piperazin-1-yl]acetyl]-Orn(Z)-NHBn [(R)-9a]. Amorphous solid ($176 \mathrm{mg}, 46 \%$); $[\alpha]_{D}^{20}=-0.1(c 1, \mathrm{MeOH}) ; \mathrm{HPLC} t_{\mathrm{R}}: 20.30 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.30(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.82\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 2.83$ $(\mathrm{m}, 1 \mathrm{H}, \delta-\mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.14(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H})$, $3.35(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 3.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.20(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, $4.25(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.26\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.36\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.60(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.82$ [d, $\left.1 \mathrm{H}, J=12.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{Z})\right], 4.91\left[\mathrm{~d}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.25(\mathrm{~m}, 1 \mathrm{H}, N H Z), 5.97(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H})$, $6.12(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH} N H), 6.91-7.35(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar}), 7.46(\mathrm{~m}, 1 \mathrm{H}, N H B n), 7.65[\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Ph}], 7.88(\mathrm{~m}$, $1 \mathrm{H}, \alpha-\mathrm{NH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 26.7\left[\mathrm{C}_{\gamma}\right], 29.9\left[\mathrm{C}_{\beta}\right], 37.9\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 39.7\left[\mathrm{C}_{\delta}\right], 40.1$ $\left[\mathrm{C}_{3}\right], 43.7\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 51.6\left[\mathrm{C}_{2}-\mathrm{CH}\right], 52.0\left[\mathrm{C}_{\alpha}\right], 54.9\left[\mathrm{C}_{6}\right], 57.8\left[\mathrm{CH}_{2} \mathrm{CO}\right], 59.6\left[\mathrm{C}_{2}\right], 67.0\left[\mathrm{CH}_{2}\right.$ (Z)], 116.7, 119.7, 123.0, 127.0, 127.9, 120.4, 128.8, 129.0, 129.3 [20CH (Ar)], 134.3 [C (Ph)], 136.1 [C (Z)], 137.9 [C (NHBn)], 139.5 [C (NHPh)], 157.2 [CO (Z) and CO (Urea)], 168.7 [C5], 170.0 [CO], 171.1 [α-CONH]; ES-MS $m / z 734.4[\mathrm{M}+1]^{+} ; \mathrm{C}_{41} \mathrm{H}_{47} \mathrm{~N}_{7} \mathrm{O}_{6}$ (\%): C: 67.10, H: 6.46, N: 13.36. Found (\%): C: 67.28, H: 6.59, N: 13.19.

N-[2-[5-Oxo-(2S)-[2-phenyl-(1S)-(3-phenylureido)ethyl]piperazin-1-yl]acetyl]-Orn(Z)-NHBn [(S)-9a]. Amorphous solid (79 mg, 18\%); [$\alpha]_{D}^{20}=+9.2$ (c 1.5, MeOH); $t_{\mathrm{R}}: 21.41 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.32(\mathrm{~m}, 1 \mathrm{H}, \gamma-\mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}, \gamma-\mathrm{H}), 1.53(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.54$ (dd, $1 \mathrm{H}, J=11$ and $\left.13.5 \mathrm{~Hz}, C H_{2}-\mathrm{Ph}\right), 2.90\left(\mathrm{dd}, 1 \mathrm{H}, J=4\right.$ and $\left.13.5 \mathrm{~Hz}, C H_{2}-\mathrm{Ph}\right), 2.92(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H})$, $3.08(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.35(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H})$, $3.54(\mathrm{~d}, 1 \mathrm{H}, J=18 \mathrm{~Hz}, 6-\mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 3.95(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.28[\mathrm{dd}, 1 \mathrm{H}, J=5$ and 15 Hz , $\left.\mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.44\left[\mathrm{dd}, 1 \mathrm{H}, J=6\right.$ and $\left.15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.60\left[\mathrm{~d}, 1 \mathrm{H}, J=13 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{Z})\right], 4.71$ (m, 1H, $\alpha-\mathrm{H}), 4.83\left[\mathrm{~d}, 1 \mathrm{H}, J=13 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{Z})\right], 4.95(\mathrm{~m}, 1 \mathrm{H}, N H Z), 5.67(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 5.94(\mathrm{~d}, 1 \mathrm{H}$, $J=6 \mathrm{~Hz}, 2-\mathrm{CHNH}$), 6.83-7.35 (m, 20H, Ar), 7.53 (m, 1H, NHBn), 7.93 [m, 1H, NHPh], 7.97 (d, 1H, $J=8.5 \mathrm{~Hz}, \alpha-\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 26.4\left[\mathrm{C}_{\gamma}\right], 31.1\left[\mathrm{C}_{\beta}\right], 35.8\left[\mathrm{C}_{3}\right], 37.8$ [$\left.\mathrm{CH}_{2}-\mathrm{Ph}\right], 38.9\left[\mathrm{C}_{\delta}\right], 43.8\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 50.8\left[\mathrm{C}_{\alpha}\right], 51.9\left[\mathrm{C}_{6}\right], 52.3\left[\mathrm{C}_{2}-\mathrm{CH}\right], 57.7\left[\mathrm{CH}_{2} \mathrm{CO}\right], 58.6\left[\mathrm{C}_{2}\right]$, $66.7\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 118.3,122.2,127.5,127.8,128.2,128.5,128.8,128.9,129.0,129.3$ [20CH (Ar)], $135.6[\mathrm{C}(\mathrm{Ph})], 136.2$ [C (Z)], 137.3 [C (NHBn)], 139.6 [C (NHPh)], 155.6 [CO (Z)], 157.6 [CO (Urea)], 168.8 [C $\left.\mathrm{C}_{5}\right], 169.2$ [CO], 172.9 [α-CONH]; ES-MS m/z $734.5[\mathrm{M}+1]^{+} ; \mathrm{C}_{41} \mathrm{H}_{47} \mathrm{~N}_{7} \mathrm{O}_{6}(\%)$: C: 67.10, H: 6.46, N: 13.36. Found (\%): C: 67.21, H: 6.30, N: 13.49.

N-[2-[5-Oxo-(2R)-[2-phenyl-(1S)-(3-phenylureido)ethyl]piperazin-1-yl]acetyl]-Lys(Z)-NHBn [(R)-9b]. Amorphous solid (206 mg, 46\%); $[\alpha]_{D}^{20}=-3.7(c 1.5, \mathrm{MeOH}) ; \mathrm{HPLC} t_{\mathrm{R}}: 20.09 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.30(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}$, $\beta-\mathrm{H}), 2.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.85(\mathrm{~m}, 1 \mathrm{H}, \varepsilon-\mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.03(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.16(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.20(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}$ and $\varepsilon-\mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right)$, $4.25(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.30\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.38\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.50$ $(\mathrm{m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 5.01\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.27(\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Z}), 5.98(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH}), 6.23(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H})$, 6.78-7.59 (m, 21H, Ar and NHBn), $7.64(\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Ph}), 7.90(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 23.1\left[\mathrm{C}_{\gamma}\right], 29.3\left[\mathrm{C}_{\delta}\right], 31.9\left[\mathrm{C}_{\beta}\right], 38.3\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 39.6\left[\mathrm{C}_{3}\right], 40.7\left[\mathrm{C}_{\varepsilon}\right], 43.6\left[\mathrm{CH}_{2}\right.$ $(\mathrm{NHBn})], 51.7\left[\mathrm{C}_{6}\right], 53.9\left[\mathrm{C}_{2}-\mathrm{CH}\right], 54.8\left[\mathrm{C}_{a}\right], 59.2\left[\mathrm{CH}_{2} \mathrm{CO}\right], 59.8\left[\mathrm{C}_{2}\right], 66.8\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 119.2,119.9$, $123.1,127.1,127.5,127.6,127.7,128.1,128.4,128.8,128.9,129.0,129.1$ [20CH (Ar)], 136.8 [C
(Ph)], 137.5 [C (Z)], 138.2 [C (NHBn)], 139.2 [C (NHPh)], 156.1 [CO (Z)], 156.9 [CO (Urea)], 170.5 [C_{5} and CO], 172.4 [$\left.\alpha-\mathrm{CONH}\right]$; ES-MS $m / z 748.6[\mathrm{M}+1]^{+} ; \mathrm{C}_{42} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O}_{6}$ (\%): C: 67.45, H: 6.60, N: 13.11. Found (\%): C: 67.62, H: 6.74, N: 13.02.

N-[2-[5-Oxo-(2S)-[2-phenyl-(1S)-(3-phenylureido)ethyl]piperazin-1-yl]acetyl]-Lys(Z)-NHBn [(S)-9b]. Amorphous solid ($67 \mathrm{mg}, 15 \%$); $[\alpha]_{D}^{20}=+6.7(c 0.9, \mathrm{MeOH}) ;$ HPLC $t_{\mathrm{R}}: 21.76 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.23(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.34(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}$, $\beta-\mathrm{H}), 2.58\left(\mathrm{t}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}, C H_{2}-\mathrm{Ph}\right), 2.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.90(\mathrm{~m}, 1 \mathrm{H}, \varepsilon-\mathrm{H}), 2.98(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H})$, $3.05(\mathrm{~m}, 1 \mathrm{H}, \varepsilon-\mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.18(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.42(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CO}$), $3.62(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.05(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.35\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.50$ [m, 2H, CH ${ }_{2}(\mathrm{NHBn})$ and $\left.\alpha-\mathrm{H}\right], 4.98\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.02(\mathrm{~m}, 1 \mathrm{H}, N H Z), 5.69(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH})$, $5.81(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 6.94(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, N H B n), 6.98-7.14(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar}), 7.98(\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Ph}), 8.09$ $(\mathrm{m}, 1 \mathrm{H}, \alpha-\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 22.2\left[\mathrm{C}_{\gamma}\right], 29.1\left[\mathrm{C}_{\delta}\right], 32.6\left[\mathrm{C}_{\beta}\right], 35.7\left[\mathrm{C}_{3}\right], 37.7$ $\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 40.2\left[\mathrm{C}_{\varepsilon}\right], 43.8\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 52.0\left[\mathrm{C}_{6}\right.$ and $\left.\mathrm{C}_{2}-\mathrm{CH}\right], 52.8\left[\mathrm{C}_{a}\right], 57.8\left[\mathrm{CH}_{2} \mathrm{CO}\right], 58.7\left[\mathrm{C}_{2}\right]$, $66.5\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 118.4,122.3,127.7,127.8,128.1,128.5,128.9,129.0,129.3$ [20CH (Ar)], 135.6 [C (Ph)], 136.5 [C (Z)], 137.1 [C (NHBn)], 139.6 [C (NHPh)], 155.6 [CO (Z)], 156.7 [CO (Urea)], 168.6 [C5], 169.9 [CO], 172.0 [$\alpha-\mathrm{CONH}] ; \mathrm{ES}-\mathrm{MS} m / z 748.7$ [M+1] ${ }^{+} ; \mathrm{C}_{42} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O}_{6}$ (\%): C: 67.45, H: 6.60, N: 13.11. Found (\%): C: 67.31, H: 6.81, N: 13.25.

N-[2-[-(2R)-[(lS)-(3-Benzylureido)-2-phenylethyl]-5-oxo-piperazin-1-yl]acetyl]-Orn(Z)-NHBn [(R)-10a]. Amorphous solid ($170 \mathrm{mg}, 38 \%$); $[\alpha]_{D}^{20}=-3.8\left(c\right.$ 1.2, MeOH); HPLC $t_{\mathrm{R}}: 20.79 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.40(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.57(\mathrm{dd}, 1 \mathrm{H}$, $J=11$ and 13.5, $\left.C H_{2}-\mathrm{Ph}\right), 2.86\left(\mathrm{dd}, 1 \mathrm{H}, J=3.5\right.$ and $\left.13.5, C H_{2}-\mathrm{Ph}\right), 3.00(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.04(\mathrm{~m}, 1 \mathrm{H}$, $\delta-\mathrm{H}), 3.09(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.32(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 3.50(\mathrm{~d}, 1 \mathrm{H}$, $J=18 \mathrm{~Hz}, 6-\mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.17\left[\mathrm{dd}, 1 \mathrm{H}, J=5\right.$ and $\left.15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right]$, $4.23\left[\mathrm{dd}, 1 \mathrm{H}, J=6\right.$ and $\left.15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.27\left[\mathrm{dd}, 1 \mathrm{H}, J=5\right.$ and $15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn}$, Urea) $], 4.36$ [dd, $1 \mathrm{H}, J=5.5$ and $15 \mathrm{~Hz}, \mathrm{CH}_{2}\left(\mathrm{NHBn}\right.$, Urea)], $4.66(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.79\left[\mathrm{~d}, 1 \mathrm{H}, J=13 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{Z})\right]$, $4.89\left[\mathrm{~d}, 1 \mathrm{H}, J=13 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.30(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, N H Z), 5.75(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH} N H), 5.90(\mathrm{~m}, 1 \mathrm{H}$, $4-\mathrm{H}), 6.07[\mathrm{t}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, N H B n(\mathrm{Urea})], 7.08-7.39(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar}), 7.50(\mathrm{t}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, N H B n)$, $7.99[\mathrm{~d}, 1 \mathrm{H}, J=8.5, \alpha-\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 26.1\left[\mathrm{C}_{\gamma}\right], 30.6\left[\mathrm{C}_{\beta}\right], 35.8\left[\mathrm{C}_{3}\right]$, $37.5\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 39.3\left[\mathrm{C}_{\delta}\right], 43.5\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 44.4\left[\mathrm{CH}_{2}\left(\mathrm{NHBn}\right.\right.$, Urea)], $51.0\left[\mathrm{C}_{\alpha}\right], 51.8\left[\mathrm{C}_{6}\right], 52.5$ [$\left.\mathrm{C}_{2}-\mathrm{CH}\right], 57.5\left[\mathrm{CH}_{2} \mathrm{CO}\right], 58.3\left[\mathrm{C}_{2}\right], 66.5\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 127.0,127.4,127.5,127.8,128.1,128.4,128.5$, 128.7, 129.0, 129.2 [20CH (Ar)], 135.8 [C (Ph)], 136.5 [C (Z)], 137.5 [C (NHBn)], 139.6 [C (NHBn, Urea)], 157.2 [CO (Z)], 158.5 [CO (Urea)], 168.9 [C5], 170.0 [CO], 172.2 [α-CONH]; ES-MS m/z $748.6[\mathrm{M}+1]^{+} ; \mathrm{C}_{42} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O}_{6}$ (\%): C: 67.45, H: 6.60, N: 13.11. Found (\%): C: 67.28, H: 6.82, N: 13.20.

N-[2-[-(2S)-[(1S)-(3-Benzylureido)-2-phenylethyl]-5-oxo-piperazin-1-yl]acetyl]-Orn(Z)-NHBn [(S)-10a]. Amorphous solid (76 mg, 17\%); [$\alpha]_{D}^{20}=-8.2$ (c $1.0, \mathrm{MeOH}$); HPLC $t_{\mathrm{R}}: 20.09 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta(\mathrm{ppm}): 1.55(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.80(\mathrm{dd}$, $1 \mathrm{H}, J=10$ and $\left.14, C H_{2}-\mathrm{Ph}\right), 2.98(\mathrm{dd}, 1 \mathrm{H}, J=6$ and $13,2-\mathrm{H}), 3.06\left(\mathrm{dd}, 1 \mathrm{H}, J=4\right.$ and $\left.14, C H_{2}-\mathrm{Ph}\right)$, $3.12(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 3.16(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, 6-\mathrm{H}), 3.35\left(\mathrm{~s}, 2 \mathrm{H}, C H_{2} \mathrm{CO}\right), 3.40(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}$, $6-\mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.51(\mathrm{ddd}, 1 \mathrm{H}, J=4,13$ and $15 \mathrm{~Hz}, 3-\mathrm{H}), 4.16\left[\mathrm{dd}, 1 \mathrm{H}, J=6\right.$ and $15 \mathrm{~Hz}, \mathrm{CH}_{2}$
(NHBn, Urea)], 4.27 [dd, $1 \mathrm{H}, J=5.5$ and $15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn}$, Urea)], $4.38(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.33$ [d, 2H, $\left.J=6 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.56(\mathrm{dt}, 1 \mathrm{H}, J=5$ and $9 \mathrm{~Hz}, \alpha-\mathrm{H}), 5.00\left[\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{Z})\right], 4.89[\mathrm{~d}$, $\left.1 \mathrm{H}, J=13 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{Z})\right], 6.00[\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, N H B n(U r e a)], 5.89(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, 2-\mathrm{CHNH}$), 5.90 $(\mathrm{m}, 1 \mathrm{H}, 4-\mathrm{H}), 6.46(\mathrm{t}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, N H Z), 7.07-7.35(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Ar}$ and $1-\mathrm{H}), 8.03(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}$, $N H B n), 8.14[\mathrm{~d}, 1 \mathrm{H}, J=8.5, \alpha-\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta(\mathrm{ppm}): 27.8\left[\mathrm{C}_{\gamma}\right], 31.5\left[\mathrm{C}_{\beta}\right]$, $39.4\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 40.9\left[\mathrm{C}_{3}\right], 41.6\left[\mathrm{C}_{\delta}\right], 44.1\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 44.8\left[\mathrm{CH}_{2}\left(\mathrm{NHBn}\right.\right.$, Urea)], $53.5\left[\mathrm{C}_{2}-\mathrm{CH}\right]$, $54.1\left[\mathrm{C}_{\alpha}\right], 55.9\left[\mathrm{C}_{6}\right], 59.6\left[\mathrm{CH}_{2} \mathrm{CO}\right], 62.5\left[\mathrm{C}_{2}\right], 67.1\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 127.6,128.0,128.3,128.4,128.8$, 129.2, 129.3, 129.7, 129.8, 130.9 [20CH (Ar)], 139.2 [C (Z)], 140.5 [C (Ph)], 140.9 [C (NHBn)], 142.3 [C (NHBn, Urea)], 158.1 [CO (Z)], 159.8 [CO (Urea)], 170.7 [C C_{5}], 171.5 [CO], 173.5 [$\alpha-\mathrm{CONH}$]; ES-MS $m / z 748.4[\mathrm{M}+1]^{+} ; \mathrm{C}_{42} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O}_{6}$ (\%): C: 67.45, H: 6.60, $\mathrm{N}: 13.11$. Found (\%): C: 67.60, H: 6.85, N: 13.01.

N-[2-[(2R)-[(1S)-(3-Benzylureido)-2-phenylethyl]-5-oxo-piperazin-1-yl]acetyl]-Lys(Z)-NHBn $\quad[(\boldsymbol{R}) \mathbf{- 1 0 b}]$. Amorphous solid ($165 \mathrm{mg}, 36 \%$); $[\alpha]_{D}^{20}=-5.6(c \quad 0.8, \mathrm{MeOH}) ; \mathrm{HPLC} t_{\mathrm{R}}: 21.05 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.25(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.59(\mathrm{dt}, 1 \mathrm{H}, J=7.5 \mathrm{and} 14 \mathrm{~Hz}$, $\beta-\mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.54\left(\mathrm{dd}, 1 \mathrm{H}, J=11\right.$ and $\left.13 \mathrm{~Hz}, C H_{2}-\mathrm{Ph}\right), 2.86(\mathrm{dd}, 1 \mathrm{H}, J=2.5$ and 13 Hz , $\left.\mathrm{CH}_{2}-\mathrm{Ph}\right), 3.01(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.04(\mathrm{~m}, 1 \mathrm{H}, \varepsilon-\mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}, \varepsilon-\mathrm{H}), 3.12(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.16(\mathrm{~m}, 1 \mathrm{H}$, $3-\mathrm{H}), 3.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.53(\mathrm{~d}, 1 \mathrm{H}, J=18 \mathrm{~Hz}, 6-\mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, $3.94(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.24\left[\mathrm{~d}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.27\left[\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea)], 4.37 [d, $1 \mathrm{H}, J=4.5 \mathrm{~Hz}, \mathrm{CH}_{2}\left(\mathrm{NHBn}\right.$, Urea)], $4.43(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 5.00\left[\mathrm{~d}, 2 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ $(\mathrm{Z})], 5.24(\mathrm{t}, 1 \mathrm{H}, J=5 \mathrm{~Hz}, N H Z), 5.66(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH}), 5.77(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 6.04[\mathrm{~m}, 1 \mathrm{H},(N H B n$, Urea)], 7.09-7.41 (m, 21H, Ar and NHBn), $7.97(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \alpha-\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 22.4\left[\mathrm{C}_{\gamma}\right], 29.2\left[\mathrm{C}_{\delta}\right], 32.5\left[\mathrm{C}_{\beta}\right], 35.9\left[\mathrm{C}_{3}\right], 37.5\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 40.4\left[\mathrm{C}_{\varepsilon}\right], 43.6\left[\mathrm{CH}_{2}\right.$ (NHBn)], 44.2 [$\left.\mathrm{CH}_{2}(\mathrm{NHBn}, \mathrm{Urea})\right], 51.7$ [$\left.\mathrm{C}_{6}\right], 52.4\left[\mathrm{C}_{2}-\mathrm{CH}\right], 52.6\left[\mathrm{C}_{a}\right], 57.7\left[\mathrm{CH}_{2} \mathrm{CO}\right], 58.5\left[\mathrm{C}_{2}\right], 66.6$ $\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 127.1,127.5,127.6,127.7,127.9,128.1,128.5,128.7,129.0,129.2[20 \mathrm{CH}(\mathrm{Ar})], 135.8$ [C $(\mathrm{Ph})], 136.5[\mathrm{C}(\mathrm{Z})], 137.4$ [C (NHBn)], 139.6 [C (NHBn, Urea)], 156.7 [CO (Z)], 158.3 [CO (Urea)], 168.6 [C C_{5}], 169.9 [CO], 172.0 [$\left.\alpha-\mathrm{CONH}\right]$; ES-MS $m / z 763.2$ [M+1] ${ }^{+} ; \mathrm{C}_{43} \mathrm{H}_{51} \mathrm{~N}_{7} \mathrm{O}_{6}$ (\%): C: 67.79, H: 6.75 , N: 12.87. Found (\%): C: 67.60, H: 7.01, N: 12.69.

N-[2-[(2S)-[(1S)-(3-Benzylureido)-2-phenylethyl]-5-oxo-piperazin-1-yl]acetyl]-Lys(Z)-NHBn $\quad[(\boldsymbol{S}) \mathbf{- 1 0 b}]$. Amorphous solid (59 mg, 13\%); $[\alpha]_{D}^{20}=-11.2(c \quad 0.9, \mathrm{MeOH}) ; \mathrm{HPLC} t_{\mathrm{R}}: 20.47 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta(\mathrm{ppm}): 1.30(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}$, $\beta-\mathrm{H}), 2.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.02(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.18(\mathrm{~m}, 3 \mathrm{H}, \varepsilon-\mathrm{H}$ and $6-\mathrm{H})$, $3.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.16(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.55(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 4.15\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ (NHBn, Urea)], $4.25\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea) $], 4.28\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.40(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH})$, $4.51(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 5.00\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.98(\mathrm{~d}, 1 \mathrm{H}, J=7 \mathrm{~Hz}, 2-\mathrm{CH} N H), 6.04[\mathrm{~m}, 1 \mathrm{H},(\mathrm{NHBn}$, Urea)], 6.45 (m, 1H, NHZ), 7.03 (m, 1H, 4-H), 7.08-7.41 (m, 20H, Ar), 8.04 (m, 1H, NHBn), 8.15 $(\mathrm{d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \alpha-\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta(\mathrm{ppm}): 26.2\left[\mathrm{C}_{\gamma}\right], 29.7\left[\mathrm{C}_{\delta}\right], 29.9\left[\mathrm{C}_{\beta}\right]$, 37.9 [$\left.\mathrm{CH}_{2}-\mathrm{Ph}\right], 39.2\left[\mathrm{C}_{3}\right], 39.9\left[\mathrm{C}_{\varepsilon}\right], 42.5\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 43.2\left[\mathrm{CH}_{2}\right.$ (NHBn, Urea)], 52.0 [$\left.\mathrm{C}_{2}-\mathrm{CH}\right]$, $52.6\left[\mathrm{C}_{\alpha}\right], 54.4\left[\mathrm{C}_{6}\right], 57.6\left[\mathrm{CH}_{2} \mathrm{CO}\right], 61.0\left[\mathrm{C}_{2}\right], 65.5\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 126.1,126.5,126.6,126.8,127.3$, $127.7,127.8,128.3,128.4,129.3,129.6[20 \mathrm{CH}(\mathrm{Ar})], 137.5[\mathrm{C}(\mathrm{Z})], 138.9$ [C (Ph)], 139.4 [C (NHBn)], 140.7 [C (NHBn, Urea)], 156.5 [CO (Z)], 158.3 [CO (Urea)], 169.0 [C5], 169.7 [CO], 171.9
[α-CONH]; ES-MS $m / z 763.3[\mathrm{M}+1]^{+} ; \mathrm{C}_{43} \mathrm{H}_{51} \mathrm{~N}_{7} \mathrm{O}_{6}$ (\%): C: 67.79, H: 6.75, $\mathrm{N}: 12.87$. Found (\%): C : 67.96, H: 6.93, N: 12.70.

3.7. General Procedure for the N-Z Removal in 9a,b and 10a,b. Synthesis of the Hydrochlorides (R)-(11a,b and 12a,b) and (S)-(11a,b and 12a,b)

$\operatorname{Pd}(\mathrm{C})(10 \%)$ and a 3.4 N solution of HCl in $\mathrm{EtOAc}(134 \mu \mathrm{~L}, 0.40 \mathrm{mmol})$ were added to a solution of $(\boldsymbol{R})-(\mathbf{9 a}, \mathbf{b}$ and $\mathbf{- 1 0 a}, \mathbf{b})$ and $(\boldsymbol{S})-(\mathbf{9 a}, \mathbf{b}$ and $\mathbf{1 0 a}, \mathbf{b})(0.20 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$, and the mixture was hydrogenated at 1 atm of H_{2} and room temperature for 1 h . Afterwards, the reaction mixture was filtered through celite and the solvent was evaporated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(1: 3,2 \mathrm{~mL})$ and the solution was lyophilized. $(\boldsymbol{R})-(\mathbf{1 1 a , b}$ and $\mathbf{1 2 a}, \mathbf{b})$ and (\boldsymbol{S})-(11a,b and 12a,b) were obtained quantitatively.

N-[2-[5-Oxo-(2R)-[2-phenyl-(1S)-(3-phenylureido)ethyl]piperazin-1-yl]acetyl]-Orn-NHBn hydrochloride $[(\boldsymbol{R})-11 a]$. Amorphous solid ($127 \mathrm{mg}, 100 \%$); $[\alpha]_{D}^{20}=+1.7(c \quad 0.7, \mathrm{MeOH}) ; \mathrm{HPLC} t_{\mathrm{R}}: 14.65 \mathrm{~min}$; ${ }^{1} \mathrm{H}-$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}): 1.58(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H})$, $2.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.63(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.75(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, $3.38(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right.$ and $\left.3-\mathrm{H}\right), 3.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.55(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 4.05$ (m, 1H, 2-CH), $4.24\left[\mathrm{dd}, 1 \mathrm{H}, J=6\right.$ and $\left.15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.31\left[\mathrm{dd}, 1 \mathrm{H}, J=6\right.$ and $15 \mathrm{~Hz}, \mathrm{CH}_{2}$ (NHBn)], 4.39 (dd, $1 \mathrm{H}, J=5$ and $8 \mathrm{~Hz}, \alpha-\mathrm{H}), 6.58(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH}), 6.80-7.35$ (m, 15H, Ar), 7.86 $\left(\mathrm{m}, 4 \mathrm{H}, 4-\mathrm{H}\right.$ and $\left.\left.\mathrm{NH}_{2} \cdot \mathrm{HCl}\right),\right], 8.20(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}), 8.65(\mathrm{~m}, 1 \mathrm{H}, N H B n), 8.74[\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Ph}] ;$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}): 23.5\left[\mathrm{C}_{\gamma}\right], 29.2\left[\mathrm{C}_{\beta}\right], 38.2\left[\mathrm{C}_{\delta}\right], 42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 51.5$ [C C_{α}], 117.6, 121.1, 126.1, 126.8, 127.1, 128.1, 128.3, 128.6, 129.3 [15CH (Ar)], 139.1 [C (NHBn)], 140.2 [C (NHPh)], 155.1 [CO (Urea)], $171.0[\alpha-\mathrm{CONH}]$; ES-MS $m / z[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{4}$: 600.2; found: 600.5.

N-[2-[5-Oxo-(2S)-[2-phenyl-(1S)-(3-phenylureido)ethyl]piperazin-1-yl]acetyl]-Orn-NHBn hydrochloride $\left[(\boldsymbol{S})\right.$-11a]. Amorphous solid (127 mg, 100\%); $[\alpha]_{D}^{20}=-1.6(c \quad 1.1, \mathrm{MeOH}) ;$ HPLC $t_{\mathrm{R}}: 15.07 \mathrm{~min}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}): 1.48(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H})$, $2.62(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 2.79\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 2.83(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.89\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 3.00(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, $3.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.40(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.65(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H})$, $4.04(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.25\left[\mathrm{~d}, 2 \mathrm{H}, J=6, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.31(\mathrm{dd}, 1 \mathrm{H}, J=5$ and $8 \mathrm{~Hz}, \alpha-\mathrm{H}), 6.70(\mathrm{~m}$, $1 \mathrm{H}, 2-\mathrm{CHNH}), 6.79-7.49(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}), 7.81\left(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}\right.$ and $\left.\mathrm{NH}_{2} \cdot \mathrm{HCl}\right)$,], $8.21(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}), 8.65$ $(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, N H B n), 8.92[\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Ph}] ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}): 23.4\left[\mathrm{C}_{\gamma}\right]$, $28.9\left[\mathrm{C}_{\beta}\right], 38.1\left[\mathrm{C}_{\delta}\right], 42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 51.5\left[\mathrm{C}_{\alpha}\right], 117.6,121.1,126.4,126.7,127.0,128.2,128.4$, $128.6,129.0$ [15CH (Ar)], 137.0 [C (Ph)], 139.1 [C (NHBn)], 140.3 [C (NHPh)], 155.3 [CO (Urea)], $170.9[\alpha-\mathrm{CONH}]$; ES-MS $m / z[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{4}: 600.2$; found: 600.5.

N-[2-[5-Oxo-(2R)-[2-phenyl-(1S)-(3-phenylureido)ethyl]piperazin-1-yl]acetyl]-Lys-NHBn hydrochloride $[(\boldsymbol{R})-\mathbf{1 1 b}]$. Amorphous solid ($130 \mathrm{mg}, 100 \%$); $[\alpha]_{D}^{20}=-3.0(c 1.7, \mathrm{MeOH}) ; \mathrm{HPLC} t_{\mathrm{R}}: 14.97 \mathrm{~min}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}): 1.27(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H})$, $1.70(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.61\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 2.72(\mathrm{~m}, 1 \mathrm{H}, \varepsilon-\mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}, \varepsilon-\mathrm{H})$, $2.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.00(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.42(\mathrm{~m}, 1 \mathrm{H}$,
$6-\mathrm{H}), 3.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.54(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.22\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.23(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.31$ [m, 1H, CH2 NHBn$)$], $4.32(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 6.80-7.37(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ar}$ and $2-\mathrm{CHNH}), 7.88(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{NH}_{2} \cdot \mathrm{HCl}$ and $\left.4-\mathrm{H}\right), 8.17(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}), 8.61(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, N H B n), 8.90(\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Ph}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}): 22.2\left[\mathrm{C}_{\gamma}\right], 26.5\left[\mathrm{C}_{\delta}\right], 30.7\left[\mathrm{C}_{\beta}\right], 38.4\left[\mathrm{C}_{\varepsilon}\right], 42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 52.5$ [C C_{α}], 117.7, 121.3, 126.3, 126.7, 127.0, 128.2, 128.3, 128.5, 129.2 [15CH (Ar)], 138.1 [C (Ph)], 139.2 [C (NHBn)], 140.0 [C (NHPh)], 155.3 [CO (Urea)], 171.3 [$\alpha-\mathrm{CONH}]$; ES-MS $m / z[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{7} \mathrm{O}_{4}$: 614.2; found: 614.5.

N-[2-[5-Oxo-(2S)-[2-phenyl-(1S)-(3-phenylureido)ethyl]piperazin-1-yl]acetyl]-Lys-NHBn hydrochloride $[(\boldsymbol{S})-\mathbf{1 1 b}]$. Amorphous solid $(130 \mathrm{mg}, 100 \%) ;[\alpha]_{D}^{20}=-4.2(c 0.4, \mathrm{MeOH}) ;$ HPLC $t_{\mathrm{R}}: 15.21 \mathrm{~min}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}): 1.29(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H})$, $1.73(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.72(\mathrm{~m}, 1 \mathrm{H}, \varepsilon-\mathrm{H}), 2.74(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}, \varepsilon-\mathrm{H})$, $2.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.90(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.29(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}$, $6-\mathrm{H}), 3.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.63(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.18\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.20$ (m, 1H, $\alpha-\mathrm{H}), 4.35\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 6.55(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH}), 6.80-7.40(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ar}), 7.69(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{NH}_{2} \cdot \mathrm{HCl}$ and $\left.4-\mathrm{H}\right), 7.92(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, \alpha-\mathrm{NH}), 8.56(\mathrm{~m}, 1 \mathrm{H}, N H B n), 8.70(\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Ph}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}): 22.1\left[\mathrm{C}_{\gamma}\right], 26.8\left[\mathrm{C}_{\delta}\right], 30.7\left[\mathrm{C}_{\beta}\right], 38.5\left[\mathrm{C}_{\varepsilon}\right], 42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 51.6$ [C_{α}], 116.5, 118.0, 127.0, 127.2, 127.5, 128.7, 128.9, 129.1, 129.5 [15CH (Ar)], 138.2 [C (Ph)], 139.4 [C (NHBn)], 140.0 [C (NHPh)], 171.2 [$\alpha-\mathrm{CONH}]$; ES-MS $m / z[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{7} \mathrm{O}_{4}: 614.2$; found: 614.5.

N-[2-[(2R)-[(1S)-(3-Benzylureido)-2-phenylethyl]-5-oxo-piperazin-1-yl]acetyl]-Orn-NHBn hydrochloride $[(\boldsymbol{R})-12 a]$. Amorphous solid ($130 \mathrm{mg}, 100 \%$); $[\alpha]_{D}^{20}=-7.9$ (c 1.3, MeOH); HPLC $t_{\mathrm{R}}: 14.67 \mathrm{~min}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 1.56(\mathrm{~m}, 3 \mathrm{H}, \gamma-\mathrm{H}$ and $\beta-\mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.60-3.16$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}, 2-\mathrm{H}, \delta-\mathrm{H}\right.$ and $\left.3-\mathrm{H}\right), 3.20-3.86\left(\mathrm{~m}, 5 \mathrm{H}, 3-\mathrm{H}, 6-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 4.04(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH})$, $4.20\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea) $], 4.26\left[\mathrm{~d}, 2 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.34(\mathrm{dd}, 1 \mathrm{H}, J=5 \mathrm{and} 8 \mathrm{~Hz}$, $\alpha-\mathrm{H}), 6.53(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH} N H), 6.74[\mathrm{~m}, 1 \mathrm{H}, N H B n(U r e a)], 7.18-7.33(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}), 7.92(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{NH}_{2} \cdot \mathrm{HCl}$ and $\left.4-\mathrm{H}\right), 8.34[\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}), 8.70(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, N H B n) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, DMSO- d_{6}) $\delta(\mathrm{ppm}): 23.8\left[\mathrm{C}_{\gamma}\right], 29.5\left[\mathrm{C}_{\beta}\right], 39.5\left[\mathrm{C}_{\delta}\right], 42.5\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 43.4\left[\mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea) $]$, 52.0 [$\left.\mathrm{C}_{\alpha}\right], 126.9,127.0,127.2,127.4,127.5,128.6,128.7,128.9,129.3$ [15CH (Ar)], 137.5 [C (Ph)], 139.6 [C (NHBn)], 141.0 [C (NHBn, Urea)], 158.7 [CO (Urea)], 171.4 [$\alpha-\mathrm{CONH}]$; ES-MS $m / z[\mathrm{M}]^{+}$ calculated for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{7} \mathrm{O}_{4}$: 614.2; found: 614.5.

N-[2-[(2S)-[(1S)-(3-Benzylureido)-2-phenylethyl]-5-oxo-piperazin-1-yl]acetyl]-Orn-NHBn hydrochloride $\left[(\boldsymbol{S})\right.$-12a]. Amorphous solid $(130 \mathrm{mg}, 100 \%) ;[\alpha]_{D}^{20}=-3.2(c 1.2, \mathrm{MeOH}) ;$ HPLC $t_{\mathrm{R}}: 15.01 \mathrm{~min}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}): 1.58(\mathrm{~m}, 3 \mathrm{H}, \gamma-\mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}) 1.88(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H})$, $2.52-3.97\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}, 2-\mathrm{H}, \delta-\mathrm{H}\right.$ and $\left.3-\mathrm{H}\right), 3.24-3.69\left(\mathrm{~m}, 5 \mathrm{H}, 3-\mathrm{H}, 6-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 4.03(\mathrm{~m}, 1 \mathrm{H}$, $2-\mathrm{CH}), 4.05\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ (NHBn, Urea)], $4.20\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ (NHBn, Urea)], $4.25\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ $(\mathrm{NHBn})], 4.39(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 6.48(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH}), 6.96-7.36[\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ar}$ and $N H B n(U r e a)], 7.90$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right.$ and $\left.4-\mathrm{H}\right), 8.30[\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}), 8.70(\mathrm{~m}, 1 \mathrm{H}, N H B n) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}): 23.9\left[\mathrm{C}_{\gamma}\right], 29.6\left[\mathrm{C}_{\beta}\right], 38.7\left[\mathrm{C}_{\delta}\right], 42.5\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 43.1\left[\mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea) $]$, $52.1\left[\mathrm{C}_{\alpha}\right], 126.5,126.8,127.0,127.1,127.5,128.5,128.7,129.7$ [15CH (Ar)], 139.6 [C (NHBn)],
141.0 [C (NHBn, Urea)], 158.5 [CO (Urea)], 171.3 [$\alpha-\mathrm{CONH}]$; ES-MS $m / z[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{7} \mathrm{O}_{4}$: 614.2; found: 614.5.

N-[2-[(2R)-[(1S)-(3-Benzylureido)-2-phenylethyl]-5-oxo-piperazin-1-yl]acetyl]-Lys-NHBn hydrochloride $[(\boldsymbol{R})-\mathbf{1 2 b}]$. Amorphous solid ($133 \mathrm{mg}, 100 \%$); $[\alpha]_{D}^{20}=-4.3$ (c $0.6, \mathrm{MeOH}$); HPLC $t_{\mathrm{R}}: 14.80 \mathrm{~min}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}): 1.21(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H})$, $1.69(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.68(\mathrm{~m}, 2 \mathrm{H}, \varepsilon-\mathrm{H}), 2.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.80(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.82\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right)$, $3.02(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.37(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right.$ and $\left.3-\mathrm{H}\right), 3.60$ (m, 1H, 6-H), $3.98(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.20\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea)], $4.24(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.25[\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}(\mathrm{NHBn})\right], 6.35(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH} N H), 6.59[\mathrm{~m}, 1 \mathrm{H},(\mathrm{NHBn}$, Urea)], $7.08-7.35(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}), 7.82$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right.$ and $\left.4-\mathrm{H}\right), 8.08(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}), 8.57(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, N H B n) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, DMSO- d_{6}) $\delta(\mathrm{ppm}): 22.1\left[\mathrm{C}_{\gamma}\right], 26.5\left[\mathrm{C}_{\delta}\right], 31.4\left[\mathrm{C}_{\beta}\right], 38.5\left[\mathrm{C}_{\varepsilon}\right], 42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 42.9\left[\mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea)], 52.0 [$\left.\mathrm{C}_{\alpha}\right], 126.4,126.5,126.7,126.9,127.0,128.2,128.4,129.1$ [15CH (Ar)], 137.3 [C (Ph)], 139.3 [C (NHBn)], 140.7 [C (NHBn, Urea)], 158.0 [CO (Urea)], 171.2 [$\alpha-\mathrm{CONH}] ;$ ES-MS $m / z[\mathrm{M}]^{+}$ calculated for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~N}_{7} \mathrm{O}_{4}$: 628.2; found: 628.5.

N-[2-[(2S)-[(1S)-(3-Benzylureido)-2-phenylethyl]-5-oxo-piperazin-1-yl]acetyl]-Lys-NHBn hydrochloride $\left[(\boldsymbol{S})\right.$-12b]. Amorphous solid (133 mg, 100\%); $[\alpha]_{D}^{20}=-1.6(\mathrm{c} 0.6, \mathrm{MeOH}) ;$ HPLC $t_{\mathrm{R}}: 15.34 \mathrm{~min}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}): 1.28(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.47(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H})$, $1.70(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.57-3.01\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}, \varepsilon-\mathrm{H}, 2-\mathrm{H}\right.$ and $\left.3-\mathrm{H}\right), 3.38(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CO}$), $3.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.62(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 4.00\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea)], $4.17[\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2}\left(\mathrm{NHBn}\right.$, Urea)], $4.20(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.26\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.30(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 6.45(\mathrm{~m}, 1 \mathrm{H}$, $2-\mathrm{CHNH}), 6.96-7.34\left[\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ar}\right.$ and (NHBn, Urea)], $7.84\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right.$ and $4-\mathrm{H}$), $8.05(\mathrm{~m}, 1 \mathrm{H}$, $\alpha-\mathrm{NH}), 8.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHBn}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 22.2\left[\mathrm{C}_{\gamma}\right], 26.5\left[\mathrm{C}_{\delta}\right], 31.4\left[\mathrm{C}_{\beta}\right]$, $38.5\left[\mathrm{C}_{\varepsilon}\right], 42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 42.6\left[\mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea) $], 52.5\left[\mathrm{C}_{\alpha}\right], 126.4,126.6,126.7,127.0,128.1$, 128.2, 129.3 [15CH (Ar)], 137.4 [C (Ph)], 139.6 [C (NHBn)], 141.0 [C (NHBn, Urea)], 159.0 [CO (Urea)], $171.5[\alpha-\mathrm{CONH}]$; ES-MS $m / z[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~N}_{7} \mathrm{O}_{4}: 628.2$; found: 628.5.

3.8. Synthesis of 2-[4-Benzyl-(2RS)-[(1S)-((tert-butoxycarbonyl)amino)-2-phenylethyl]-5-

 oxopiperazin-1-yl]acetic Acid (14)This compound was obtained from the benzyl ester $\mathbf{1 3}$ [23] by applying the general procedure of benzyl ester hydrogenolysis above indicated for the synthesis of 4 . Foam ($467.6 \mathrm{mg}, 100 \%$); HPLC t_{R} : $19.72 \mathrm{~min}[(\boldsymbol{R}) \mathbf{- 1 4}]$ and $19.00 \mathrm{~min}[(\boldsymbol{S}) \mathbf{- 1 4}] ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) .(\boldsymbol{R}) \mathbf{- 1 4} \delta(\mathrm{ppm}): 1.35(\mathrm{~s}, 9 \mathrm{H}$, Boc), $2.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.87(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.23(\mathrm{~d}, 1 \mathrm{H}, J=7.5$ and $13 \mathrm{~Hz}, 3-\mathrm{H}), 3.33(\mathrm{~d}, 1 \mathrm{H}$, $J=5$ and $13 \mathrm{~Hz}, 3-\mathrm{H}), 3.38\left(\mathrm{~d}, 1 \mathrm{H}, J=17 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 3.49(\mathrm{~d}, 2 \mathrm{H}, J=17 \mathrm{~Hz}, 6-\mathrm{H}$ and $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 3.62(\mathrm{~d}, 1 \mathrm{H}, J=17 \mathrm{~Hz}, 6-\mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.30(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, N H B o c), 4.52$ [d, $\left.1 \mathrm{H}, J=14.5 \mathrm{~Hz}, 4-\mathrm{CH}_{2}(\mathrm{Bn})\right], 4.68\left[\mathrm{~d}, 1 \mathrm{H}, J=14.5 \mathrm{~Hz}, 4-\mathrm{CH}_{2}(\mathrm{Bn})\right], 6.93-7.40(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar})$. $(\boldsymbol{S}) \mathbf{- 1 4} \delta(\mathrm{ppm}): 1.35(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 2.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.97(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.17(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.33$ (m, 1H, $3-\mathrm{H}), 3.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 3.38(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 3.63(\mathrm{~d}, 1 \mathrm{H}$, $J=17.5 \mathrm{~Hz}, 6-\mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.30(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, N H B o c), 4.57\left[\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{CH}_{2}(\mathrm{Bn})\right], 4.82$ [m, 1H, 4-CH2 $(\mathrm{Bn})], 6.93-7.40(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) .(\boldsymbol{R})-\mathbf{1 4} \delta(\mathrm{ppm}): 28.2$ $\left[3 \mathrm{CH}_{3}(\mathrm{Boc})\right], 37.5\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 44.1\left[\mathrm{C}_{3}\right], 49.7\left[4-\mathrm{CH}_{2}(\mathrm{Bn})\right], 51.6\left[\mathrm{C}_{2}-\mathrm{CH}\right], 54.1\left[\mathrm{C}_{6}\right], 54.4\left[\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right]$,
$58.7\left[\mathrm{C}_{2}\right], 80.2$ [C (Boc)], 126.7, 127.9, 128.6, 128.9 [10CH (Ar)], 136.2 [C (Bn)], 136.8 [C (Ph)], 155.7 [CO (Boc)], $167.8\left[\mathrm{C}_{5}\right], 172.2\left[\mathrm{CO}_{2}\right] .(\boldsymbol{S}) \mathbf{- 1 4} \delta(\mathrm{ppm}): 28.2$ [3CH $\left.3(\mathrm{Boc})\right], 37.5\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 44.1$ $\left[\mathrm{C}_{3}\right], 49.6\left[4-\mathrm{CH}_{2}(\mathrm{Bn})\right], 51.6\left[\mathrm{C}_{2}-\mathrm{CH}\right], 54.1\left[\mathrm{C}_{6}\right], 54.4\left[\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right], 58.7\left[\mathrm{C}_{2}\right], 80.2[\mathrm{C}(\mathrm{Boc})], 128.0$, 128.3, 128.4, 129.1 [10CH (Ar)], 136.2 [C (Bn)], 136.8 [C (Ph)], 155.7 [CO (Boc)], 167.8 [C5], 172.2 [CO_{2}]; ES-MS $m / z 468.2[\mathrm{M}+1]^{+} ; \mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5}$ (\%): C: 66.79, H: 7.11, N: 8.99. Found (\%): C: 66.58, H: 7.25, N: 9.14.

3.9. General Procedure for the Synthesis of the Piperazinone-Derived Pseudotripeptides 15a-c

These compounds were prepared by applying the general procedure described for the synthesis of 7a,b.

N-[2-[4-Benzyl-(2RS)-[(1S)-((tert-butoxycarbonyl)-amino)-2-phenylethyl]-5-oxopiperazin-1-yl]acetyl]-$\operatorname{Orn}(Z)-N H B n(\mathbf{1 5 a})$. Foam ($523 \mathrm{mg}, 65 \%$); HPLC $t_{\mathrm{R}}: 25.24 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{R}) \mathbf{- 1 5 a}$ $\delta(\mathrm{ppm}): 1.34(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.43(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{Ph}\right), 2.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.86(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.23(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 3.30(\mathrm{~m}$, $1 \mathrm{H}, 3-\mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.55(\mathrm{~d}, 1 \mathrm{H}, J=18 \mathrm{~Hz}, 6-\mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH})$, $4.34\left[\mathrm{dd}, 1 \mathrm{H}, J=6\right.$ and $\left.15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.42(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.39\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.44$ [m, 1H, CH $\left.\mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHBoc}), 4.75\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.86\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.06$ (m, 1H, NHZ), $6.70(\mathrm{~m}, 1 \mathrm{H}, N H B n), 7.02-7.46(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar}), 7.74(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}) .(\boldsymbol{S})-15 \mathrm{a} \delta(\mathrm{ppm})$: $1.34(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.67(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.56\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 2.74\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right)$, $3.08(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.23(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.34\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ (NHBn)], $4.42(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.44\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.44\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.50[\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}(\mathrm{NBn})\right], 4.64(\mathrm{~m}, 1 \mathrm{H}, N H B o c), 4.80\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.86\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.06(\mathrm{~m}, 1 \mathrm{H}$, $N H Z), 6.70(\mathrm{~m}, 1 \mathrm{H}, N H B n), 7.02-7.46(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar}), 7.74(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)(\boldsymbol{R}) \mathbf{- 1 5 a} \delta(\mathrm{ppm}): 26.7\left[\mathrm{C}_{\gamma}\right], 28.4\left[3 \mathrm{CH}_{3}(\mathrm{Boc})\right], 31.1\left[\mathrm{C}_{\beta}\right], 37.7\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 39.5\left[\mathrm{C}_{\delta}\right], 43.7\left[\mathrm{C}_{3}\right.$ and $\left.\mathrm{CH}_{2}(\mathrm{NHBn})\right], 50.1\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 51.4\left[\mathrm{C}_{2}-\mathrm{CH}\right], 51.7\left[\mathrm{C}_{\alpha}\right], 54.6\left[\mathrm{C}_{6}\right], 56.3\left[\mathrm{CH}_{2} \mathrm{CO}\right], 59.5\left[\mathrm{C}_{2}\right]$, $66.8\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 80.1$ [C (Boc)], 126.9, 127.9, 128.0, 128.3, 128.5, 128.8, 129.0, 129.3 [20CH (Ar)], 136.5 [C (Ph) and C (NBn)], 136.9 [C (Z)], 138.1 [C (NHBn)], 155.6 [CO (Boc)], 157.3 [CO (Z)], $166.9\left[\mathrm{C}_{5}\right], 169.6[\mathrm{CO}], 171.5[\alpha-\mathrm{CONH}] .(\boldsymbol{S}) \mathbf{- 1 5 a} \delta(\mathrm{ppm}): 28.4$ [$3 \mathrm{CH}_{3}$ (Boc)], 30.5 [C C_{β}], 37.7 [$\left.\mathrm{CH}_{2}-\mathrm{Ph}\right], 39.6\left[\mathrm{C}_{\delta}\right], 43.7\left[\mathrm{C}_{3}\right.$ and $\left.\mathrm{CH}_{2}(\mathrm{NHBn})\right], 49.8\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 51.4\left[\mathrm{C}_{2}-\mathrm{CH}\right], 51.7\left[\mathrm{C}_{\alpha}\right], 66.8$ [$\left.\mathrm{CH}_{2}(\mathrm{Z})\right], 80.1$ [C (Boc)], 126.8, 127.8, 128.0, 128.6, 128.8, 129.1, 129.3 [20CH (Ar)], 136.5 [C (Ph) and $\mathrm{C}(\mathrm{NBn})], 136.9[\mathrm{C}(\mathrm{Z})], 138.1[\mathrm{C}(\mathrm{NHBn})], 155.6[\mathrm{CO}(\mathrm{Boc})], 157.3[\mathrm{CO}(\mathrm{Z})], 166.9\left[\mathrm{C}_{2}\right], 169.6$ [CO], $171.5[\alpha-\mathrm{CONH}] ;$ ES-MS $m / z 806.6[\mathrm{M}+1]^{+} ; \mathrm{C}_{46} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{O}_{7}(\%): \mathrm{C}: 68.63, \mathrm{H}: 7.01$, $\mathrm{N}: 10.44$. Found (\%): C: 68.50, H: 7.19, N: 10.62.

N-[2-[4-Benzyl-(2RS)-[(1S)-((tert-butoxycarbonyl)-amino)-2-phenylethyl]-5-oxopiperazin-1-yl]acetyl]-$\operatorname{Lys}(Z)-N H B n(\mathbf{1 5 b})$. Foam ($639 \mathrm{mg}, 78 \%$); HPLC $t_{\mathrm{R}}: 25.42 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{R}) \mathbf{- 1 5 b}$ $\delta(\mathrm{ppm}): 1.31(\mathrm{~m}, 11 \mathrm{H}$, Boc and $\gamma-\mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.69$ (dd, $1 \mathrm{H}, J=8$ and $\left.13 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.78(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.82\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 3.12(\mathrm{~m}, 2 \mathrm{H}, \varepsilon-\mathrm{H}), 3.19$ (m, 1H, 6-H), $3.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.25(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right)$, $3.50(\mathrm{~d}, 1 \mathrm{H}, J=17 \mathrm{~Hz}, 3-\mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.29(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, N H B o c), 4.39\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ (NBn], $4.42\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.44(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.45\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.75[\mathrm{~d}, 1 \mathrm{H}$,
$\left.J=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 5.04\left[\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right.$ and NHZ$], 6.74(\mathrm{~m}, 1 \mathrm{H}, N H B n), 7.01-7.38(\mathrm{~m}, 20 \mathrm{H}$, Ar), 7.67 (d, 1H, $J=8 \mathrm{~Hz}, \alpha-\mathrm{NH}) .(\boldsymbol{S}) \mathbf{- 1 5 b} \delta(\mathrm{ppm}): 1.31(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Boc}), 1.65(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.86$ $(\mathrm{m}, 1 \mathrm{H}, \beta-\mathrm{H}), 3.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.38(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.54(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H})$, $3.82(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.33(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, N H B o c), 4.42\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.43(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H})$, $4.45\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.72\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn}], 4.79\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn}], 5.04\left[\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right.\right.\right.$ and NHZ], $6.96(\mathrm{~m}, 1 \mathrm{H}, N H B n), 7.01-7.38(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar}), 7.55(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)(\boldsymbol{R}) \mathbf{- 1 5 b} \delta(\mathrm{ppm}): 22.7\left[\mathrm{C}_{\gamma}\right], 28.2\left[3 \mathrm{CH}_{3}(\mathrm{Boc})\right], 29.4\left[\mathrm{C}_{\delta}\right], 31.9\left[\mathrm{C}_{\beta}\right], 37.7\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 40.5\left[\mathrm{C}_{\varepsilon}\right]$, $43.6\left[\mathrm{C}_{3}\right.$ and $\left.\mathrm{CH}_{2}(\mathrm{NHBn})\right], 49.8\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 51.7\left[\mathrm{C}_{2}-\mathrm{CH}\right], 52.7\left[\mathrm{C}_{\alpha}\right], 54.4\left[\mathrm{C}_{6}\right], 56.1\left[\mathrm{CH}_{2} \mathrm{CO}\right], 59.4$ [$\left.\mathrm{C}_{2}\right], 66.5\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 79.9$ [C (Boc)], 127.0, 127.7, 127.8, 128.0, 128.2, 128.5, 128.6, 128.8, 128.9, $129.0,129.3$ [20CH (Ar)], 136.2 [C (NBn)], 136.6 [C (Ph)], 136.7 [C (Z)], 138.0 [C (NHBn)], 155.4 [CO (Boc)], 156.4 [CO (Z)], $166.9\left[\mathrm{C}_{5}\right], 169.6[\mathrm{CO}], 171.2[\alpha-\mathrm{CONH}] .(\boldsymbol{S})-\mathbf{1 5 b} \delta(\mathrm{ppm}): 28.2\left[3 \mathrm{CH}_{3}\right.$ (Boc)], $31.6\left[\mathrm{C}_{\beta}\right], 43.6\left[\mathrm{C}_{3}\right.$ and $\left.\mathrm{CH}_{2}(\mathrm{NHBn})\right], 49.6\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 51.7$ [$\left.\mathrm{C}_{2}-\mathrm{CH}\right], 54.4$ [$\left.\mathrm{C}_{6}\right], 56.1$ $\left[\mathrm{CH}_{2} \mathrm{CO}\right], 66.5\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 79.9$ [C (Boc)], 126.8, 127.7, 127.8, 128.1, 128.2, 128.5, 128.7, 128.8, 128.9, 129.0, 129.2 [20CH (Ar)], 136.2 [C (NBn)], 136.6 [C (Ph)], 136.7 [C (Z)], 138.0 [C (NHBn)], 155.4 [CO (Boc)], 156.4 [CO (Z)], 169.6 [CO], 171.2 [$\alpha-\mathrm{CONH}]$; ES-MS m/z 819.7 [M+1] ${ }^{+}$; $\mathrm{C}_{47} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{7}$ (\%): C: 68.93, H: 7.14, N: 10.26. Found (\%): C: 68.67, H: 7.36, N: 10.20.

N-[2-[4-Benzyl-(2RS)-[(1S)-((tert-butoxycarbonyl)-amino)-2-phenylethyl]-5-oxopiperazin-1-yl]acetyl]$\operatorname{Arg}(P b f)$-NHBn (15c). Foam ($705 \mathrm{mg}, 73 \%$); HPLC $t_{\mathrm{R}}: 26.88 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $(\boldsymbol{R}) \mathbf{- 1 5 c} \delta(\mathrm{ppm}): 1.28(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.45\left[\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}(\mathrm{Pbf})\right], 1.53(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H})$, $1.90(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.07\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.48\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.55\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.73$ (d, $1 \mathrm{H}, J=8.5$ and $\left.13.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.82(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 2.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.93\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ $(\mathrm{Pbf})], 3.24\left(\mathrm{~m}, 5 \mathrm{H}, 3-\mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right.$ and $\left.\delta-\mathrm{H}\right), 3.30(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.49(\mathrm{~d}, 1 \mathrm{H}$, $J=16.5 \mathrm{~Hz}, 6-\mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.31\left[\mathrm{dd}, 1 \mathrm{H}, J=6\right.$ and $\left.15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.38[\mathrm{~d}, 1 \mathrm{H}$, $\left.J=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.41\left[\mathrm{dd}, 1 \mathrm{H}, J=5.5\right.$ and $\left.15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.50(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}$, $N H B o c), 4.57(\mathrm{dt}, 1 \mathrm{H}, J=4.5$ and $9 \mathrm{~Hz}, \alpha-\mathrm{H}), 4.76\left[\mathrm{~d}, 1 \mathrm{H}, J=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 6.41[\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{NHC}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right], 6.81-7.24(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}), 7.60(\mathrm{~m}, 1 \mathrm{H}, N H B n), 7.74(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \alpha-\mathrm{NH}) .(\boldsymbol{S})-\mathbf{1 5 c}$ $\delta(\mathrm{ppm}): 1.28(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.45\left[\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}(\mathrm{Pbf})\right], 1.67(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.07[\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.48\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.55\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.84(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{Ph}\right), 2.93\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Pbf})\right], 3.20(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.31$ [m, 1H, CH $\left.\mathrm{CH}_{2}(\mathrm{NBn})\right], 4.41\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.50(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, N H B o c), 4.57(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H})$, $4.70\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.86\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 6.41\left[\mathrm{~m}, 3 \mathrm{H}, \mathrm{NHC}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right], 6.81-7.24(\mathrm{~m}$, $15 \mathrm{H}, \mathrm{Ar}), 7.62(\mathrm{~m}, 1 \mathrm{H}, N H B n), 7.83(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \alpha-\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{R})-\mathbf{1 5 c} \delta$ (ppm): 12.4, 18.0, 19.3 [3CH3 (Pbf)], $25.4\left[\mathrm{C}_{\gamma}\right], 28.2\left[3 \mathrm{CH}_{3}(\mathrm{Boc})\right], 28.6\left[2 \mathrm{CH}_{3}(\mathrm{Pbf})\right], 31.0\left[\mathrm{C}_{\beta}\right], 37.6$ $\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 40.4\left[\mathrm{C}_{\delta}\right], 43.2\left[\mathrm{CH}_{2}(\mathrm{Pbf})\right], 43.4\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 44.0\left[\mathrm{C}_{3}\right], 49.8\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 51.7\left[\mathrm{C}_{2}-\mathrm{CH}\right]$, $52.2\left[\mathrm{C}_{\alpha}\right], 54.4$ [$\left.\mathrm{C}_{6}\right], 56.5$ [$\left.\mathrm{CH}_{2} \mathrm{CO}\right], 59.4$ [$\left.\mathrm{C}_{2}\right], 79.9$ [C (Boc)], 86.4, 117.5, 124.6 [3C (Pbf)], 126.7, 127.2, 127.7, 127.9, 128.3, 128.5, 128.9, 129.1 [15CH (Ar)], 132.3 [2C (Pbf)], 136.1 [C (NBn)], 136.9 [C (Ph)], 138.2 [C (NHBn)], 138.4 [C (Pbf)], $155.5[\mathrm{CO}(\mathrm{Boc})], 156.3\left[\mathrm{C}\left(\mathrm{NHC}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right)\right], 158.8$ [C (Pbf)], 167.3 [C $\left.\mathrm{C}_{5}\right], 169.9$ [CO], 171.3 [$\left.\alpha-\mathrm{CONH}\right] .(\boldsymbol{S})-\mathbf{1 5 c} \delta(\mathrm{ppm}): 12.4,18.0,19.3$ [$3 \mathrm{CH}_{3}(\mathrm{Pbf})$], 28.2 $\left[3 \mathrm{CH}_{3}(\mathrm{Boc})\right], 28.6\left[2 \mathrm{CH}_{3}(\mathrm{Pbf})\right], 30.9\left[\mathrm{C}_{\beta}\right], 37.6\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 43.2\left[\mathrm{CH}_{2}(\mathrm{Pbf})\right], 43.3\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right]$, $44.0\left[\mathrm{C}_{3}\right], 49.6\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 51.7$ [$\left.\mathrm{C}_{2}-\mathrm{CH}\right], 52.2$ [$\left.\mathrm{C}_{a}\right], 79.9$ [C (Boc)], 86.4, 117.5, 124.6 [3C (Pbf)], 126.7, 127.2, 127.6, 127.9, 128.3, 128.6, 128.9, 129.1 [15CH (Ar)], 132.3 [2C (Pbf)], 136.1 [C (NBn)],
$136.9[\mathrm{C}(\mathrm{Ph})], 138.2[\mathrm{C}(\mathrm{NHBn})], 138.4[\mathrm{C}(\mathrm{Pbf})], 155.5[\mathrm{CO}(\mathrm{Boc})], 156.3\left[\mathrm{C}\left(\mathrm{NHC}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right)\right]$, 158.8 [C (Pbf)], 171.3 [α-CONH]; ES-MS m/z $966.8[\mathrm{M}+1]^{+} ; \mathrm{C}_{52} \mathrm{H}_{68} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{~S}$ (\%): C: 64.71, H: 7.10, N: 11.61. Found (\%): C: 64.58, H: 7.26, N: 11.81.

3.10. Synthesis of the Hydrochlorides 16a-c

These compounds were obtained by applying the above indicated method of N-Boc removal.

N-[2-[4-Benzyl-(2RS)-[(1S)-amino-2-phenylethyl]-5-oxo-piperazin-1-yl]acetyl]-Orn(Z)-NHBn

hydrochloride (16a). Amorphous solid ($445 \mathrm{mg}, 100 \%$); HPLC $t_{\mathrm{R}}: 16.76 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO- d_{6} (\boldsymbol{R})-16a $\delta(\mathrm{ppm}): 1.40(\mathrm{~m}, 1 \mathrm{H}, \gamma-\mathrm{H}), 1.47(\mathrm{~m}, 1 \mathrm{H}, \gamma-\mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}$, $\beta-\mathrm{H}), 2.85\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 2.90\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 2.98(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}$ and $\delta-\mathrm{H}), 3.21(\mathrm{~d}, 1 \mathrm{H}, J=17$ $\mathrm{Hz}, 6-\mathrm{H}), 3.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.46(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 3.56(\mathrm{~d}, 1 \mathrm{H}, J=17 \mathrm{~Hz}, 6-\mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH})$, $4.28\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.30(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.45\left[\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.62[\mathrm{~d}, 1 \mathrm{H}$, $\left.J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.97\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 7.11-7.37(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Ar}$ and $N H \mathrm{Z}), 8.11(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.19(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \alpha-\mathrm{NH}), 8.54(\mathrm{~m}, 1 \mathrm{H}, N H B n) .(\boldsymbol{S}) \mathbf{- 1 6 a} \delta(\mathrm{ppm}): 1.40(\mathrm{~m}, 1 \mathrm{H}, \gamma-\mathrm{H})$, $1.47(\mathrm{~m}, 1 \mathrm{H}, \gamma-\mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.45(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.46$ $(\mathrm{m}, 2 \mathrm{H}, 3-\mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.28\left[\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right.$ and $\left.\mathrm{CH}_{2}(\mathrm{NBn})\right]$, $4.30(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.38\left[\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.97\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 7.11-7.37(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Ar}$ and $N H Z$), $8.11\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.43(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \alpha-\mathrm{NH}), 8.52(\mathrm{~m}, 1 \mathrm{H}, N H B n) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz, DMSO- d_{6}) $(\boldsymbol{R}) \mathbf{- 1 6 a} \delta(\mathrm{ppm}): 26.0\left[\mathrm{C}_{\gamma}\right], 29.5\left[\mathrm{C}_{\beta}\right], 34.6\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 40.5\left[\mathrm{C}_{\delta}\right], 42.0\left[\mathrm{CH}_{2}\right.$ $(\mathrm{NHBn})], 43.5\left[\mathrm{C}_{3}\right], 48.8\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 51.7\left[\mathrm{C}_{2}-\mathrm{CH}\right], 52.3\left[\mathrm{C}_{a}\right], 54.7\left[\mathrm{C}_{6}\right], 56.1\left[\mathrm{CH}_{2} \mathrm{CO}\right], 57.3\left[\mathrm{C}_{2}\right]$, $65.1\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 126.8,127.0,127.7,127.8,128.3,127.4,128.6,129.2$ [20CH (Ar)], 135.8 [C (Ph)], 137.0 [C (NBn)], 137.2 [C (Z)], 139.2 [C (NHBn)], 156.1 [CO (Z)], 167.1 [C5], 169.4 [CO], 171.4 $[\alpha-\mathrm{CONH}] .(\boldsymbol{S}) \mathbf{- 1 6 a} \delta(\mathrm{ppm}): 26.2\left[\mathrm{C}_{\gamma}\right], 29.3\left[\mathrm{C}_{\beta}\right], 42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 43.4\left[\mathrm{C}_{3}\right], 48.9\left[\mathrm{CH}_{2}(\mathrm{NBn})\right]$, $51.3\left[\mathrm{C}_{2}-\mathrm{CH}\right], 52.5\left[\mathrm{C}_{\alpha}\right], 54.7\left[\mathrm{C}_{6}\right], 56.1\left[\mathrm{CH}_{2} \mathrm{CO}\right], 58.6\left[\mathrm{C}_{2}\right], 65.1\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 126.9,127.4,127.7$, 127.8, 128.3, 127.4, 128.6, 129.3 [20CH (Ar)], 135.9 [C (Ph)], 136.9 [C (NBn)], 137.2 [C (Z)], 139.2 [C (NHBn)], $156.1[\mathrm{CO}(\mathrm{Z})], 167.1\left[\mathrm{C}_{5}\right], 169.4[\mathrm{CO}], 171.4[\alpha-\mathrm{CONH}]$; ES-MS $m / z[\mathrm{M}+1]^{+}$calculated for $\mathrm{C}_{41} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{5}$: 706.3; found: 706.5.

N-[2-[4-Benzyl-(2RS)-[(1S)-amino-2-phenylethyl]-5-oxo-piperazin-1-yl]acetyl]-Lys(Z)-NHBn hydrochloride (16b). Amorphous solid ($453 \mathrm{mg}, 100 \%$); HPLC $t_{\mathrm{R}}: 16.93 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO- d_{6}) $(\boldsymbol{R}) \mathbf{- 1 6 b} \delta(\mathrm{ppm}): 1.22(\mathrm{~m}, 1 \mathrm{H}, \gamma-\mathrm{H}), 1.27(\mathrm{~m}, 1 \mathrm{H}, \gamma-\mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}$, $\beta-\mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.83\left(\mathrm{dd}, 1 \mathrm{H}, J=8\right.$ and $\left.14 \mathrm{~Hz}, C H_{2}-\mathrm{Ph}\right), 2.94(\mathrm{~m}, 2 \mathrm{H}, \varepsilon-\mathrm{H}), 2.96(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}$ and $\left.C H_{2}-\mathrm{Ph}\right), 3.20(\mathrm{~d}, 1 \mathrm{H}, J=17 \mathrm{~Hz}, 6-\mathrm{H}), 3.24\left(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.29(\mathrm{~d}, 1 \mathrm{H}, J=16.5$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.38(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.53(\mathrm{~d}, 1 \mathrm{H}, J=17 \mathrm{~Hz}, 6-\mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH})$, $4.26\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.28(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.45\left[1 \mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.63[1 \mathrm{~d}, 1 \mathrm{H}$, $\left.J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.98\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 7.16-7.37(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Ar}$ and $N H Z), 8.19(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.21(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}), 8.57(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, N H B n) .(\boldsymbol{S})-\mathbf{1 6 b} \delta(\mathrm{ppm}): 1.22(\mathrm{~m}, 1 \mathrm{H}, \boldsymbol{\gamma}-\mathrm{H})$, $1.27(\mathrm{~m}, 1 \mathrm{H}, \gamma-\mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.38$ $(\mathrm{m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.26\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.28[\mathrm{~m}, 2 \mathrm{H}, \alpha-\mathrm{H}$ and $\left.\mathrm{CH}_{2}(\mathrm{NBn})\right], 4.40\left[\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.98\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 7.16-7.37(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Ar}$ and NHZ), $8.19\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.43(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \alpha-\mathrm{NH}), 8.57(\mathrm{~m}, 1 \mathrm{H}, N H B n) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$
$\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)(\boldsymbol{R}) \mathbf{- 1 6 b} \delta(\mathrm{ppm}): 23.2\left[\mathrm{C}_{\gamma}\right], 29.5\left[\mathrm{C}_{\delta}\right], 32.0\left[\mathrm{C}_{\beta}\right], 35.0\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 41.1\left[\mathrm{C}_{\varepsilon}\right], 42.4$ [$\left.\mathrm{CH}_{2}(\mathrm{NHBn})\right], 44.0\left[\mathrm{C}_{3}\right], 49.2\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 52.1\left[\mathrm{C}_{2}-\mathrm{CH}\right], 53.1\left[\mathrm{C}_{a}\right], 55.0\left[\mathrm{C}_{6}\right], 56.6\left[\mathrm{CH}_{2} \mathrm{CO}\right], 57.7$ $\left[\mathrm{C}_{2}\right], 65.5\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 127.1,127.5,128.1,128.2,128.7,128.8,129.0,129.7[20 \mathrm{CH}(\mathrm{Ar})], 136.2$ [C (Ph)], 137.4 [C (NBn)], 137.7 [C (Z)], 139.8 [C (NHBn)], 156.5 [CO (Z)], 167.5 [C $\left.\mathrm{C}_{5}\right], 169.8$ [CO], $172.0[\alpha-\mathrm{CONH}] .(\boldsymbol{S})-\mathbf{1 6 b} \delta(\mathrm{ppm}): 23.3\left[\mathrm{C}_{\gamma}\right], 31.9\left[\mathrm{C}_{\beta}\right], 42.4\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 43.8\left[\mathrm{C}_{3}\right], 49.3\left[\mathrm{CH}_{2}\right.$ (NBn)], $51.7\left[\mathrm{C}_{2}-\mathrm{CH}\right], 53.3\left[\mathrm{C}_{a}\right], 59.1\left[\mathrm{C}_{2}\right], 65.5\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 127.3,127.5,127.8,128.2,128.7,129.0$, $129.1,129.7$ [20CH (Ar)], 136.3 [C (Ph)], 137.3 [C (NBn)], 137.7 [C (Z)], 139.2 [C (NHBn)], 162.3 [CO (Z)], $172.0[\alpha-\mathrm{CONH}]$; ES-MS $m / z[\mathrm{M}+1]^{+}$calculated for $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{5}$: 720.5; found: 720.8.

N-[2-[4-Benzyl-(2RS)-[(1S)-amino-2-phenylethyl]-5-oxo-piperazin-1-yl]acetyl]-Arg(Pbf)-NHBn hydrochloride (16c). Amorphous solid ($541 \mathrm{mg}, 100 \%$); HPLC $t_{\mathrm{R}}: 14.80 \mathrm{~min}[(\boldsymbol{R}) \mathbf{- 1 6 c}]$ and 19.68 min [(S)-16c]; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)(\boldsymbol{R}) \mathbf{- 1 6 c} \delta(\mathrm{ppm}): 1.38\left[\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}(\mathrm{Pbf})\right], 1.44(\mathrm{~m}, 2 \mathrm{H}$, $\gamma-\mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.98\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.40\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.46$ [s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.83\left(\mathrm{~d}, 1 \mathrm{H}, J=6.5\right.$ and $\left.14 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.95(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H})$, $2.96\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Pbf})\right], 3.02(\mathrm{dd}, 2 \mathrm{H}, J=6.5$ and $12 \mathrm{~Hz}, \delta-\mathrm{H}), 3.19(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, 6-\mathrm{H}), 3.29$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.39(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.55(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, 6-\mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}$, $2-\mathrm{CH}), 4.23\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.30(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.45\left[\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.63$ [d, $\left.1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 6.45\left[\mathrm{~m}, 3 \mathrm{H}, \mathrm{NHC}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right], 6.91-7.37(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}), 8.18(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.23(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \alpha-\mathrm{NH}), 8.59(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, N H B n) .(\boldsymbol{S}) \mathbf{- 1 6 c} \delta(\mathrm{ppm}): 1.38[\mathrm{~s}, 6 \mathrm{H}$, $\left.2 \mathrm{CH}_{3}(\mathrm{Pbf})\right], 1.98\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.40\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.46\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.96[\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}(\mathrm{Pbf})\right], 3.15(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.39(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.23[\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.30\left(\mathrm{~m}, 2 \mathrm{H}, \alpha-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2}(\mathrm{NBn})\right), 4.40\left[\mathrm{~d}, 2 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 6.45[\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{NHC}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right], 6.91-7.37(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}), 8.18\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.46(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \alpha-\mathrm{NH})$, $8.56(\mathrm{~m}, 1 \mathrm{H}, N H B n) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\boldsymbol{R})-\mathbf{1 6 c} \delta(\mathrm{ppm}): 12.7,18.1,19.4\left[3 \mathrm{CH}_{3}(\mathrm{Pbf})\right]$, $26.1\left[\mathrm{C}_{\gamma}\right], 28.2\left[2 \mathrm{CH}_{3}(\mathrm{Pbf})\right], 29.9\left[\mathrm{C}_{\beta}\right], 35.0\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 40.3\left[\mathrm{C}_{\delta}\right], 42.4\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 42.9\left[\mathrm{CH}_{2}\right.$ (Pbf)], $44.0\left[\mathrm{C}_{3}\right], 49.2\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 52.1\left[\mathrm{C}_{2}-\mathrm{CH}\right], 52.8\left[\mathrm{C}_{\alpha}\right], 55.0\left[\mathrm{C}_{6}\right], 56.7\left[\mathrm{CH}_{2} \mathrm{CO}\right], 57.8\left[\mathrm{C}_{2}\right]$, 86.8, 116.8, 124.8 [4C (Pbf)], 127.1, 127.5, 127.8, 128.2, 128.7, 129.0, 129.7 [15CH (Ar)], 131.9, 134.5 [2C (Pbf)], 136.2 [C (Ph)], 137.7 [C (NBn)], 137.8 [C (Pbf)], 139.7 [C (NHBn)], 156.5 [C $\left.\left(\mathrm{NHC}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right)\right], 158.0[\mathrm{C}(\mathrm{Pbf})], 167.6\left[\mathrm{C}_{5}\right], 169.9[\mathrm{CO}], 171.8[\alpha-\mathrm{CONH}] .(\boldsymbol{S}) \mathbf{- 1 6 c} \delta(\mathrm{ppm}): 12.7$, 18.1, $19.4\left[3 \mathrm{CH}_{3}(\mathrm{Pbf})\right], 28.2\left[2 \mathrm{CH}_{3}(\mathrm{Pbf})\right], 42.4\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 42.9\left[\mathrm{CH}_{2}(\mathrm{Pbf})\right], 43.9\left[\mathrm{C}_{3}\right], 49.1$ [$\left.\mathrm{CH}_{2}(\mathrm{NBn})\right], 51.8\left[\mathrm{C}_{2}-\mathrm{CH}\right], 53.0\left[\mathrm{C}_{a}\right], 59.1\left[\mathrm{C}_{2}\right], 86.8,116.8,124.8$ [4C (Pbf)], 127.3, 127.5, 127.8, 128.2, 128.7, 129.0, 129.1, 129.7 [15CH (Ar)], 131.9, 134.5 [2C (Pbf)], 136.3 [C (Ph)], 137.4 [C ($\mathrm{N} B n$) $], 137.8[\mathrm{C}(\mathrm{Pbf})], 139.7[\mathrm{C}(\mathrm{NHBn})], 156.5\left[\mathrm{C}\left(\mathrm{NHC}^{2}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right)\right], 158.0[\mathrm{C}(\mathrm{Pbf})], 167.5$ [C $\left.\mathrm{C}_{5}\right]$, $171.8[\alpha-\mathrm{CONH}]$; ES-MS $m / z[\mathrm{M}+1]^{+}$calculated for $\mathrm{C}_{47} \mathrm{H}_{60} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{~S}$: 866.6; found: 866.0.

3.11. General Procedure for the Synthesis of the Piperazinone-Derived Ureas 17a-c and 18a,b

These compounds were obtained by applying the already indicated procedure for the synthesis of the urea analogues $\mathbf{9 a}, \mathbf{b}$ and $\mathbf{1 0 a}, \mathbf{b}$.

N-[2-[4-Benzyl-5-oxo-(2RS)-[2-phenyl-(1S)-(3-phenyl-ureido)ethyl]-piperazin-1-yl]acetyl]-Orn(Z)$N H B n(17 a)$. Amorphous solid $(R: S)=(3: 1)](346 \mathrm{mg}, 70 \%) ; H P L C t_{\mathrm{R}}: 23.73 \mathrm{~min}[(\boldsymbol{R}) \mathbf{- 1 7 a}]$ and $24.44 \mathrm{~min}[(\boldsymbol{S}) \mathbf{- 1 7 a}] ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{R}) \mathbf{- 1 7 a} \delta(\mathrm{ppm}): 1.50(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}$,
$\beta-\mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.69\left(\mathrm{dd}, 1 \mathrm{H}, J=6\right.$ and $\left.14 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.88\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 2.94(\mathrm{~m}, 1 \mathrm{H}$, $2-\mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 3.20(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}$ and $6-\mathrm{H}), 3.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.38(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, $3.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.42(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 3.49(\mathrm{~d}, 1 \mathrm{H}, J=17 \mathrm{~Hz}, 6-\mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.18$ [m, 1H, CH $2(\mathrm{NHBn})], 4.32\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.40\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.78[\mathrm{~m}, 2 \mathrm{H}, \alpha-\mathrm{H}$ and $\left.\mathrm{CH}_{2}(\mathrm{Z})\right], 4.82\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.87\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.09(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, N H \mathrm{Z}), 5.57(\mathrm{~m}, 1 \mathrm{H}$, 2-CHNH), 6.84-7.30 (m, 26H, Ar and $N H P h$), $7.34(\mathrm{~m}, 1 \mathrm{H}, N H B n), 7.79(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}) .(\boldsymbol{S}) \mathbf{- 1 7 a}$ $\delta(\mathrm{ppm}): 1.40(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.81\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 2.94(\mathrm{~m}, 1 \mathrm{H}$, $\left.C H_{2}-\mathrm{Ph}\right), 3.05(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.39(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.40(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.43(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.16\left[\mathrm{dd}, 1 \mathrm{H}, J=5\right.$ and $\left.15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right]$, $4.38\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.50\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.72(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.76\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 4.85$ [m, 1H, CH $2(\mathrm{Z})], 4.96(\mathrm{~m}, 1 \mathrm{H}, N H Z), 5.39(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}, 5-\mathrm{CH} N H), 6.84-7.30(\mathrm{~m}, 26 \mathrm{H}, \mathrm{Ar}$ and $N H \mathrm{Ph}), 7.41(\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Bn}), 7.73(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{R}) \mathbf{- 1 7 a} \delta(\mathrm{ppm}):$ $26.6\left[\mathrm{C}_{\gamma}\right], 30.1\left[\mathrm{C}_{\beta}\right], 36.9\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 39.1\left[\mathrm{C}_{\delta}\right], 42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 44.8\left[\mathrm{C}_{3}\right], 49.5\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 51.2$ [$\left.\mathrm{C}_{\alpha}\right], 52.3\left[\mathrm{C}_{2}-\mathrm{CH}\right], 55.8\left[\mathrm{C}_{6}\right], 59.0\left[\mathrm{CH}_{2} \mathrm{CO}\right], 61.2\left[\mathrm{C}_{2}\right], 66.7\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 120.0,123.1,126.7,127.5$, $127.8,127.9,128.1,128.3,128.5,128.8$ [25CH (Ar)], 136.1 [C (NBn)], 136.2 [C (Z)], 137.2 [C (Ph)], 137.6 [C (NHBn)], 138.7 [C (NHPh)], 155.1 [CO (Z)], 157.5 [CO (Urea)], 167.9 [C C_{5}], 170.4 [CO], $172.7[\alpha-\mathrm{CONH}] .(\boldsymbol{S}) \mathbf{- 1 7 a} \delta(\mathrm{ppm}): 26.5\left[\mathrm{C}_{\gamma}\right], 30.6\left[\mathrm{C}_{\beta}\right], 37.6\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 38.8\left[\mathrm{C}_{\delta}\right], 42.1\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right]$, $44.8\left[\mathrm{C}_{3}\right], 49.9\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 50.6\left[\mathrm{C}_{a}\right], 51.9\left[\mathrm{C}_{2}-\mathrm{CH}\right], 66.7\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 118.9,122.3,126.7,127.5$, 127.8, 127.9, 128.2, 128.5, 128.6, 128.7, 128.9, 129.4 [25CH (Ar)], 136.1 [C (NBn)], 136.2 [C (Z)], $137.2[\mathrm{C}(\mathrm{Ph})], 137.4$ [C (NHBn)], 139.5 [C (NHPh)], 155.0 [CO (Z)], 157.6 [CO (Urea)], 166.9 [C C_{5}], 169.7 [CO], 172.9 [α-CONH]; ES-MS $m / z 825.7$ [M+1] ${ }^{+} ; \mathrm{C}_{48} \mathrm{H}_{53} \mathrm{~N}_{7} \mathrm{O}_{6}$ (\%): C: 69.97, H: 6.48, N : 11.90. Found (\%): C: 69.75, H: 6.65, N: 12.02 .

N-[2-[4-Benzyl-5-oxo-(2RS)-[2-phenyl-(1S)-(3-phenyl-ureido)ethyl]-piperazin-1-yl]acetyl]-Lys(Z)NHBn (17b). Amorphous solid $[(R: S)=(3: 1)](327 \mathrm{mg}, 65 \%)$; HPLC $t_{\mathrm{R}}: 24.06 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{R}) \mathbf{- 1 7 b} \delta(\mathrm{ppm}): 1.33(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.85$ $(\mathrm{m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.89(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.05(\mathrm{~m}, 2 \mathrm{H}, \varepsilon-\mathrm{H})$, $3.15(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.25(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 3.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.53(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, 6-\mathrm{H}), 4.20$ (m, 1H, 2-CH), $4.25\left[\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn}\right.$ and NBn$\left.)\right], 4.44(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.77\left[\mathrm{~d}, 1 \mathrm{H}, J=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ (NBn], $5.00\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.23(\mathrm{~m}, 1 \mathrm{H}, N H Z), 5.45(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH}), 6.84-7.52(\mathrm{~m}, 27 \mathrm{H}, \mathrm{Ar}$, $N H B n$ and $N H P h$), $7.79(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}) .(\boldsymbol{S}) \mathbf{- 1 7 b} \delta(\mathrm{ppm}): 2.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.89\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right)$, $2.94(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.25\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.52\left[\mathrm{~d}, 1 \mathrm{H}, J=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ (NBn], $4.58\left[\mathrm{~d}, 1 \mathrm{H}, J=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn}], 5.03\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.09(\mathrm{~m}, 1 \mathrm{H}, N H Z), 5.55(\mathrm{~m}, 1 \mathrm{H}\right.$, 2-CHNH), 6.84-7.52 (m, 27H, Ar, NHBn and NHPh), $7.89(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)(\boldsymbol{R}) \mathbf{- 1 7 b} \delta(\mathrm{ppm}): 22.7\left[\mathrm{C}_{\gamma}\right], 29.1\left[\mathrm{C}_{\delta}\right], 31.9\left[\mathrm{C}_{\beta}\right], 37.2\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 40.3\left[\mathrm{C}_{\varepsilon}\right], 43.6\left[\mathrm{CH}_{2}\right.$ $(\mathrm{NHBn})], 44.6\left[\mathrm{C}_{3}\right], 49.5\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 52.0\left[\mathrm{C}_{2}-\mathrm{CH}\right], 53.0\left[\mathrm{C}_{\alpha}\right], 55.6\left[\mathrm{C}_{6}\right], 58.8$ [$\left.\mathrm{CH}_{2} \mathrm{CO}\right], 60.9$ [$\left.\mathrm{C}_{2}\right]$, $66.0\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 120.1,123.2,126.8,127.5,128.0,128.1,128.4,128.5,128.7,128.8,128.9[25 \mathrm{CH}$ (Ar)], 136.2 [C (NBn)], $136.5[\mathrm{C}(\mathrm{Z})], 137.0[\mathrm{C}(\mathrm{Ph})], 137.7$ [C (NHBn)], 138.6 [C (NHPh)], 155.3 [CO (Z)], 156.6 [CO (Urea)], 167.6 [C55, 170.1 [CO], 172.3 [$\alpha-\mathrm{CONH}] .(\boldsymbol{S}) \mathbf{- 1 7 b} \delta(\mathrm{ppm}): 43.6$ [CH2 $(\mathrm{NHBn})], 44.6\left[\mathrm{C}_{3}\right], 52.1\left[\mathrm{C}_{2}-\mathrm{CH}\right], 60.8\left[\mathrm{C}_{2}\right], 66.0\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 120.1,123.2,126.8,127.5,128.0,128.1$, $128.4,128.5,128.7,128.8,129.0$ [25CH (Ar)], 136.5 [C (Z)], 156.4 [CO (Z)], 172.3 [$\alpha-\mathrm{CONH}] ;$

ES-MS m/z $839.7[\mathrm{M}+1]^{+} ; \mathrm{C}_{49} \mathrm{H}_{55} \mathrm{~N}_{7} \mathrm{O}_{6}$ (\%): C: 70.23, H: 6.62, N: 11.70. Found (\%): C: 70.46, H: 6.75, N: 11.54.

N-[2-[4-Benzyl-5-oxo-(2RS)-[2-phenyl-(1S)-(3-phenyl-ureido)ethyl]-piperazin-1-yl] acetyl]-Arg(Pbf)$N H B n(17 c)$. Amorphous solid $[(R: S)=(3: 1)](443 \mathrm{mg}, 75 \%)$; HPLC $t_{\mathrm{R}}: 25.80 \mathrm{~min}[(\boldsymbol{R})-\mathbf{1 7 c}]$ and $23.82 \mathrm{~min}[(\boldsymbol{S}) \mathbf{- 1 7} \mathbf{c}] ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{R}) \mathbf{- 1 7} \mathbf{c} \delta(\mathrm{ppm}): 1.45\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 1.46$ [s, 3H, CH $\left.{ }_{3}(\mathrm{Pbf})\right], 1.40(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.52(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.10\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right]$, $2.50\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.58\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.64(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.77(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.94\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Pbf})\right], 2.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.06(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H})$, $3.28(\mathrm{dd}, 1 \mathrm{H}, J=5 \mathrm{and} 13 \mathrm{~Hz}, 3-\mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 3.50\left(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.58(\mathrm{~m}$, $1 \mathrm{H}, 3-\mathrm{H}), 3.64(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, 6-\mathrm{H}), 4.13\left[\mathrm{~d}, 1 \mathrm{H}, J=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.30(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH})$, $4.32(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.36\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 5.00\left[\mathrm{~d}, 1 \mathrm{H}, J=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 5.98(\mathrm{~m}, 1 \mathrm{H}$, $2-\mathrm{CHNH}), 6.18\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHC}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right], 6.36\left[\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{C}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right], 6.86-7.37(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Ar}$ and $N H \mathrm{Ph}), 7.64(\mathrm{~m}, 1 \mathrm{H}, N H B n), 7.88(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \alpha-\mathrm{NH}) .(\boldsymbol{S}) \mathbf{- 1 7 c} \delta(\mathrm{ppm}): 1.45\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right]$, $1.46\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.10\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.50\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.58\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.68$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.77\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 2.94\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Pbf})\right], 3.23(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H})$, $3.28(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.05\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.29(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.30[\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.46\left[\mathrm{~d}, 1 \mathrm{H}, J=14 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.59\left[\mathrm{~d}, 1 \mathrm{H}, J=14 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 5.98(\mathrm{~m}, 1 \mathrm{H}$, $2-\mathrm{CHNH}), 6.18\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHC}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right], 6.36\left[\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{C}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right], 6.86-7.37(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Ar}$ and $N H \mathrm{Ph}), 7.64(\mathrm{~m}, 1 \mathrm{H}, N H B n), 7.78(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \alpha-\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{R})-\mathbf{1 7 c}$ $\delta(\mathrm{ppm}): 12.5,18.0,19.4\left[3 \mathrm{CH}_{3}(\mathrm{Pbf})\right], 25.4\left[\mathrm{C}_{\gamma}\right], 28.6\left[2 \mathrm{CH}_{3}(\mathrm{Pbf})\right], 29.3\left[\mathrm{C}_{\beta}\right], 38.1\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 40.3$ [$\left.\mathrm{C}_{\delta}\right], 43.2\left[2 \mathrm{CH}_{2}(\mathrm{Pbf}\right.$ and NHBn$\left.)\right], 44.3\left[\mathrm{C}_{3}\right], 49.2\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 51.2\left[\mathrm{C}_{2}-\mathrm{CH}\right], 53.1\left[\mathrm{C}_{\alpha}\right], 55.4\left[\mathrm{C}_{6}\right]$, $59.5\left[\mathrm{CH}_{2} \mathrm{CO}\right], 60.2\left[\mathrm{C}_{2}\right], 86.6,117.8,124.9[3 \mathrm{C}(\mathrm{Pbf})], 119.5,122.7,126.7,127.1,127.3,127.9$, 128.1, 128.5, 128.6, 129.0, 129.3 [20CH (Ar)], 132.2 [2C (Pbf)], 136.2 [C (NBn)], 137.2 [C (Ph)], $138.1[\mathrm{C}(\mathrm{NHBn})], 138.3[\mathrm{C}(\mathrm{Pbf})], 139.0[\mathrm{C}(\mathrm{NHPh})], 156.2[\mathrm{CO}(\mathrm{Urea})], 156.4\left[\mathrm{C}\left(\mathrm{NHC}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right)\right]$, 159.0 [C (Pbf)], 168.3 [C C_{5}], 171.0 [CO], 172.0 [$\left.\alpha-\mathrm{CONH}\right] .(\boldsymbol{S})-\mathbf{1 7 c} \delta(\mathrm{ppm}): 12.5,18.0,19.4\left[3 \mathrm{CH}_{3}\right.$ (Pbf)], $28.6\left[2 \mathrm{CH}_{3}(\mathrm{Pbf})\right], 38.4\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 40.3\left[\mathrm{C}_{\delta}\right], 43.2\left[2 \mathrm{CH}_{2}(\mathrm{Pbf}\right.$ and NHBn$\left.)\right], 44.2$ [C $\left.\mathrm{C}_{3}\right], 49.2$ $\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 53.1\left[\mathrm{C}_{\alpha}\right], 86.6,117.8,124.9[3 \mathrm{C}(\mathrm{Pbf})], 118.9,122.2,126.6,127.1,127.2,127.9,128.1$, 128.4, 128.7, 129.0, 129.3 [20CH (Ar)], 132.2 [2C (Pbf)], 136.1 [C (NBn)], 137.1 [C (Ph)], 138.0 [C (NHBn)], $138.3[\mathrm{C}(\mathrm{Pbf})], 139.4[\mathrm{C}(\mathrm{NHPh})], 156.4\left[\mathrm{C}\left(\mathrm{NHC}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right)\right], 159.0[\mathrm{C}(\mathrm{Pbf})], 172.0$ [α-CONH]; ES-MS m/z $985.1[\mathrm{M}+1]^{+} ; \mathrm{C}_{54} \mathrm{H}_{65} \mathrm{~N}_{9} \mathrm{O}_{7} \mathrm{~S}$ (\%): C: 65.90, H: 6.66, N: 12.81. Found (\%): C: 65.72, H: 6.90, N: 12.63.

N-[2-[4-Benzyl-(2RS)-[(1S)-(3-benzylureido)-2-phenyl-ethyl]-5-oxopiperazin-1-yl]acetyl]-Orn(Z)-NHBn (18a). Amorphous solid $[(R: S)=(3: 1)](375 \mathrm{mg}, 65 \%)$; HPLC $t_{\mathrm{R}}: 23.30 \mathrm{~min}[(\boldsymbol{R})-\mathbf{1 8 a}]$ and 23.82 min [(S)-18a]; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{R})-\mathbf{1 8 a} \delta(\mathrm{ppm}): 1.52(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}$, $\beta-\mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.69\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 2.88\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 2.90(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.11(\mathrm{~m}$, $1 \mathrm{H}, \delta-\mathrm{H}), 3.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.23(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right.$ and $\left.6-\mathrm{H}\right), 3.36(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, $3.42(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 4.05\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.08\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea)), $4.15\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea) $], 4.18(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.25\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.32\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ (NBn)], $4.68(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.75\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 4.79\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{~N} B n)\right], 4.88[\mathrm{~d}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}(\mathrm{Z})\right], 5.08(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH}), 5.20(\mathrm{~m}, 1 \mathrm{H}, N H Z), 5.95[\mathrm{~m}, 1 \mathrm{H}, N H B n(U r e a)], 6.95-7.40(\mathrm{~m}$,
$25 \mathrm{H}, \mathrm{Ar}), 7.40(\mathrm{~m}, 1 \mathrm{H}, N H B \mathrm{~B}), 7.86(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, \alpha-\mathrm{NH}) .(\boldsymbol{S}) \mathbf{- 1 8 a} \delta(\mathrm{ppm}): 1.46(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.63$ $(\mathrm{m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.57\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.85\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 3.04(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, $3.07(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.96$ [dd, $1 \mathrm{H}, J=5$ and $15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})$], $4.02(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.08\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ (NHBn, Urea)], 4.15 [m, 1H, CH $\mathrm{CH}_{2}\left(\mathrm{NHBn}\right.$, Urea)], $4.20\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.50\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.66\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ $(\mathrm{Z})], 4.68(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.79\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.82\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.02(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, N H Z)$, $5.08(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{CH} N H), 5.95[\mathrm{~m}, 1 \mathrm{H}, N H B n(\mathrm{Urea})], 6.95-7.40(\mathrm{~m}, 25 \mathrm{H}, \mathrm{Ar}), 7.40(\mathrm{~m}, 1 \mathrm{H}, N H B n)$, $7.78(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \alpha-\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{R})-\mathbf{1 8 a} \delta(\mathrm{ppm}): 26.6\left[\mathrm{C}_{\gamma}\right], 30.2\left[\mathrm{C}_{\beta}\right]$, 37.3 [$\left.\mathrm{CH}_{2}-\mathrm{Ph}\right], 39.0\left[\mathrm{C}_{\delta}\right], 43.5\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 44.0\left[\mathrm{CH}_{2}\left(\mathrm{NHBn}\right.\right.$, Urea)], $44.6\left[\mathrm{C}_{3}\right], 49.5\left[\mathrm{CH}_{2}(\mathrm{NBn})\right]$, $51.1\left[\mathrm{C}_{a}\right], 52.2\left[\mathrm{C}_{2}-\mathrm{CH}\right], 55.6\left[\mathrm{C}_{6}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CO}\right], 60.8\left[\mathrm{C}_{2}\right], 66.7\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 126.6,127.0,127.4,127.6$, $127.9,128.1,128.4,128.5,128.7,128.9$ [25CH (Ar)], 136.3 [C (NBn) and C (Z)], 137.2 [C (Ph)], 137.7 [C (NHBn)], 139.3 [C (NHBn, Urea)], 155.4 [CO (Z)], 157.7 [CO (Urea)], 167.6 [C C_{5}], 170.0 [CO], $172.4[\alpha-\mathrm{CONH}] .(\boldsymbol{S})$-18a $\delta(\mathrm{ppm}): 26.6\left[\mathrm{C}_{\gamma}\right], 30.7\left[\mathrm{C}_{\beta}\right], 38.2\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 38.7\left[\mathrm{C}_{\delta}\right], 43.5\left[\mathrm{CH}_{2}\right.$ (NHBn)], $43.8\left[\mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea) $], 45.0\left[\mathrm{C}_{3}\right], 49.9\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 51.4\left[\mathrm{C}_{\alpha}\right], 52.2$ [$\left.\mathrm{C}_{2}-\mathrm{CH}\right], 55.6$ $\left[\mathrm{CH}_{2} \mathrm{CO}\right], 66.7\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 126.9,127.1,127.4,127.5,127.8,127.9,128.2,128.5,128.6,128.9,129.6$ [25CH (Ar)], 136.1 [C (NBn) and C (Z)], 137.1 [C (Ph)], 137.7 [C (NHBn)], 139.8 [C (NHBn, Urea)], 155.2 [CO (Z)], 157.9 [CO (Urea)], 167.6 [C ${ }_{5}$], 170.0 [CO], 172.6 [α-CONH]; ES-MS m/z 839.6 $[\mathrm{M}+1]^{+} ; \mathrm{C}_{49} \mathrm{H}_{55} \mathrm{~N}_{7} \mathrm{O}_{6}(\%): \mathrm{C}: 70.23, \mathrm{H}: 6.22, \mathrm{~N}: 11.70$. Found (\%): C: 70.01, H: 6.46, N: 11.59.

N-[2-[4-Benzyl-(2RS)-[(1S)-(3-benzylureido)-2-phenyl-ethyl]-5-oxopiperazin-1-yl]acetyl]-Lys(Z)-NHBn (18b). Amorphous solid $[(R: S)=(3: 1)](317 \mathrm{mg}, 62 \%)$; HPLC $t_{\mathrm{R}}: 23.69 \mathrm{~min}[(\boldsymbol{R})-\mathbf{1 8 b}]$ and 24.16 min $[(\boldsymbol{S}) \mathbf{- 1 9 b}] ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{R}) \mathbf{- 1 8 b} \delta(\mathrm{ppm}): 1.27(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H}$, $\delta-\mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.76(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}$, $\varepsilon-\mathrm{H}), 3.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right.$ and $\left.6-\mathrm{H}\right), 3.14(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}, \varepsilon-\mathrm{H}), 3.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right)$, $3.25(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.41(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, 6-\mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 3.95[\mathrm{dd}, 1 \mathrm{H}, J=5.5$ and 15 , CH_{2} (NHBn, Urea)], $4.04\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea) $], 4.18\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.32\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ (NBn], $4.38(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.62\left[\mathrm{~d}, 1 \mathrm{H}, J=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn}], 4.92(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH}), 5.00[\mathrm{~s}, 2 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2}(\mathrm{Z})\right], 5.20(\mathrm{~m}, 1 \mathrm{H}, N H Z), 5.70[\mathrm{~m}, 1 \mathrm{H}, N H B n(U r e a)], 6.81-7.33(\mathrm{~m}, 26 \mathrm{H}, \mathrm{Ar}$ and $N H B n), 7.71$ $(\mathrm{d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \alpha-\mathrm{NH}) .(\boldsymbol{S}) \mathbf{- 1 8 b} \delta(\mathrm{ppm}): 1.27(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H})$, $1.78(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.68\left(\mathrm{~m}, 2 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 2.76(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.98(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right)$, $3.18(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.76(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 3.95\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea)], 4.04 [m, 1H, CH $\mathrm{CH}_{2}\left(\mathrm{NHBn}\right.$, Urea)], $4.10\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.18\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.34(\mathrm{~m}, 1 \mathrm{H}$, $\alpha-\mathrm{H}), 4.43\left[\mathrm{~d}, 1 \mathrm{H}, J=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn}], 4.52\left[\mathrm{~d}, 1 \mathrm{H}, J=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn}], 4.92(\mathrm{~m}, 1 \mathrm{H}\right.\right.$, 2-CHNH), $4.96\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.10(\mathrm{~m}, 1 \mathrm{H}, N H Z), 5.70[\mathrm{~m}, 1 \mathrm{H}, N H B n(U r e a)], 6.81-7.33(\mathrm{~m}, 26 \mathrm{H}$, Ar and $N H \mathrm{Bn}), 7.64(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \alpha-\mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{R})$ - $\mathbf{1 8 b} \delta(\mathrm{ppm}): 22.7$ [C $\left.\mathrm{C}_{\gamma}\right], 29.2\left[\mathrm{C}_{\delta}\right], 31.9\left[\mathrm{C}_{\beta}\right], 37.5\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 40.4\left[\mathrm{C}_{\varepsilon}\right], 43.4\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 44.0\left[\mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea) $]$, $44.3\left[\mathrm{C}_{3}\right], 49.5\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 52.0\left[\mathrm{C}_{2}-\mathrm{CH}\right], 53.0\left[\mathrm{C}_{a}\right], 55.3\left[\mathrm{C}_{6}\right], 58.6\left[\mathrm{CH}_{2} \mathrm{CO}\right], 60.1$ [$\left.\mathrm{C}_{2}\right], 66.6$ $\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 126.7,127.0,127.4,127.5,128.0,128.2,128.4,128.5,128.6,128.7,128.9$ [25CH (Ar)], 136.4 [C (NBn)], 136.6 [C (Z)], 137.1 [C (Ph)], 137.8 [C (NHBn)], 139.1 [C (NHBn, Urea)], 156.6 [CO (Z)], 157.7 [CO (Urea)], $167.8\left[\mathrm{C}_{5}\right], 170.1[\mathrm{CO}], 172.1[\alpha-\mathrm{CONH}] .(\boldsymbol{S})-\mathbf{1 8 b} \delta(\mathrm{ppm}): 22.4\left[\mathrm{C}_{\gamma}\right]$, $29.7\left[\mathrm{C}_{\delta}\right], 30.9\left[\mathrm{C}_{\beta}\right], 38.2\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 43.5\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 43.9\left[\mathrm{CH}_{2}\left(\mathrm{NHBn}\right.\right.$, Urea)], 44.3 [C $\left.\mathrm{C}_{3}\right], 49.7$ $\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 51.2\left[\mathrm{C}_{2}-\mathrm{CH}\right], 52.8\left[\mathrm{C}_{\alpha}\right], 58.6\left[\mathrm{CH}_{2} \mathrm{CO}\right], 60.0\left[\mathrm{C}_{2}\right], 66.7\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 126.7,127.2,127.4$,
127.5, 128.0, 128.1, 128.4, 128.5, 128.6, 128.7, 128.9, 129.5 [25CH (Ar)], 136.1 [C (NBn)], 136.6 [C (Z)], 137.1 [C (Ph)], 137.8 [C (NHBn)], 139.6 [C (NHBn, Urea)], 156.7 [CO (Z)], 158.0 [CO (Urea)], 170.1 [CO], 172.1 [$\alpha-\mathrm{CONH}]$; ES-MS $m / z 853.7$ [M+1] ${ }^{+} ; \mathrm{C}_{50} \mathrm{H}_{57} \mathrm{~N}_{7} \mathrm{O}_{6}$ (\%): C: 70.48, H: 6.74, N: 11.51. Found (\%): C: 70.31, H: 6.95, N: 11.69.

3.12. General Procedure for the Synthesis of the Hydrochlorides 19a,b and 20a,b

These compounds were prepared following the general procedure for the removal of the $N-Z$ protecting group, already indicated for the synthesis of $\mathbf{1 1 a , b}$ and $\mathbf{1 2 a}, \mathbf{b}$.

N-[2-[4-Benzyl-5-oxo-(2RS)-[2-phenyl-(1S)-(3-phenylureido)ethyl]-piperazin-1-yl]acetyl]-Orn-NHBn hydrochloride (19a). Amorphous solid $[(R: S)=(3: 1)](145 \mathrm{mg}, 100 \%)$; HPLC $t_{\mathrm{R}}: 16.27 \mathrm{~min}[(\boldsymbol{R}) \mathbf{- 1 9 a}]$ and $16.52 \mathrm{~min}[(\boldsymbol{S}) \mathbf{- 1 9 a}] ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\boldsymbol{R})-\mathbf{1 9 a} \delta(\mathrm{ppm}): 1.62(\mathrm{~m}, 3 \mathrm{H}, \gamma-\mathrm{H}$ and $\beta-\mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.70\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 2.75(\mathrm{~m}, 3 \mathrm{H}, \delta-\mathrm{H}$ and $2-\mathrm{H}), 2.91(\mathrm{~d}, 1 \mathrm{H}, J=11 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}-\mathrm{Ph}\right), 3.33-4.11\left(\mathrm{~m}, 6 \mathrm{H}, 3-\mathrm{H}, 6-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 4.22\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.34\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ (NHBn)], $4.38(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.39(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.48\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.62\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right]$, $6.80(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH}), 6.76-6.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.08-7.38(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ar}), 7.96\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.60$ (m, 1H, $\alpha-\mathrm{NH}$), $8.72(\mathrm{~m}, 1 \mathrm{H}, N H B n), 8.85(\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Ph}) .(\boldsymbol{S}) \mathbf{- 1 9 a} \delta(\mathrm{ppm}): 1.58(\mathrm{~m}, 3 \mathrm{H}, \gamma-\mathrm{H}$ and $\beta-\mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.55\left(\mathrm{dd}, 1 \mathrm{H}, J=6\right.$ and $\left.14 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.75(\mathrm{~m}, 3 \mathrm{H}, \delta-\mathrm{H}$ and $2-\mathrm{H}), 2.85$ (m, 1H, CH $2-\mathrm{Ph}$), $3.33-4.11\left(\mathrm{~m}, 7 \mathrm{H}, 3-\mathrm{H}, 6-\mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right.$ and $\left.2-\mathrm{CH}\right), 4.22\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.34$ [m, 1H, CH $2(\mathrm{NHBn})], 4.51\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.64\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 6.80(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH})$, 6.76-6.95 (m, 2H, Ar), 7.08-7.38 (m, 18H, Ar), $7.96\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.60(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}), 8.70$ $(\mathrm{m}, 1 \mathrm{H}, N H \mathrm{Bn}), 8.81(\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Ph}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\boldsymbol{R}) \mathbf{- 1 9 a} \delta(\mathrm{ppm}): 23.4\left[\mathrm{C}_{\gamma}\right]$, $28.9\left[\mathrm{C}_{\beta}\right], 37.8\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 38.1\left[\mathrm{C}_{\delta}\right], 42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 43.7\left[\mathrm{C}_{3}\right], 49.2\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 49.8\left[\mathrm{C}_{2}-\mathrm{CH}\right]$, $51.9\left[\mathrm{C}_{\alpha}\right], 53.6\left[\mathrm{C}_{6}\right], 53.9\left[\mathrm{CH}_{2} \mathrm{CO}\right], 60.5\left[\mathrm{C}_{2}\right], 117.7,121.2,126.2,126.6,127.0,127.2,127.5,128.2$, 128.4, 128.5, 129.1 [20CH (Ar)], 136.3 [C (NBn)], 137.8 [C (Ph)], 139.1 [C (NHBn)], 139.9 [C (NHPh)], 155.2 [CO (Urea)], 170.7 [$\alpha-\mathrm{CONH}] .(\boldsymbol{S})-\mathbf{1 9 a} \delta(\mathrm{ppm}): 23.3\left[\mathrm{C}_{\gamma}\right], 29.0\left[\mathrm{C}_{\beta}\right], 37.8$ [$\left.\mathrm{CH}_{2}-\mathrm{Ph}\right], 38.2\left[\mathrm{C}_{\delta}\right], 42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 43.7\left[\mathrm{C}_{3}\right], 49.2\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 49.8\left[\mathrm{C}_{2}-\mathrm{CH}\right], 53.5\left[\mathrm{C}_{6}\right], 53.9$ [$\left.\mathrm{CH}_{2} \mathrm{CO}\right], 60.2\left[\mathrm{C}_{2}\right], 117.5,121.0,126.1,126.6,127.0,127.3,127.7,127.9,128.1,128.4,128.5,129.1$ [20CH (Ar)], 136.3 [C (NBn)], 138.0 [C (Ph)], 139.1 [C (NHBn)], 140.1 [C (NHPh)], 155.0 [CO (Urea)], $170.8[\alpha-\mathrm{CONH}]$; ES-MS $m / z[\mathrm{M}+2]^{+}$calculated for $\mathrm{C}_{40} \mathrm{H}_{47} \mathrm{~N}_{7} \mathrm{O}_{4}$: 690.3; found: 690.6.

N-[2-[4-Benzyl-5-oxo-(2RS)-[2-phenyl-(1S)-(3-phenylureido)ethyl]-piperazin-1-yl\}acetyl\}-Lys-NHBn hydrochloride (19b). Amorphous solid $[(R: S)=(3: 1)](148 \mathrm{mg}, 100 \%)$; HPLC $t_{\mathrm{R}}: 16.44 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\boldsymbol{R})-19 b \quad \delta(\mathrm{ppm}): 1.30(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.72$ $(\mathrm{m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.70(\mathrm{~m}, 3 \mathrm{H}, \varepsilon-\mathrm{H}$ and $2-\mathrm{H}), 2.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.26-4.20$ ($\mathrm{m}, 6 \mathrm{H}, 3-\mathrm{H}, 6-\mathrm{H}$ and $\mathrm{CH}_{2} \mathrm{CO}$), $4.32(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.24\left[\mathrm{dd}, 1 \mathrm{H}, J=6\right.$ and $\left.15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right]$, $4.30\left[\mathrm{~m}, 2 \mathrm{H}, \alpha-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.50\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.70\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 6.55(\mathrm{~m}, 1 \mathrm{H}$, 2-CHNH), $6.86(\mathrm{t}, 1 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{Ar}), 6.97-7.41(\mathrm{~m}, 19 \mathrm{H}, \mathrm{Ar}), 7.84\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.51(\mathrm{~m}, 1 \mathrm{H}$, $\alpha-N H), 8.62(\mathrm{~m}, 1 \mathrm{H}, N H B n), 8.80(\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Ph}) .(\boldsymbol{S})-\mathbf{1 9 b} \delta(\mathrm{ppm}): 1.60(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}$, $\beta-\mathrm{H}), 2.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.24\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.30\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ $(\mathrm{NHBn})], 6.55(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH} N H), 6.86(\mathrm{t}, 1 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{Ar}), 6.97-7.41(\mathrm{~m}, 19 \mathrm{H}, \mathrm{Ar}), 7.84(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.58(\mathrm{~m}, 1 \mathrm{H}, N H B n), 8.83(\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Ph}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}_{6} d_{6}\right)(\boldsymbol{R})-\mathbf{1 9 b}$
$\delta(\mathrm{ppm}): 22.2\left[\mathrm{C}_{\gamma}\right], 26.5\left[\mathrm{C}_{\delta}\right], 31.3\left[\mathrm{C}_{\beta}\right], 37.8\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 38.4\left[\mathrm{C}_{8}\right], 42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 43.8\left[\mathrm{C}_{3}\right], 49.2$ $\left[\mathrm{CH}_{2}(\mathrm{NBn})\right.$ and $\left.\mathrm{C}_{2}-\mathrm{CH}\right], 52.5\left[\mathrm{C}_{a}\right], 53.7$ [C $\left.\mathrm{C}_{6}\right], 60.4\left[\mathrm{C}_{2}\right], 117.8,121.3,126.7,127.0,127.3,127.6$, 128.2, 128.5, 128.6, 129.2 [20CH (Ar)], 136.5 [C (NBn)], 137.9 [C (Ph)], 139.2 [C (NHBn)], 139.9 [C (NHPh)], 155.3 [CO (Urea)], $171.1[\alpha-\mathrm{CONH}] .(\boldsymbol{S})-\mathbf{1 9 b} \delta(\mathrm{ppm}): 31.5\left[\mathrm{C}_{\beta}\right], 37.8$ [$\left.\mathrm{CH}_{2}-\mathrm{Ph}\right], 42.0$ $\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 117.8,121.3,126.3,127.0,127.3,127.6,128.2,128.5,128.6,129.2$ [20CH (Ar)], $136.5[\mathrm{C}(\mathrm{NBn})], 137.9[\mathrm{C}(\mathrm{Ph})], 139.2$ [C (NHBn)], 139.9 [C (NHPh)], 155.5 [CO (Urea)], 171.1 $[\alpha-\mathrm{CONH}] ; \mathrm{ES}-\mathrm{MS} m / z[\mathrm{M}+2]^{+}$calculated for $\mathrm{C}_{41} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O}_{4}: 705.3$; found: 705.6.

N-[2-[4-Benzyl-(2RS)-[(1S)-(3-benzylureido)-2-phenylethyl]-5-oxopiperazin-1-yl]acetyl]-Orn-NHBn hydrochloride (20a). Amorphous solid $[(R: S)=(3: 1)](148 \mathrm{mg}, 100 \%)$; HPLC $t_{\mathrm{R}}: 16.32 \mathrm{~min}[(\boldsymbol{R})-\mathbf{2 0 a}]$ and $16.78 \mathrm{~min}[(\boldsymbol{S}) \mathbf{- 2 0 a}] ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\boldsymbol{R}) \mathbf{- 2 0 a} \delta(\mathrm{ppm}): 1.60(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.65$ (m, 1H, $\beta-\mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.65\left(\mathrm{dd}, 1 \mathrm{H}, J=10\right.$ and $\left.14 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.74(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.78$ $(\mathrm{m}, 1 \mathrm{H}, \delta-\mathrm{H}), 2.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.35-3.82\left(\mathrm{~m}, 6 \mathrm{H}, 3-\mathrm{H}, 6-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 4.03[\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}$, $\mathrm{CH}_{2}(\mathrm{NHBn}$, Urea) $], 4.15\left[\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea) $], 4.25\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.30$ $\left[\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.36(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.38(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.47\left[\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right]$, $4.62\left[\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 6.49(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH} N H), 6.90-7.40[\mathrm{~m}, 21 \mathrm{H}, \mathrm{Ar}$ and $N H B n$ (Urea)], $7.92\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.56(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}), 8.72(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, N H B n) .(\boldsymbol{S})-\mathbf{2 0 a} \delta(\mathrm{ppm})$: $1.58(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.50\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 2.78(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 2.79\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right)$, $3.97\left[\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea) and $5-\mathrm{CH}], 4.14\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ (NHBn, Urea)], $4.25[\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.30\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.44\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.58\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 6.42$ $(\mathrm{m}, 1 \mathrm{H}, 2-\mathrm{CH} N H), 6.90-7.40[\mathrm{~m}, 21 \mathrm{H}, \mathrm{Ar}$ and $\mathrm{NHBn}(\mathrm{Urea})], 7.92\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.74(\mathrm{t}, 1 \mathrm{H}$, $J=6 \mathrm{~Hz}, N H B n) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}_{6}\right)(\boldsymbol{R})-\mathbf{2 0 a} \delta(\mathrm{ppm}): 23.4\left[\mathrm{C}_{\gamma}\right], 29.2\left[\mathrm{C}_{\beta}\right], 37.8$ [CH2-Ph], $38.1\left[\mathrm{C}_{\delta}\right], 42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 42.7\left[\mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea) $], 43.7\left[\mathrm{C}_{3}\right], 49.1\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 51.9$ [C_{α}], 49.7 [$\left.\mathrm{C}_{2}-\mathrm{CH}\right], 53.7\left[\mathrm{C}_{6}\right], 53.9\left[\mathrm{CH}_{2} \mathrm{CO}\right], 60.8\left[\mathrm{C}_{2}\right], 126.4,126.6,126.7,127.1,127.6,128.1$, $128.3,128.5,129.2[20 \mathrm{CH}(\mathrm{Ar})], 136.4$ [C (NBn)], 137.1 [C (Ph)], 139.0 [C (NHBn)], 140.4 [C (NHBn, Urea)], 158.1 [CO (Urea)], 170.9 [α-CONH]. (S)-20a $\delta(\mathrm{ppm}): 29.4\left[\mathrm{C}_{\beta}\right], 37.8$ [$\left.\mathrm{CH}_{2}-\mathrm{Ph}\right]$, $38.2\left[\mathrm{C}_{\delta}\right], 42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 42.7$ [$\left.\mathrm{CH}_{2}(\mathrm{NHBn}, \mathrm{Urea})\right], 49.1\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 49.7$ [C2-CH], 126.4, 126.5, 126.7, 127.3, 127.8, 128.0, 128.3, 128.6, 129.2 [20CH (Ar)], 136.4 [C (NBn)], 137.1 [C (Ph)], 139.0 [C (NHBn)], 140.4 [C (NHBn, Urea)], 157.8 [CO (Urea)], 170.9 [α-CONH]; ES-MS $m / z[\mathrm{M}+2]^{+}$ calculated for $\mathrm{C}_{41} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O}_{4}$: 705.3; found: 705.6.

N-[2-[4-Benzyl-(2RS)-[(1S)-(3-benzylureido)-2-phenylethyl]-5-oxopiperazin-1-yl] acetyl]-Lys-NHBn hydrochloride (20b). Amorphous solid $[(R: S)=(3: 1)](151 \mathrm{mg}, 100 \%)$; HPLC $t_{\mathrm{R}}: 15.83 \mathrm{~min}[(\boldsymbol{R})$-20b] and $16.25 \mathrm{~min}[(\boldsymbol{S}) \mathbf{- 2 0 b}] ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\boldsymbol{R}) \mathbf{- 2 0 b} \delta(\mathrm{ppm}): 1.29(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.52$ $(\mathrm{m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.68(\mathrm{~m}, 2 \mathrm{H}, \varepsilon-\mathrm{H}), 2.69(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.34-3.87\left(\mathrm{~m}, 6 \mathrm{H}, 3-\mathrm{H}, 6-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 4.03[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15 \mathrm{~Hz}$, CH_{2} (NHBn, Urea)], 4.14 [d, $1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}\left(\mathrm{NHBn}\right.$, Urea)], 4.20 [m, 1H, CH $\left.\mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.29$ $\left[\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.30(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.50\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn}], 4.64[\mathrm{~m}, 1 \mathrm{H}\right.$, $\mathrm{CH}_{2}(\mathrm{NBn}], 6.48(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH}), 6.94-7.41[\mathrm{~m}, 21 \mathrm{H}, \mathrm{Ar}$ and NHBn (Urea)], 7.87 (m, 3H, $\left.\mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.50(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}), 8.60(\mathrm{~m}, 1 \mathrm{H}, N H B n) .(\boldsymbol{S})-\mathbf{2 0 b} \delta(\mathrm{ppm}): 1.25(\mathrm{~m}, 1 \mathrm{H}, \gamma-\mathrm{H}), 1.35(\mathrm{~m}$, $1 \mathrm{H}, \gamma-\mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.52\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 2.80\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 3.98[\mathrm{~d}$, $1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn}$, Urea) $], 4.14\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea) $], 4.20\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right]$,
$4.29\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 6.40(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH}), 6.94-7.41[\mathrm{~m}, 21 \mathrm{H}, \mathrm{Ar}$ and $N H \mathrm{Bn}$ (Urea)], 7.87 $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHBn}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\boldsymbol{R})-\mathbf{2 0 b} \delta(\mathrm{ppm}): 22.7\left[\mathrm{C}_{\gamma}\right]$, $26.9\left[\mathrm{C}_{\delta}\right], 31.7$ [C $\left.\mathrm{C}_{\beta}\right], 38.2\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 38.9\left[\mathrm{C}_{\varepsilon}\right], 42.5\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 43.0\left[\mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea)], 44.2 [$\left.\mathrm{C}_{3}\right], 49.5\left[\mathrm{C}_{2}-\mathrm{CH}\right], 49.7\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 53.0\left[\mathrm{C}_{\alpha}\right], 54.0\left[\mathrm{C}_{6}\right], 60.1\left[\mathrm{C}_{2}\right], 126.7,126.8,127.0,127.2$, $127.5,128.0,128.5,128.6,129.0,129.6$ [20CH (Ar)], 136.9 [C (NBn)], 138.3 [C (Ph)], 139.7 [C (NHBn)], 140.8 [C (NHBn, Urea)], 158.6 [CO (Urea)], 171.5 [α-CONH]. (S)-20b $\delta(\mathrm{ppm}): 22.7$ [C C_{γ}], $31.5\left[\mathrm{C}_{\beta}\right], 38.0\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 42.5\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 43.0\left[\mathrm{CH}_{2}(\mathrm{NHBn}\right.$, Urea)], 126.7, 126.8, 127.0, 127.2, $127.7,128.2,128.5,128.6,129.0,129.6[20 \mathrm{CH}(\mathrm{Ar})], 136.9$ [C (NBn)], 138.3 [C (Ph)], 139.7 [C $(\mathrm{NHBn})], 141.0[\mathrm{C}(\mathrm{NHBn}, \mathrm{Urea})]$, 158.2 [CO (Urea)], 171.5 [α-CONH]; ES-MS m/z [M+2] calculated for $\mathrm{C}_{42} \mathrm{H}_{51} \mathrm{~N}_{7} \mathrm{O}_{4}$: 719.4; found: 719.9.

3.13. General Procedure for Removal of the N-Pbf Protecting Group. Synthesis of N-[2-[4-benzyl-5-oxo-(2RS)-[2-phenyl-(lS)-(3-phenyl-ureido)ethyl]piperazin-1-yl]acetyl]-Arg-NHBn

 Trifluoroacetate (19c)The epimeric mixture of the $\operatorname{Arg}(\mathrm{Pbf})$-derived phehylureido-piperazine $17 \mathrm{c}[(R: S)=(3: 1)]$ ($295 \mathrm{mg}, 0.30 \mathrm{mmol}$) was dissolved in TFA/ $\mathrm{H}_{2} \mathrm{O} /$ TIS mixture ($90: 5: 5 ; 5 \mathrm{~mL}$) and the mixture was stirred at room temperature for 5 h . Afterwards, the TFA was evaporated under stream of argon and the residue was centrifuged three times in diethyl ether $(10 \mathrm{~mL})$ at 5000 rpm and $-15^{\circ} \mathrm{C}$ for 15 min . The residue was dissolved in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(1: 3,2 \mathrm{~mL})$ and the solution was lyophilized. The epimeric mixture of trifluoroacetate salts 19c $[(R: S)=(3: 1)]$ was obtained quantitatively ($254 \mathrm{mg}, 100 \%$). HPLC $t_{\mathrm{R}}: 16.60 \mathrm{~min}[(\boldsymbol{R}) \mathbf{- 1 9 c}]$ and $16.87 \mathrm{~min}[(\boldsymbol{S}) \mathbf{- 1 9 c}] ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\boldsymbol{R}) \mathbf{- 1 9 c} \delta(\mathrm{ppm}):$ $1.44(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 2.71\left(\mathrm{dd}, 1 \mathrm{H}, J=9\right.$ and $\left.13.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Ph}\right)$, $2.95(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.96\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 3.03(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H})$, $3.30(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.48(\mathrm{~d}, 1 \mathrm{H}, J=17 \mathrm{~Hz}, 6-\mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.23$ $\left[\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.30\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.32(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.72\left[\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ (NBn)], $6.49(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH}), 6.73-7.36(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar}), 7.76\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHC}\left(\mathrm{NH}_{2} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)=\mathrm{NH}\right]$, $8.23(\mathrm{~d}, 1 \mathrm{H}, J=7 \mathrm{~Hz}, \alpha-\mathrm{NH}), 8.57(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, N H B n), 9.00(\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Ph}) .(\boldsymbol{S})-19 \mathrm{c} \delta(\mathrm{ppm})$: $2.97(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 3.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.14(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.23(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H})$, $3.30(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.77(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, 6-\mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.04$ $\left[\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.30\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.43\left[\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.54[\mathrm{~d}, 1 \mathrm{H}$, $\left.J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 6.73-7.36(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar}), 7.76\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHC}\left(\mathrm{NH}_{2} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)=\mathrm{NH}\right], 8.59$ $(\mathrm{m}, 1 \mathrm{H}, N H B n), 9.00(\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Ph}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\boldsymbol{R})-\mathbf{1 9 c} \delta(\mathrm{ppm}): 25.4\left[\mathrm{C}_{\gamma}\right]$, $29.7\left[\mathrm{C}_{\beta}\right], 37.6\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 40.8\left[\mathrm{C}_{\delta}\right], 42.5\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 45.3\left[\mathrm{C}_{3}\right], 49.5\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 50.8\left[\mathrm{C}_{2}-\mathrm{CH}\right]$, $52.6\left[\mathrm{C}_{\alpha}\right], 54.9\left[\mathrm{C}_{6}\right], 55.4\left[\mathrm{CH}_{2} \mathrm{CO}\right], 59.9\left[\mathrm{C}_{2}\right], 118.2,121.5,126.4,127.2,217.3,127.5,128.1,128.6$, 128.7, 129.0, 129.7 [20CH (Ar)], 137.6 [C (NBn)], 139.2 [C (Ph)], 139.7 [C (NHBn)], 140.9 [C (NHPh)], 157.1 [CO (Urea)], $155.4\left[\mathrm{C}\left(\mathrm{NHC}^{2}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right)\right], 167.1$ [C5], 170.0 [CO], 171.8 [α-CONH]. (S)-19c $\delta(\mathrm{ppm}): 40.8\left[\mathrm{C}_{\delta}\right], 42.3\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 46.1\left[\mathrm{C}_{3}\right], 48.9\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 51.6$ [$\left.\mathrm{C}_{2}-\mathrm{CH}\right], 54.9\left[\mathrm{C}_{6}\right], 55.4\left[\mathrm{CH}_{2} \mathrm{CO}\right], 118.0,121.5,126.4,127.2,217.3,127.6,128.2,128.4,128.6$, $129.0,129.7$ [20CH (Ar)], 138.0 [C (NBn)], 139.2 [C (Ph)], 139.7 [C (NHBn)], 140.9 [C (NHPh)], $157.5[\mathrm{CO}($ Urea $)], 155.8\left[\mathrm{C}\left(\mathrm{NHC}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right)\right], 170.6[\mathrm{CO}], 173.0[\alpha-\mathrm{CONH}] ;$ ES-MS $m / z[\mathrm{M}+1]^{+}$ calculated for $\mathrm{C}_{41} \mathrm{H}_{49} \mathrm{~N}_{9} \mathrm{O}_{4}$: 732.4; found: 732.7.

3.14. General Procedure for the Synthesis of the Indazole-Derived Ureas 23b,c

Propylene oxide ($19 \mu \mathrm{~L}, 0.27 \mathrm{mmol}$) was added to a $0^{\circ} \mathrm{C}$ cooled solution of 1-(2,6-dichlorobenzyl)-6-amino-3-(pyrrolidin-1-ylmethyl)-1 H -indazol [24] ($83 \mathrm{mg}, 0.22 \mathrm{mmol}$) in dry THF (4 mL). Then, a solution of bis(trichloromethyl)carbonate ($24 \mathrm{mg}, 0.082 \mathrm{mmol}$) in dry THF (1 mL) was added dropwise and stirring was maintened at $0^{\circ} \mathrm{C}$ for 15 min . Afterwards, the mixture was added dropwise to a $0^{\circ} \mathrm{C}$ cooled solution of the corresponding epimeric mixture of hydrochlorides $\mathbf{1 6 b}, \mathbf{c}(0.22 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(17 \mu \mathrm{~L}, 0.48 \mathrm{mmol})$ in dry THF (5 mL) and stirred for 2 h . Then, the solvent was removed under reduced pressure and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The solution was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The residue was purified by reverse phase chromatography, using $10 \%-100 \% \mathrm{CH}_{3} \mathrm{CN}$ gradient in 0.05% TFA solution in $\mathrm{H}_{2} \mathrm{O}$ as mobile phase, to afford the desired compounds 23b,c.

N-[2-[4-Benzyl-(2RS)-[(1S)-[3-(1-(2,6-dichlorobenzyl)-3-(pyrrolidin-1-ylmethyl)-1H-indazol-6-yl)ureido] -2-phenylethyl]-5-oxopiperazin-1-yl]acetyl]-Lys(Z)-NHBn (23b). Amorphous solid [(R:S) = (3:1)] ($74 \mathrm{mg}, 30 \%$); HPLC $t_{\mathrm{R}}: 19.99 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{R})$-23b $\delta(\mathrm{ppm}): 1.26(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H})$, $1.33(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}$, pyrrolidine), $1.82(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}$, pyrrolidine), $2.68\left(\mathrm{dd}, 1 \mathrm{H}, J=6.5\right.$ and $\left.14 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.90\left(\mathrm{~m}, 1 \mathrm{H}, J=8\right.$ and $\left.14 \mathrm{~Hz}, C H_{2}-\mathrm{Ph}\right), 2.96$ $(\mathrm{m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.98(\mathrm{~m}, 2 \mathrm{H}, \varepsilon-\mathrm{H}), 3.00(\mathrm{~m}, 2 \mathrm{H}$, pyrrolidine), $3.27(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.45$ (m, 4H, pyrrolidine and $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 3.47(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.53(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}, 6-\mathrm{H}), 4.18[\mathrm{~m}, 1 \mathrm{H}$, $\left.J=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.28\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn}), 4.30(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.32\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right.\right.$, 4.35 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$-pyrrolidine), $4.40(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.95\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn}], 4.98\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.36\right.$ (m, 1H, NHZ), 5.50 (s, 2H, CH2-diClPh), 6.83 (d, $2 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{Ar}), 7.02(\mathrm{~d}, 2 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{Ar})$, $7.12-7.35(\mathrm{~m}, 22 \mathrm{H}, \mathrm{Ar}$ and $N H B n), 7.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 8.06(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}), 8.58(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH})$, 11.67 [m, 1H, Indz-NH (Urea)]. (S)-23b $\delta(\mathrm{ppm}): 1.35(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}$, pyrrolidine), 1.88 $(\mathrm{m}, 2 \mathrm{H}$, pyrrolidine), $3.00(\mathrm{~m}, 2 \mathrm{H}$, pyrrolidine), $3.24(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.43(\mathrm{~m}, 2 \mathrm{H}$, pyrrolidine), 3.45 (m, 1H, 3-H), $4.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-Pyrrolidine), $4.38(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.94\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Z})\right], 5.36(\mathrm{~m}, 1 \mathrm{H}$, $N H Z), 5.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{diClPh}\right), 6.76(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.12-7.35(\mathrm{~m}, 22 \mathrm{H}, \mathrm{Ar}$ and $N H B n), 7.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 8.10(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}), 8.70(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH}), 11.67$ [m, 1H, Indz-NH (Urea)]; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\boldsymbol{R})$-23b $\delta(\mathrm{ppm}): 22.8\left[\mathrm{C}_{\gamma}\right], 23.4$ [$2 \mathrm{CH}_{2}$ (pyrrolidine)], 29.1 [$\left.\mathrm{C}_{\delta}\right], 31.5$ [$\left.\mathrm{C}_{\beta}\right], 37.7\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 40.3\left[\mathrm{C}_{\varepsilon}\right], 43.5\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 44.2\left[\mathrm{C}_{3}\right], 47.6\left[\mathrm{CH}_{2}\right.$-diClPh], 48.2 [CH_{2}-pyrrolidine], $49.5\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 51.6\left[\mathrm{C}_{2}-\mathrm{CH}\right], 52.4$ [2 CH_{2} (pyrrolidine)], 53.4 [C $\left.\mathrm{C}_{\alpha}\right], 55.2$ [$\left.\mathrm{C}_{6}\right], 57.5\left[\mathrm{CH}_{2} \mathrm{CO}\right], 60.7$ $\left[\mathrm{C}_{2}\right], 66.6\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 98.0,116.0,118.6[3 \mathrm{CH}(\mathrm{Ar})], 119.2[\mathrm{C}(\mathrm{Ar})], 126.8,127.3,127.9,128.0,128.2$, 128.4, 128.5, 128.6, 128.7, 128.9, 130.1 [23CH (Ar)], 131.3, 133.7 [2C (Ar)], 135.9 [C (NBn)], 136.5 [C (Z)], 136.8 [3C (Ph and Ar)], 137.7 [C (NHBn)], 139.3, 137.7 [2C (Ar)], 155.8 [CO (Z)], 156.8 [CO (Urea)], 166.9 [C $\left.\mathrm{C}_{5}\right], 169.6[\mathrm{CO}], 172.5[\alpha-\mathrm{CONH}] .(\boldsymbol{S})-\mathbf{2 3 b} \delta(\mathrm{ppm}): 23.4\left[2 \mathrm{CH}_{2}\right.$ (pyrrolidine)], $29.1\left[\mathrm{C}_{\delta}\right], 44.2$ [$\left.\mathrm{C}_{3}\right], 47.6$ [CH_{2}-diClPh], 48.2 [CH_{2}-pyrrolidine], 52.4 [$2 \mathrm{CH}_{2}$ (pyrrolidine)], 53.4 [$\left.\mathrm{C}_{\alpha}\right]$, $66.6\left[\mathrm{CH}_{2}(\mathrm{Z})\right], 98.0,115.2,117.5[3 \mathrm{CH}(\mathrm{Ar})], 119.2[\mathrm{C}(\mathrm{Ar})], 126.8,127.4,127.9,128.0,128.2$, 128.4, 128.5, 128.6, 128.7, 128.9, 130.1 [23CH (Ar)], 131.3, 133.7 [2C (Ar)], 135.9 [C (NBn)], 136.5 [C (Z)], 136.8 [3C (Ph and Ar)], 137.7 [C (NHBn)], 139.3, 137.7 [2C (Ar)], 155.8 [CO (Z)], 156.8 [CO (urea)], 172.5 [α-CONH]; ES-MS $m / z 1120.9[\mathrm{M}+1]^{+} ; \mathrm{C}_{62} \mathrm{H}_{68} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{O}_{6}$ (\%): C: 66.48, H: 6.12, N : 12.50. Found (\%): C: 66.79, H: 6.38, N: 12.34 .

N-[2-[4-Benzyl-(2RS)-[(1S)-[3-(1-(2,6-dichlorobenzyl)-3-(pyrrolidin-1-ylmethyl)-1H-indazol-6-yl)ureido] -2-phenylethyl]-5-oxopiperazin-1-yl]acetyl]-Arg(Pbf)-NHBn (23c). Amorphous solid [(R:S) = (3:1)] $(106 \mathrm{mg}, 38 \%)$; $\mathrm{HPLC} t_{\mathrm{R}}: 20.38 \mathrm{~min}[(\boldsymbol{R})-\mathbf{2 3 c}]$ and $21.40 \mathrm{~min}[(\boldsymbol{S}) \mathbf{- 2 3 c}] ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)(\boldsymbol{R})-\mathbf{2 3 c} \delta(\mathrm{ppm}): 1.30\left[\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}(\mathrm{Pbf})\right], 1.40(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.73$ $(\mathrm{m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.86\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 1.88(\mathrm{~m}, 2 \mathrm{H}$, pyrrolidine), $1.97(\mathrm{~m}, 2 \mathrm{H}$, pyrrolidine), $2.36[\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.44\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.86\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Pbf})\right], 3.00(\mathrm{~m}, 1 \mathrm{H}$, $\delta-\mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}, \delta-\mathrm{H}), 3.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.32(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.34(\mathrm{~m}, 2 \mathrm{H}$, pyrrolidine), $3.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.57(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.68(\mathrm{~m}$, 2 H , pyrrolidine), $4.20\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.34\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.38\left[\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{CH}\right.$ and CH_{2} (NHBn)], $4.39(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-pyrrolidine), $4.88\left[\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 5.55$ $\left(\mathrm{d}, 2 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-diClPh $), 6.39\left[\mathrm{~m}, 3 \mathrm{H}, \mathrm{NHC}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right], 6.95-7.34(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Ar}), 7.86(\mathrm{~m}, 1 \mathrm{H}$, $N H B n), 8.26(\mathrm{~d}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, \alpha-\mathrm{NH}), 9.26(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH}), 10.32[\mathrm{~m}, 1 \mathrm{H}$, Indz-NH (Urea)]. (S)-23c $\delta(\mathrm{ppm}): 1.30\left[\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}(\mathrm{Pbf})\right], 1.86\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 1.88(\mathrm{~m}, 2 \mathrm{H}$, pyrrolidine), $1.97(\mathrm{~m}, 2 \mathrm{H}$, pyrrolidine), $2.36\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.44\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Pbf})\right], 2.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.80(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{Ph}\right), 2.86\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Pbf})\right], 3.34(\mathrm{~m}, 2 \mathrm{H}$, pyrrolidine), $3.68(\mathrm{~m}, 2 \mathrm{H}$, pyrrolidine), 4.10 [dd, 1 H , $J=6$ and $\left.15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.37(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.40\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.43[\mathrm{~d}, 1 \mathrm{H}, J=14 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}(\mathrm{NBn})\right], 4.58\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn})\right], 4.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-pyrrolidine), $5.55(\mathrm{~m}, 2 \mathrm{H}, J=6 \mathrm{~Hz}$, CH_{2}-diClPh $), 6.50\left[\mathrm{~m}, 3 \mathrm{H}, \mathrm{NHC}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right], 6.95-7.34(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Ar}), 7.91(\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Bn}), 8.26(\mathrm{~m}$, $1 \mathrm{H}, \boldsymbol{\alpha}-\mathrm{NH}$), $9.26(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHNH}), 10.32\left[\mathrm{~m}, 1 \mathrm{H}\right.$, Indz-NH (urea)]; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$ (\boldsymbol{R})-23c $\delta(\mathrm{ppm}): 13.2,19.0,20.2\left[3 \mathrm{CH}_{3}(\mathrm{Pbf})\right], 24.5\left[2 \mathrm{CH}_{2}\right.$ (pyrrolidine)], $27.5\left[\mathrm{C}_{\gamma}\right], 28.6\left[2 \mathrm{CH}_{3}\right.$ (Pbf)], 31.3 [$\left.\mathrm{C}_{\beta}\right], 39.2\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 41.4\left[\mathrm{C}_{\delta}\right], 44.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 44.3$ [$\left.\mathrm{CH}_{2}(\mathrm{Pbf})\right], 45.7$ [C $\left.\mathrm{C}_{3}\right], 49.0$ [CH_{2}-diClPh], $50.5\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 50.7\left[\mathrm{CH}_{2}\right.$-pyrrolidine], $54.1\left[\mathrm{C}_{2}-\mathrm{CH}\right.$ and $\left.\mathrm{C}_{\alpha}\right], 55.1\left[2 \mathrm{CH}_{2}\right.$ (pyrrolidine)], $56.0\left[\mathrm{C}_{6}\right], 59.5\left[\mathrm{CH}_{2} \mathrm{CO}\right], 63.2\left[\mathrm{C}_{2}\right], 87.5[\mathrm{C}(\mathrm{Pbf})], 98.9,117.2$ [2CH (Ar)], 118.4 [C (Pbf)], 118.6 [CH (Ar)], 119.7 [C (Ar)], 121.4 [CH (Ar)], 126.2 [C (Pbf)], 127.7, 128.2, 128.7, 129.6, 129.8, 130.1, 130.2, 130.8, 132.1 [17CH (Ar)], 133.5, 135.7 [2C (Pbf)], 136.7, 138.3 [3C (Ar)], 139.0 [C (NBn)], 139.5 [C (Pbf)], 140.3 [C (Ph)], 140.9 [C (NHBn)], 141.9, 143.5 [3C (Ar)], 157.6 [CO (Urea)], $160.9\left[\mathrm{C}\left(\mathrm{NHC}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right)\right], 159.7[\mathrm{C}(\mathrm{Pbf})], 168.3\left[\mathrm{C}_{5}\right], 171.1$ [CO], 173.2 [$\left.\alpha-\mathrm{CONH}\right]$. (S)-23c $\delta(\mathrm{ppm}): 13.2,19.0,20.2\left[3 \mathrm{CH}_{3}(\mathrm{Pbf})\right], 24.5\left[2 \mathrm{CH}_{2}\right.$ (pyrrolidine)], $28.6\left[2 \mathrm{CH}_{3}(\mathrm{Pbf})\right], 39.2$ $\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 44.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 44.3\left[\mathrm{CH}_{2}(\mathrm{Pbf})\right], 49.0\left[\mathrm{CH}_{2}\right.$-diClPh $], 50.4\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 50.7$ [CH_{2}-pyrrolidine], 54.1 [C_{a}], 55.1 [$2 \mathrm{CH}_{2}$ (pyrrolidine)], 87.5 [C (Pbf)], 98.9, 117.2 [2CH (Ar)], 118.4 [C (Pbf)], 118.6 [CH (Ar)], 119.1 [C (Ar)], 121.4 [CH (Ar)], 126.2 [C (Pbf)], 127.7, 128.2, 128.8, 129.6, 129.8, 130.1, 130.2, 131.0, 132.1 [17CH (Ar)], 133.5, 135.7 [2C (Pbf)], 136.7, 138.3 [3C (Ar)], 139.1 [C (NBn)], 139.5 [C (Pbf)], 140.3 [C (Ph)], 140.9 [C (NHBn)], 141.9, 143.5 [3C (Ar)], 158.1 [CO (Urea)], $160.9\left[\mathrm{C}\left(\mathrm{NHC}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right)\right], 159.7 \quad[\mathrm{C}(\mathrm{Pbf})] ;$ ES-MS m/z $1267.7 \quad[\mathrm{M}+1]^{+}$; $\mathrm{C}_{67} \mathrm{H}_{78} \mathrm{Cl}_{2} \mathrm{~N}_{12} \mathrm{O}_{7} \mathrm{~S}$ (\%): C: 63.54, H: 6.21, N: 13.27. Found (\%): C: 63.78, H: 6.02, N: 13.39.
3.15. N-Z Removal in 23b. Synthesis of N-[2-[4-Benzyl-(2RS)-[(1S)-[3-(1-(2,6-dichlorobenzyl)-3-(pyrrolidin-1-ylmethyl)-1H-indazol-6-yl)ureido]-2-phenylethyl]-5-oxopiperazin-1-yl]acetyl]-LysNHBn hydrochloride (24b)

It was carried out by applying the general methodology for $\mathrm{N}-\mathrm{Z}$ removal above described for the synthesis of $\left(\mathbf{1 1 - 1 2) a , b}\right.$. Amorphous solid $[(R: S)=(3: 1)](70 \mathrm{mg}, 100 \%)$; HPLC $t_{\mathrm{R}}: 14.99 \mathrm{~min}$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)(\boldsymbol{R}) \mathbf{- 2 4 b} \delta(\mathrm{ppm}): 1.30(\mathrm{~m}, 2 \mathrm{H}, \boldsymbol{\gamma}-\mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}$, $\beta-\mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}$, pyrrolidine), $1.85(\mathrm{~m}, 2 \mathrm{H}$, pyrrolidine $), 2.74(\mathrm{dd}, 1 \mathrm{H}, J=10$ and $\left.14 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.65(\mathrm{~m}, 3 \mathrm{H}, 5-\mathrm{H}$ and $\varepsilon-\mathrm{H}), 3.05(\mathrm{~m}, 2 \mathrm{H}$, pyrrolidine), 3.35 (m, 2 H , pyrrolidine), $3.44-3.98\left(\mathrm{~m}, 6 \mathrm{H}, 3-\mathrm{H}, 6-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 4.25\left[\mathrm{~d}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right.$, $4.27\left[\mathrm{~d}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn}), 4.33(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{CH}\right.$ and $\alpha-\mathrm{H}), 4.46\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NBn}], 4.57\right.$ (d, $2 \mathrm{H}, J=5 \mathrm{~Hz}, \mathrm{CH}_{2}$-pyrrolidine), $4.72\left[\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn}], 5.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.\right.$-diClPh), 7.01 (d, $1 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{Ar}), 6.96-7.46(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ar}), 7.52(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{Ar}), 7.83(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{Ar})$, $7.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.95\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.45(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}), 8.63(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, N H B n), 9.35$ (s, 1H, 2-CHNH), 11.68 [m, 2H, Indz-NH (urea) and $\mathrm{N} \cdot \mathrm{HCl}$ (pyrrolidine)]. (\boldsymbol{S})-24b δ (ppm): 1.79 $\left(\mathrm{m}, 2 \mathrm{H}\right.$, pyrrolidine), $1.85\left(\mathrm{~m}, 2 \mathrm{H}\right.$, pyrrolidine), $2.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 2.96\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 3.05$ ($\mathrm{m}, 2 \mathrm{H}$, pyrrolidine), $3.35\left(\mathrm{~m}, 2 \mathrm{H}\right.$, pyrrolidine), $4.22\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn}), 4.28\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right.\right.$, 4.57 (d, $2 \mathrm{H}, J=5 \mathrm{~Hz}, \mathrm{CH}_{2}$-pyrrolidine), $4.72\left[\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn}], 5.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.\right.$-diClPh), $7.01(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{Ar}), 6.96-7.46(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ar}), 7.52(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{Ar}), 7.83(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}$, Ar), $7.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.95\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}_{2} \cdot \mathrm{HCl}\right), 8.45(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{NH}), 8.63(\mathrm{~m}, 1 \mathrm{H}, N H B n), 9.35(\mathrm{~s}, 1 \mathrm{H}$, 2-CHNH), $11.68\left[\mathrm{~m}, 2 \mathrm{H}\right.$, Indz- NH (Urea) and $\mathrm{N} \cdot \mathrm{HCl}$ (pyrrolidine)]; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$ $(\boldsymbol{R}) \mathbf{- 2 4 b} \delta(\mathrm{ppm}): 22.3\left[\mathrm{C}_{\gamma}\right], 22.6\left[2 \mathrm{CH}_{2}\right.$ (pyrrolidine)], $26.4\left[\mathrm{C}_{\delta}\right], 31.4\left[\mathrm{C}_{\beta}\right], 37.9\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 38.4\left[\mathrm{C}_{\varepsilon}\right]$, $42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 44.1\left[\mathrm{C}_{3}\right], 47.2\left[\mathrm{CH}_{2}\right.$-diClPh], $47.7\left[\mathrm{CH}_{2}\right.$-pyrrolidine], $49.2\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 49.6$ [$\left.\mathrm{C}_{2}-\mathrm{CH}\right], 52.5\left[2 \mathrm{CH}_{2}\right.$ (pyrrolidine), C_{α} and $\left.\mathrm{CH}_{2} \mathrm{CO}\right], 53.9\left[\mathrm{C}_{6}\right], 60.3\left[\mathrm{C}_{2}\right], 96.1,114.5$ [2CH (Ar)], 117.7 [C (Ar)], 120.6, 126.7, 127.0, 127.2, 127.6, 128.2, 128.5, 128.7, 129.2 [19CH (Ar)], 130.8, 131.4 [4C (Ar)], 135.4 [C (NBn)], 136.0 [C (Ph)], 139.2 [C (NHBn)], 141.2 [2C (Ar)], 155.2 [CO (urea)], $171.1[\alpha-\mathrm{CONH}] .(\boldsymbol{S})-\mathbf{2 4 b} \delta(\mathrm{ppm}): 22.6\left[2 \mathrm{CH}_{2}\right.$ (pyrrolidine)], $37.8\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 42.0\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right]$, 47.2 [CH_{2}-diClPh], 47.7 [CH_{2}-pyrrolidine], 52.5 [$2 \mathrm{CH}_{2}$ (pyrrolidine)], $96.1,114.5$ [2 CH (Ar)], 117.7 [C (Ar)], 120.6, 126.7, 127.0, 127.2, 127.6, 128.1, 128.5, 128.7, 129.2 [19CH (Ar)], 130.8, 131.4 [4C (Ar)], 135.4 [C (NBn)], 136.0 [C (Ph)], 139.6 [C (NHBn)], 141.2 [2C (Ar)], 155.2 [CO (urea)], 171.1 $[\alpha-\mathrm{CONH}]$; ES-MS $m / z[(\mathrm{M}+2) / 2]^{+}$calculated for $\mathrm{C}_{54} \mathrm{H}_{62} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{O}_{4}$: 493.2; found: 493.6.

3.16. N-Pbf Removal in 23c. Synthesis of N-[2-[4-Benzyl-(2RS)-[(1S)-[3-(1-(2,6-dichlorobenzyl)-3-(pyrrolidin-1-ylmethyl)-1H-indazol-6-yl)ureido]-2-phenylethyl]-5-oxopiperazin-1-yl]acetyl]-ArgNHBn Trifluoroacetate (24c)

It was carried out by applying the above described methodology for N - Pbf removal in the Arg derivative 19c. Amorphous solid $[(R: S)=(3: 1)](104 \mathrm{mg}, 100 \%)$; HPLC $t_{\mathrm{R}}: 15.14 \mathrm{~min}[(\boldsymbol{R})-\mathbf{2 4 c}]$ and $15.72 \mathrm{~min}[(\boldsymbol{S})-\mathbf{2 4 c}] ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)(\boldsymbol{R})-\mathbf{2 4 c} \delta(\mathrm{ppm}): 1.44(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{H}), 1.60(\mathrm{~m}$, $1 \mathrm{H}, \beta-\mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.83\left(\mathrm{~m}, 4 \mathrm{H}\right.$, pyrrolidine), $2.75\left(\mathrm{dd}, 1 \mathrm{H}, J=9.5\right.$ and $\left.14 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.00$ $(\mathrm{m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.04(\mathrm{~m}, 2 \mathrm{H}, \delta-\mathrm{H}), 3.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.26(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, $3.32(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.35\left(\mathrm{~m}, 4 \mathrm{H}\right.$, pyrrolidine), $3.39(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.47(\mathrm{~m}, 1 \mathrm{H}$, $6-\mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.27\left[\mathrm{~d}, 2 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.33\left[\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}(\mathrm{NBn})\right]$, $4.40\left(\mathrm{td}, 1 \mathrm{H}, J=5.5\right.$ and $8 \mathrm{~Hz}, \alpha-\mathrm{H}$), 4.58 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$-pyrrolidine), $4.74\left[\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ (NBn)], 5.60 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$-diClPh), 6.37 (m, 1H, 2-CHNH), 6.90-7.44 (m, 18H, Ar), 7.52 [m, 2H, $\mathrm{NHC}\left(\mathrm{NH}_{2} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)=\mathrm{NH}$ and Ar$], 7.72(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{Ar}), 7.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 8.09(\mathrm{~d}, 1 \mathrm{H}$, $J=8 \mathrm{~Hz}, \alpha-\mathrm{NH}$), 8.58 (t, $1 \mathrm{H}, J=6 \mathrm{~Hz}, N H B n$), 8.77 [m, 1H, Indz-NH (Urea)], 9.95 [m, 1H, $\mathrm{N} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (Pyrrolidine)]. (S)-24c $\delta(\mathrm{ppm}): 1.83\left(\mathrm{~m}, 4 \mathrm{H}\right.$, pyrrolidine), $2.63\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}-\mathrm{Ph}\right), 2.82$
$\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.30(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.35(\mathrm{~m}, 4 \mathrm{H}$, pyrrolidine), $3.50(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}$, $2-\mathrm{CH}), 4.14\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.28\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{NHBn})\right], 4.58$ (s, 2H, CH 2 -pyrrolidine), 5.57 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$-diClPh), $6.90-7.44(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ar}), 7.52\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHC}\left(\mathrm{NH}_{2} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)=\mathrm{NH}\right.$ and Ar$], 7.70$ (d, $1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{Ar}$), $7.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 8.57(\mathrm{~m}, 1 \mathrm{H}, N H \mathrm{Bn}), 9.95\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{N} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right.$ (pyrrolidine)]; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)(\boldsymbol{R})-\mathbf{2 4 c} \delta(\mathrm{ppm}): 23.0\left[2 \mathrm{CH}_{2}\right.$ (pyrrolidine)], $25.5\left[\mathrm{C}_{\gamma}\right], 30.0\left[\mathrm{C}_{\beta}\right]$, $37.8\left[\mathrm{CH}_{2}-\mathrm{Ph}\right], 40.4\left[\mathrm{C}_{\delta}\right], 42.5\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 44.9\left[\mathrm{C}_{3}\right], 47.7\left[\mathrm{CH}_{2}\right.$-diClPh], 48.6 [CH_{2}-pyrrolidine], $49.6\left[\mathrm{CH}_{2}(\mathrm{NBn})\right], 50.5\left[\mathrm{C}_{2}-\mathrm{CH}\right], 52.2\left[\mathrm{C}_{\alpha}\right], 53.5\left[2 \mathrm{CH}_{2}\right.$ (pyrrolidine)], $54.4\left[\mathrm{C}_{6}\right], 55.2\left[\mathrm{CH}_{2} \mathrm{CO}\right], 59.7$ [C_{2}], 96.8, $115.1[2 \mathrm{CH}(\mathrm{Ar})], 118.0$ [C (Ar)], 120.7 [CH (Ar)], 126.5, 127.2, 127.5, 128.0, 128.5, 128.7, 129.0, 129.2, 129.7 [18CH (Ar)], 131.4, 131.9, 136.5 [4C (Ar)], 137.4 [C (NBn)], 139.0 [C (Ph)], 139.6 [C (NHBn)], 140.2, 141.9 [2C (Ar)], 157.0 [CO (urea)], $155.3\left[\mathrm{C}\left(\mathrm{NHC}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right)\right.$], $167.0[\mathrm{CO}], 169.8\left[\mathrm{C}_{5}\right], 171.6[\alpha-\mathrm{CONH}] .(\boldsymbol{S})-\mathbf{2 4 c} \delta(\mathrm{ppm}): 23.0\left[2 \mathrm{CH}_{2}\right.$ (pyrrolidine)], $37.8\left[\mathrm{CH}_{2}-\mathrm{Ph}\right]$, $42.5\left[\mathrm{CH}_{2}(\mathrm{NHBn})\right], 47.7\left[\mathrm{CH}_{2}\right.$-diClPh], $48.6\left[\mathrm{CH}_{2}\right.$-pyrrolidine $], 50.4\left[\mathrm{C}_{2}-\mathrm{CH}\right], 53.5\left[2 \mathrm{CH}_{2}\right.$ (pyrrolidine)], $54.4\left[\mathrm{C}_{6}\right], 96.8,115.1[2 \mathrm{CH}(\mathrm{Ar})], 118.0[\mathrm{C}(\mathrm{Ar})], 120.7[\mathrm{CH}(\mathrm{Ar})], 126.5,127.4,127.6$, 128.3, 128.5, 128.7, 129.0, 129.2, 129.6 [18CH (Ar)], 131.4, 131.9, 136.5 [4C (Ar)], 137.4 [C (NBn)], $139.0[\mathrm{C}(\mathrm{Ph})], 139.6[\mathrm{C}(\mathrm{NHBn})], 140.2,141.9[2 \mathrm{C}(\mathrm{Ar})], 155.3\left[\mathrm{C}\left(\mathrm{NHC}^{2}\left(\mathrm{NH}_{2}\right)=\mathrm{N}\right)\right]$; ES-MS m / z $[(\mathrm{M}+2) / 2]^{+}$calculated for $\mathrm{C}_{54} \mathrm{H}_{62} \mathrm{Cl}_{2} \mathrm{~N}_{12} \mathrm{O}_{4}$: 507.2; found: 507.

4. Conclusions

In summary, a series of highly functionalized Phe-Gly dipeptide-derived piperazinones containing an aromatic urea moiety and a basic amino acid has been prepared and evaluated as human PAR1 antagonists in a platelet aggregation assay. The synthetic strategy involves coupling of a protected basic amino acid benzyl amide to 1,2- and 1,2,4-substituted-piperazinone derivatives, through a carbonylmethyl group at the N_{1}-position, followed by formation of an aromatic urea at the exocyclic moiety linked at the C_{2} position of the piperazine ring and removal of protecting groups. In comparison with the $1,2,4,6$-tetrasusbtituted-piperazinone analogues \mathbf{A}, the change of position of the basic amino acid side chain from C_{6} to N_{1} in \mathbf{B} has led to the complete loss of PAR1 antagonist activity and tumor cell cytotoxicity.

Supplementary Materials

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for all new compounds. Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/19/4/4814/s1.

Acknowledgments

This work was supported by the Spanish Ministerio de Ciencia e Innovación grant SAF2009-09323 and the Ministerio de Economía y competitividad grant SAF2012-32209. A. M. Valdivielso held a postgraduate FPU fellowship from the Spanish Ministerio de Educación. A. M. Valdivielso thanks the SEQT (Spanish Society of Therapeutic Chemistry) for the Jassen-Cilag Award for young researches (XV Edition, 2011).

Author Contributions

AMV and MG: performed research and data analysis; MTGL: project coordination and revision of the final manuscript; RH: conception, design, and coordination of research, drafting and revision of the article and corresponding author.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Macfarlane, S.R.; Seatter, M.J.; Kanke, T.; Hunter, G.D.; Plevin, R. Proteinase-activated receptors. Pharmacol. Rev. 2001, 53, 245-282.
2. García-López, M.T.; Gutiérrez-Rodríguez, M.; Herranz, R. Thrombin-activated receptors: promising targets for cancer therapy? Curr. Med. Chem. 2010, 17, 109-128.
3. Martorell, L.; Martínez-González, J.; Rodríguez, C.; Gentile, M.; Calvayrac, O.; Badimon, L. Thrombin and protease-activated receptors (PARs) in atherothrombosis. Thromb. Haemost. 2008, 99, 305-315.
4. Shah, R. Protease-activated receptors in cardiovascular health and diseases. Am. Heart J. 2009, 157, 253-262.
5. Ramachandran, R.; Noorbakhsh, F.; Defea, K.; Hollenberg, M.D. Targeting proteinase-activated receptors: Therapeutic potential and challenges. Nat. Rev. Drug Discov. 2012, 11, 69-86.
6. Barry, G.D.; Le, G.T.; Fairlie, D.P. Agonists and antagonists of protease activated receptors (PARs). Curr. Med. Chem. 2006, 13, 243-65.
7. Chen, C.; Maryanoff, B.E.; Andrade-Gordon, P. Thrombin receptor modulators: Medicinal chemistry, biological evaluation, and clinical applications. In Thrombin: Physiology and Disease; Maragoudakis, M.E., Tsopanoglou, N.E., Eds.; Springer: New York, NY, USA, 2009; pp. 205-236.
8. Granovsky-Grisaru, S.; Zaidoun, S.; Grisaru, D.; Yekel, Y.; Prus, D.; Beller, U.; Bar-Shavit, R. The pattern of Protease Activated Receptor 1 (PAR1) expression in endometrial carcinoma. Gynecol. Oncol. 2006, 103, 802-806.
9. Veiga, C.D.S.B.; Carneiro-Lobo, T.C.; Coelho, C.J.B.P.; Carvalho, S.M.F.; Maia, R.C.; Vasconcelos, F.C.; Abdelhay, E.; Mencalha, A.L.; Ferreira, A.F.; Castro, F.A.; et al. Increased expression of protease-activated receptor 1 (PAR-1) in human leukemias. Blood Cells Mol. Dis. 2011, 46, 230-234.
10. Tellez, C.; Bar-Eli, M. Role and regulation of the thrombin receptor (PAR-1) in human melanoma. Oncogene 2003, 22, 3130-3137.
11. Darmoul, D.; Gratio, V.; Devaud, H.; Lehy, T.; Laburthe, M. Aberrant expression and activation of the thrombin receptor protease-activated receptor-1 induces cell proliferation and motility in human colon cancer cells. Am. J. Pathol. 2003, 162, 1503-1513.
12. Ghio, P.; Cappia, S.; Selvaggi, G.; Novello, S.; Lausi, P.; Zecchina, G.; Papotti, M.; Borasio, P.; Scagliotti, G.V. Prognostic role of protease-activated receptors 1 and 4 in resected stage IB non-small-cell lung cancer. Clin. Lung Cancer 2006, 7, 395-400.
13. Grisaru-Granovsky, S.; Salah, Z.; Maoz, M.; Pruss, D.; Beller, U.; Bar-Shavit, R. Differential expression of protease activated receptor 1 (Par1) and pY397FAK in benign and malignant human ovarian tissue samples. Int. J. Cancer 2005, 113, 372-378.
14. Vu, T.K.; Hung, D.T.; Wheaton, V.I.; Coughlin, S.R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991, 64, 1057-1068.
15. Niessen, F.; Schaffner, F.; Furlan-Freguia, C.; Pawlinski, R.; Bhattacharjee, G.; Chun, J.; Derian, C.K.; Andrade-Gordon, P.; Rosen, H.; Ruf, W. Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. Nature 2008, 452, 654-658.
16. Chackalamannil, S.; Xia, Y.; Greenlee, W.J.; Clasby, M.; Doller, D.; Tsai, H.; Asberom, T.; Czarniecki, M.; Ahn, H.S.; Boykow, G.; et al. Discovery of potent orally active thrombin receptor (protease activated receptor 1) antagonists as novel antithrombotic agents. J. Med. Chem. 2005, 48, 5884-5887.
17. Shinohara, Y.; Goto, S.; Doi, M.; Jensen, P. Safety of the Novel Protease-Activated Receptor-1 Antagonist Vorapaxar in Japanese Patients with a History of Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2012, 21, 318-324.
18. Goto, S.; Ogawa, H.; Takeuchi, M.; Flather, M.D.; Bhatt, D.L. Double-blind, placebo-controlled Phase II studies of the protease-activated receptor 1 antagonist E5555 (atopaxar) in Japanese patients with acute coronary syndrome or high-risk coronary artery disease. Eur. Heart J. 2010, 31, 2601-2613.
19. Ventosa-Andrés, P.; Valdivielso, A.M.; Pappos, I.; García-López, M.T.; Tsopanoglou, N.E.; Herranz, R. Design, synthesis and biological evaluation of new peptide-based ureas and thioureas as potential antagonists of the thrombin receptor PAR1. Eur. J. Med. Chem. 2012, 58, 98-111.
20. Horton, D.A.; Bourne, G.T.; Smythe, M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev. 2003, 103, 893-930.
21. Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; et al. DrugBank 3.0: A comprehensive resource for 'omics' research on drugs. Nucleic Acids Res. 2011, 39, D1035-D1041.
22. Valdivielso, A.M.; Ventosa-Andres, P.; Tato, F.; Fernández-Ibanez, M.A.; Pappos, I.; Tsopanoglou, N.E.; García-López, M.T.; Gutiérrez-Rodríguez, M.; Herranz, R. Highly functionalized 2-oxopiperazine-based peptidomimetics: An approach to PAR1 antagonists. Eur. J. Med. Chem. 2013, 70, 199-224.
23. Valdivielso, A.M.; Ventosa-Andrés, P.; García-López, M.T.; Herranz, R.; Gutiérrez-Rodríguez, M. Synthesis and Regioselective Functionalization of Piperazin-2-ones Based on Phe-Gly Pseudodipeptides. Eur. J. Org. Chem. 2013, 2013, 155-161.
24. Valdivielso, Á.M.; García-López, M.T.; Herranz, R. Improved synthesis of the PAR-1 thrombin receptor antagonist RWJ-58259. ARKIVOC 2008, xvii, 287-294.
25. Maryanoff, B.E.; Zhang, H.C.; Andrade-Gordon, P.; Derian, C.K. Discovery of potent peptide-mimetic antagonists for the human thrombin receptor, protease-activated receptor-1 (PAR-1). Curr. Med. Chem. Cardiovasc. Hematol. Agents 2003, 1, 13-36.
26. Rudolf, K.; Eberlein, W.; Engel, W.; Mihn, G.; Doods, H.; Wieland, H.A.; Krause, J.; Dollinger, H.; Esser, F.; Schnorrenberg, G.; et al. Preparation of Amino Acid Derivatives as Neuropeptide y Antagonists. WO 9417035, A1, 1994.
27. Isowa, Y.; Sato, Y.; Nakajima, Y.; Uchida, K.; Ri, B.; Takasaki, K. Lysine Dipeptide Derivatives as Allergy Inhibitors. JP63211296A, 1988.

Sample Availability: Samples of some of the final compounds are available from the authors.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

