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Abstract

Introduction

In Sub-Saharan African (SSA) resource limited settings, Cluster of Differentiation 4 (CD4)

counts continue to be used for clinical decision making in antiretroviral therapy (ART). Here,

HIV-infected people often remain with CD4 counts <350 cells/μL even after 5 years of viral

load suppression. Ongoing immunological monitoring is necessary. Due to varying statisti-

cal modeling methods comparing immune response to ART across different cohorts is diffi-

cult. We systematically review such models and detail the similarities, differences and

problems.

Methods

‘Preferred Reporting Items for Systematic Review and Meta-Analyses’ guidelines were

used. Only studies of immune-response after ART initiation from SSA in adults were

included. Data was extracted from each study and tabulated. Outcomes were categorized

into 3 groups: ‘slope’, ‘survival’, and ‘asymptote’ models. Wordclouds were drawn wherein

the frequency of variables occurring in the reviewed models is indicated by their size and

color.

Results

69 covariates were identified in the final models of 35 studies. Effect sizes of covariates

were not directly quantitatively comparable in view of the combination of differing variables

and scale transformation methods across models. Wordclouds enabled the identification of

qualitative and semi-quantitative covariate sets for each outcome category. Comparison

across categories identified sex, baseline age, baseline log viral load, baseline CD4, ART

initiation regimen and ART duration as a minimal consensus set.
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Conclusion

Most models were different with respect to covariates included, variable transformations

and scales, model assumptions, modelling strategies and reporting methods, even for the

same outcomes. To enable comparison across cohorts, statistical models would benefit

from the application of more uniform modelling techniques. Historic efforts have produced

results that are anecdotal to individual cohorts only. This study was able to define ‘prior’

knowledge in the Bayesian sense. Such information has value for prospective modelling

efforts.

Introduction

The successful roll out of antiretroviral therapy (ART) in Sub-Saharan Africa (SSA) has dra-

matically improved the survival of Human Immunodeficiency Virus (HIV) infected people in

this region, which remains a focal point of the HIV epidemic [1]. In the majority of cases, the

successful suppression of plasma viral load (VL) after ART initiation to below detection levels

facilitates immunological recovery in the form of rising CD4 (+) T cell counts. However,

‘residual viremia’, involving the multiplication of the virus, within for example gut reservoirs,

may continue even after circulating VL has been suppressed [2]. As a result CD4 cell count

depletion may continue in long term treatment [2,3]. Patients particularly at risk of secondary

opportunistic infections include immune ‘non-responders’ who have low CD4 counts in spite

of a suppressed VL [2].

In resource limited settings (RLS) such as SSA, CD4 counts continue to be used for clinical

decision making, e.g. when to initiate first-line, switch to second-line ART [4] and to bench-

mark the risk of incident clinical events [5,6]. In this region, patients who fail to reach>350

cells/μL after 5 years of ART [7] are common and ongoing immunological monitoring is nec-

essary. CD4 count is more affordable than VL monitoring and continues to be the only immu-

nological biomarker recommended by the World Health Organization [8].

However, as a biomarker, CD4 counts are known to be inherently variable both within and

between individuals [2,9]. Further, prior multivariate models of CD4 count response to ART

have employed varying outcome measures and have consequently produced inconsistent

results [10–17]. This variation in models complicates the effects of inherent variation in CD4

counts and hinders the comparison of immunological responses to ART across different

cohorts.

In this study we systematically review statistical, or empirically-derived rather than biologi-

cal-mechanistic mathematical, models of immunological response (CD4 counts) in SSA

cohorts. We highlight the similarities, differences and problems associated with the varying

methodologies with the aim of defining prior knowledge, in the Bayesian sense, for prospective

modeling exercises in the future.

Methods

Search strategy

The guidelines from the Preferred Reporting Items for Systematic Review and Meta-Analyses

(PRISMA) were used (S1 File) [18]. The search syntax was constructed around 4 major terms,

allowing for small variations within each. These included ‘immune response’, ‘HIV antiretrovi-

ral treatment’ or ‘ART’, ‘Statistical model’, and ‘Sub Saharan Africa’ or ‘SSA’. Each term was
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defined based on Medical Subject Heading (MESH) terms or other common, published termi-

nology. Online electronic databases were searched using SCOPUS [19], from 1st January 2004

up to 2nd April 2015 (S2 File). This start date was selected as it corresponds to the commence-

ment of ART scale-up in most of SSA [4]. Only studies published in peer-reviewed English-

language journals, which existed in all four sets mentioned above were selected.

Study selection

Abstracts and full-texts of potentially relevant studies were reviewed by JBS and ELU. MN pro-

vided the deciding vote if consensus was not unanimous regarding the inclusion or exclusion

of a study. Only studies of immunological response, measured as an outcome in any form,

after ART initiation in adults were included. Although immune response is not limited to

CD4, our searches only returned modeling studies that employed it. Studies were excluded

where: 1. there was no multivariate statistical model, 2. immune response was combined with

any other treatment outcome, 3. data was analyzed that contained a combination of people

from SSA with those from other regions, and 4. immune response prior to ART initiation was

analyzed.

Model outcomes were categorized into 3 general groups, further sub-divided by the type of

regression used:

1. the trajectory of CD4 counts within particular time-frames after ART initiation, or ‘slope’

models, with Generalized Estimating Equations (GEE), and Generalized Linear Mixed

Effects (GLME),

2. the time to a particular immune response, or ‘survival’ models, with Cox Proportional Haz-

ards (CPH) and

3. the specified overall gain in CD4 count, or ‘asymptote’ models, with Logistic, Simple Linear,

Difference-in-Difference, Log-Binomial and Poisson regression.

Data extraction

The following data was extracted from each study: first author, year published, country, the

sex/es studied, sample size, study design, ART follow-up years, initiating ART regimen (if

reported), outcome/s analyzed, variable scale transformation methods, criteria for model vari-

able/s selection (e.g. statistical methods and/or a priori clinical information), assessment of

confounding and covariates adjusted for in the final model. For each of the final model vari-

ables, the unit and scale of measurement, effect sizes, 95% confidence intervals and, where

available, standard deviations were noted. Effect sizes were rounded off to the nearest whole

number and 95% confidence intervals and standard deviation to one decimal place. If ‘immu-

nologic failure’ was mentioned, we checked if it was defined according to the WHO criteria

[4].

Risk of bias was also assessed in each study as follows: Low risk—covariate adjusted for in

model based on its clinical/biological plausibility; medium risk—covariates included based on

both biological and statistical significance; and high risk—model employed only statistical sig-

nificance (p-value). The provision by authors of biological reasoning, including references, for

their covariate adjustments was noted.

Statistical analysis

All data was collated in MS Excel (version 2013) and comparisons made as per the tables

below. In R version 3.2.2 using package ‘wordcloud’ [20], variables adjusted for in the final
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multivariate models were presented. In wordclouds, the size and color of each word is deter-

mined by the frequency of its appearance in a list, in this case all covariates adjusted-for within

a specified outcome. This enabled the comparison of variables with potentially different units

and/or numeric scales. A minimal frequency cutoff of�3 was used to define the ‘consensus’

set of covariates across all models reviewed.

Results

Of the 615 articles identified 580 were excluded based on the specified inclusion criteria (Fig

1). Of the remaining 35 the median sample size (and IQR) was 1002 (351–5448) with follow-

up of 2 years (1–5). Across all models, 75 unique covariates were included in multivariate anal-

ysis, of which 69 were adjusted for in the final models. In the majority of cases the effect sizes

of covariates were not directly comparable in view of the combination of different variables

and varying scale transformations methods across models. However, the frequency of the

occurrence of variables, independent of their scales, enabled the identification of a consensus

set (Fig 2).

For slope models this included, gender, baseline age, baseline CD4 count, baseline WHO

stage, ART initiating or ‘baseline’ regimen, e.g. efavirenze vs nevirapine, baseline exposure to

Fig 1. Systematic review flow chart.

doi:10.1371/journal.pone.0171658.g001
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Fig 2. Wordclouds for the categorized immune response outcomes from SSA models. Figure 2A: Covariates adjusted for in the final slope models;

Figure 2B: Covariates adjusted for in the final Survival models; and figure 2C: Covariates adjusted for in the final Asymptote models. The word size and

color represents the frequency of covariates, hence the larger the size of the covariate, the higher its frequency in the list of adjusted covariates. Site—

location of the study; KSincid—Kaposis’ sarcoma diagnosed after ART start; HBVprev—Hepatitis B virus diagnosed at ART start; TBprev—History of TB

at ART start; TDFbl—treated with tenofovir at ART start; 3TCbl—treated with lamivudine at ART start; DistanceHC—distance from health center;

Maritstatus—marital status of the subject; Season—season of the tear when patient was initiated on ART; ALTbl—alanine aminotransferase at ART

start; sdNVP—history of single does nevirapine; Parity—number of children; CD8bl—CD8 count at ART start; CONSULTratio—cadre levels at health

center; Hhassets—possession of any household assets; OralCandida—Oral candidiasis at ART start; ChronDiarrhea—Chronic diarrhea at ART start;

VLsupress—ever had viral suppression; NNRTIcr—time-updated exposure to either nevirapine or efavirenz; NRTIcr—time-updated exposure to d4Tcr

(stavudine) or AZTcr (zidovudine) or TDFcr (tenofovir) or 3TCcr (lamivudine); CD4preART—pre-ART start CD4 count; VLpreART—pre-ART start viral

load; PreARTexp—pre-ART exposure; AlcoholCons—consumption of alcohol; DurapreART—duration between ART start and diagnosis;

duraCD4<200—duration while CD4 <200 cells/μL before ART start; and antiTBstart—patient initiated on anti-tuberculosis medicine. For other variable

definitions, please refer to the notes below Tables 2, 3 and 4.

doi:10.1371/journal.pone.0171658.g002
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zidovudine or stavudine, ART duration, log-VL, baseline hemoglobin level, baseline Body

Mass Index (BMI), year of ART start, study site and tuberculosis incidence. For survival mod-

els, baseline CD4 count, gender, baseline age and either prevalent or incident tuberculosis. For

asymptote models, gender, baseline age, baseline CD4 count, baseline zidovudine exposure,

year of ART start, ART adherence, log-VL and baseline BMI. Across all three types of models,

Sex, Age, baseline log VL, baseline CD4, ART initiation regimen and ART duration count

were the most commonly adjusted for covariates and also those most often significantly associ-

ated with the immunological outcomes (Table 1).

Differences were found in the estimation of effect sizes and residuals across all 19 slope

models (Table 2, below). Two authors reported using GEEs without additional details [13,21].

Hermans et al. 2010 used a GEE with robust standard errors and exchangeable correlation

matrix [16]. Hawkins et al. 2011 applied GEE with step-wise restricted cubic splines to fit the

non-linear CD4 count response [22]. Sudfeld et al. 2012 and Sudfeld et al. 2013 used GEE with

restricted cubic splines and an m-dependent correlation matrix [23,24]. Hardwick et al. mod-

eled slope of CD4 count using a GEE model with type 3 sums of squares and variance correc-

tion to correct for longitudinal CD4 count time points [25]. Boullé et al. 2013, Velen et al.

2013, Schomaker et al. 2013, Hamers et al. 2012, and Hamers et al. 2013 used GLMEs of slope

of CD4 count [26–30]. Maman et al. 2012 and Reda et al. 2013 used GLME with random inter-

cept and coefficients, while the former extended this by adding a second degree polynomial for

time on ART [31,32]. Maskew et al. 2013 used GLME with random slope and intercepts and

specified an unstructured correlation matrix for repeated measures [33]. Mayanja et al. 2012

and Wandeler et al. 2013 used a GLME with functional polynomials [14,34]. Sarfo et al. 2014

used GLME with a log-link and assumed a Poisson distribution for CD4 count response [35],

while De Beaudrap et al. 2009 applied a non-linear mixed effects model [36]. Vinikor et al

2014 used analysis of covariance (ANCOVA) [37].

Table 1. The high frequency (�3) covariates adjusted for in multivariate models.

Description Slope models Survival models Asymptote models

Baseline CD4 count 13 7 9

Sex of the participants 13 5 8

Age at baseline 13 3 9

WHO stage at baseline 10 1 1

Type non-nucleoside reverse transcriptase Inhibitor (i.e efavirenze or nevirapine) 7 1 2

Initiated on zidovudine at baseline 6 1 4

Duration while on antiretroviral therapy 6 0 2

Log10 viral load at baseline 5 2 3

hemoglobin level at baseline 5 1 2

Calendar year of ART start 4 1 4

Body Mass Index at baseline 4 1 3

Initiated on stavudine at baseline 4 0 1

Location of treatment program or clinic 3 3 1

Incident tuberculosis diagnosis after ART start 3 3 1

History of TB at baseline 2 3 0

Antiretroviral therapy adherence 2 1 4

Notes:

‘Baseline’—Refers to the measurement at ART initiation

doi:10.1371/journal.pone.0171658.t001
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More similar methods were employed in Survival and Asymptote models to estimate effect

sizes and their residuals. In survival models, six out of seven models estimated effect sizes

using CPHs [17,22,38–40,42] and Teshome et al. 2014 used a stratified-CPH [41] (Table 3).

Four variants of asymptote models, were found: 1. Factors associated with reaching a particu-

lar threshold CD4 count or not, analyzed using multivariate logistic regression [14,16,37,43–

46], 2. Overall change in CD4 count, using multivariate linear regression [15,21,47,48], 3. Mas-

kew et al. 2013 assumed the outcome followed a log-binomial distribution [49]; and 4. Takuva

et al. 2012 assumed a Poisson distributed with robust standard errors [50], see Table 4.

For criteria used to select covariates for final multivariate models and assessment for con-

founding (Table 5), 9 studies reported using significance cutoffs ranging from 0.05 to 0.25, and

Table 2. ‘Slope’ models of CD4 count trajectory in SSA.

Authors Location Period Study

size

End point Significant covariates

Hermans et al. 2010 [16] Uganda 2003–09 5982 Mean CD4 count change from

baseline

TBincid, CD4bl, sex

Peterson et al. 2011 [21] The Gambia 2004–09 359 Mean CD4 count change from

baseline

LogVLbl, CD4bl, ARTdura

Hawkins et al. 2011 [22] Tanzania 2004–08 12842 Mean CD4 count change

between visits

Sex

Mayanja et al. 2012 [34] Uganda 2004–09 88 Mean CD4 count response ARTdura, Pregnancy and their

interaction, CD4preg, TIMEpreg

Sudfeld et al. 2012 [24] Tanzania 2006–10 875 Mean CD4 count change

between visits

None reported

Hardwick et al. 2012 [25] Ethiopia and Tanzania No details 1002 Mean CD4 count response Beta-defensin

Maman et al. 2012 [31] Malawi, Uganda, Kenya 2001–09 12946 Mean CD4 count response Sex, site, Agecr, CD4bl

Maskew et al. 2013 [33] South Africa 2008–09 232 Mean CD4 count change from

baseline

Sex, CD4bl, Agecurr

Sempa et al. 2013 [13] Uganda 2004–12 356 Mean CD4 count change from

baseline

Sex, CD4bl, log VLbl, AZTbl, ARTt,

HBcr

Boullé et al. 2013 [26] Cameroon 2006–10 459 Mean CD4 count response Sex, Agebl, logVLbl, ARTdura

Reda et al. 2013 [32] Ethiopia 2005–10 1540 Mean CD4 count response ARTdura

Sudfeld et al. 2013 [23] Tanzania 2006–09 2145 Mean CD4 count change

between visits

None reported

Velen et al. 2013 [27] South Africa 2007–2009 6196 Mean CD4 count response d4Tcr, AZTcr, TDFcr

Wandeler et al. 2013 [14] Southern Africa No details 72597 Mean CD4 count response AZTcr

Schomaker et al. 2013 [28] South Africa 2003–10 15646 Mean CD4 count change

between visits*
Sex, TBincid, CD4bl, Agebl,

WHOst

Sarfo et al. 2014 [35] Ghana 2004–10 3990 Gains in CD4 count CD4bl, Agebl, YrARTstart, Sex,

WHOst, NRTIbl, NNRTIbl, ARTdura

Vinikoor et al. 2014 [37] Zambia 2004–10 43152 Mean CD4 count change from

baseline

Agebl

Hamers et al. 2012 [29] Kenya, Nigeria, South Africa,

Uganda, Zambia, and Zimbabwe

2007–09 2439 Mean CD4 count response ARTresist

Hamers et al. 2013 [30] Zambia and South Africa 2007–08 1127 Mean CD4 count response None reported

De Beaudrap et al. 2009 [36] Senegal 1998–07 346 Mean CD4 count response** CD4bl, and logVLbl

*cells/μL per 6 months;

**Square root cells/μL

Note: site—study location; Agebl—baseline age; Agecr—current age; WHOst—baseline WHO stage; Log10VLbl—baseline Log Viral Load; CD4bl—

baseline CD4count; HBcr—current hemoglobin level; YrARTstart—year of ART start; ARTdura—duration on ART; AZTbl exposure to zidovudine at

baseline; NRTIbl—exposure to d4Tbl (stavudine) or 3TCbl (lamivudine) at ART start; NNRTIbl—exposure to either efavirenze or nevirapine at ART start;

ARTresist—pre-ART drug resistance; TBincid—Incident tuberculosis diagnosis after ART start; TIMEpreg—duration between pregnancies; CD4preg—

whether CD4 count was taken during pregnancy;

doi:10.1371/journal.pone.0171658.t002
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Table 3. ‘Survival’, or time-to immune response, models in SSA.

Authors Location Period sample size End point * (criteria) Significant covariates

Assefa et al. 2014 [17] Ethiopia 2007–11 400 Time to immunologic failure α, (4) Sex, CD4bl

Kigozi et al. 2009 [38] Uganda 2002–06 427 Time to CD4 increase�50 cells/μL nonAIDS, CD4bl,

ARTadhere, TLCbl

Palladino et al. 2013 [39] Mozambique 2002–06 142 Time to immunologic failure α, (4) CD4bl, Log10VLbl

Alemu Melsew et al. 2013 [40] Ethiopia 2007–12 509 Time to immunologic failure α, (4) Recurrpneum, Employed,

WEIGHTch, CD4bl

Teshome et al. 2014 [41]* Ethiopia 2004–12 268 Attain α, (4) CD4bl

Hawkins et al. 2011 [22] Tanzania 2004–08 762 Time to immunologic failure α, (1, 2, 3, & 4) Sex

Mudiope et al. 2013 [42] Uganda 2003–11 289 Time to immunologic failure α, (4) CD4bl

* Case-control study;
α WHO criteria;
1 CD4 cell count falls below baseline in the absence of other concurrent infections
2 CD4 cell count falls to less than 50% of peak levels without coexistent infections
3 CD4 cell count is persistently below 100 cells/μL
4 Any one of the 3 criteria above

Note: Log10VLbl—baseline Log Viral Load; CD4bl—baseline CD4count; TLCbl—baseline total lymphocyte count; ARTadhere—Antiretroviral therapy

adherence; WEIGHTch—change in weight from baseline; Recurrpneum—recurrent pneumonia; Employed—employment status; nonAIDS—AIDS or

non-AIDS defining conditions

doi:10.1371/journal.pone.0171658.t003

Table 4. ‘Asymptote’ models in SSA.

Authors Location Period sample size End point Significant covariates

Anude et al. 2013 [43] Nigeria 2008–09 596 CD4 count increase�50 cells/μL Sex, Agebl,

Efraim et al. 2013 [46] Tanzania 2009–11 351 Attain α, (1, 2) Schistosome, BMIbl, CD4bl,

EDUClevel

Hermans et al. 2010 [16] Uganda 2003–09 5982 Attain α, (3) TBincid, CD4bl, AZTbl

Diabaté et al. 2009 [44] Ivory coast 2005 303 CD4 count increase�50 cells/μL ARTadhere, TLCch

Wandeler et al. 2013 [14] South Africa, Botswana,

Zambia, and Lesotho

No details 14529 Attain α, (3) AZTcr, sex, Agebl, CD4bl, HBbl,

YrARTstart, Monitorstrat

Maskew et al. 2013 [49] South Africa 2001–08 8676 CD4 count increase�50 cells/μL

or�100 cells/μL

None reported

Nglazi et al. 2011 [45] South Africa 2002–08 3162 CD4�200 cells/μL at week 48 Sex, Agebl, CD4bl, VLbl

Vinikoor et al. 2014 [37] Zambia 2004–10 43152 Attain CD4 count�350 cells/μL Agebl

McKinnon et al. 2010 [48] Kenya 2005–11 60 Overall change in CD4 count CD4nadir

Alemu et al. 2012 [47] Ethiopia 2009–10 1722 Overall change in CD4 count Depression, SOCIALsup

Crawford et al. 2015 [15] Uganda 2011 325 Overall increase in CD4 count CD4cr, ARTdura, Agebl,

CAREsatisf, and TLCch HBch

Peterson et al. 2011 [21] The Gambia 2004–09 359 Overall increase in CD4 count HIVsubtype, ARTdura, and their

interaction

Takuva et al. 2012 [50] South Africa 2004–09 1499 CD4 count increase�50 cells/μL None reported

αWHO criteria;
1.CD4 cell count falls below baseline in the absence of other concurrent infections,
2.CD4 cell count is persistently below 100 cells/μL
3 Any one of the criteria above

Note: Agebl—baseline age; BMIbl—Body Mass Index; EDUClevel—level of education; CD4bl—baseline CD4count; CD4cr—current/most recent CD4

count; HBbl—hemoglobin level at ART start; HBch—change in hemoglobin; YrARTstart—year of ART start; ARTdura—duration on ART; AZTbl—exposure

to zidovudine at baseline; AZTcr—current exposure to zidovudine; TBincid—incident tuberculosis; TLCch—change in total lymphocyte count; Monitorstrat

—monitoring strategy (clinical or immunological or virological); Depression—symptoms depression while on ART; SOCIALsup—perceived social support;

CAREsatisf—patient satisfaction with care; CD4nadir—nadir CD4 count; HIVsubtype—HIV-1 subtype

doi:10.1371/journal.pone.0171658.t004

Systematic review of statistically-derived immune response models in SSA

PLOS ONE | DOI:10.1371/journal.pone.0171658 February 15, 2017 8 / 17



biological plausibility, i.e. the causal association between the immune response and the covari-

ate, to generate this list of covariates [13,16,22,24,26,38,41–43]. Three authors used only statis-

tical significance (p-values) as a basis for covariate selection in multivariate analysis [29,30,44].

Four of the above 12 studies employed step-wise regression [16,29,30,43], and two used

step-wise regression and ‘prior’ reasoning to arrive at their final multivariate model [23,26].

Mayanja et al. 2012 listed model assumptions based on biological CD4 dynamics [34] and Sud-

feld et al 2013 referred to prior studies [23]. Only two studies assessed covariates for confound-

ing [25,33].

Table 5. Summary of different multivariate immune response modeling methods in SSA.

Author Criteria for selecting variables into the

multivariate model

How they arrived at the Final model Confounding

Biological

plausibility

Cutoff used Cutoff Stepwise selection

only

Step-wise and a

priori

Assessed

confounding

Anude et al. 2013 [43] ✓ ✓ 0.20 ✓ 0 0

Assefa et al. 2014 [17] ✓ 0 0 0 0

Efraim et al. 2013 [46] ✓ 0 ✓ 0 0

Hermans et al. 2010 [16] ✓ ✓ 0.20 ✓ 0 0

Kigozi et al. 2009 [38] ✓ ✓ 0.05 0 0 0

Maman et al. 2012 [31] ✓ 0 0 0 0

Maskew et al. 2013 [49] ✓ 0 0 0 0

Maskew et al. 2013 [33] ✓ 0 0 ✓ ✓

McKinnon et al. 2010 [48] ✓ 0 ✓ 0 0

Palladino et al. 2013 [39] 0 0 0 0 0

Reda et al. 2013 [32] ✓ 0 0 0 0

Sempa et al. 2013 [13] ✓ ✓ 0.20 0 0 0

Sudfeld et al. 2012 [24] ✓ ✓ 0.20 0 ✓ 0

Teshome et al. 2014 [41] ✓ ✓ 0.05 0 0 0

Velen et al. 2013 [27] ✓ 0 0 0 0

Alemu Melsew et al. 2013 [40] 0 0 0 0 0

Alemu et al. 2012 [47] 0 0 0 0 0

Boullé et al. 2013 [26] ✓ ✓ 0.25 0 ✓ 0

Crawford et al. 2015 [15] 0 0 ✓ 0 0

Daibaté et al. 2009 [44] 0 ✓ 0.25 0 0 0

Hamers et al. 2012 [29] 0 ✓ 0.10 ✓ 0 0

Hamers et al. 2013 [30] 0 ✓ 0.15 ✓ 0 0

Hardwick et al. 2012 [25] ✓ 0 0 ✓ ✓

Hawkins et al. 2011 [22] ✓ ✓ 0.20 0 0 0

Mayanja et al. 2012 [34] ✓ 0 0 0 0

Mudiope et al. 2013 [42] ✓ ✓ 0.20 0 0 0

Peterson et al. 2011 [21] ✓ 0 0 0 0

Sarfo et al. 2014 [35] ✓ 0 0 0 0

Sudfeld et al. 2013 [23] ✓ 0 0 0 0

Vinikoor et al. 2014 [37] ✓ 0 0 0 0

Wandeler et al. 2013 [14] ✓ 0 0 0 0

Nglazi et al. 2011 [45] ✓ 0 0 0 0

Takuva et al. 2012 [50] 0 0 0 0 0

Schomaker et al. 2013 [28] ✓ 0 0 0 0

De Beaudrap et al. 2009 [36] ✓ 0 ✓ 0 0

doi:10.1371/journal.pone.0171658.t005
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Discussion

This study systematically reviewed recent statistical or empirically-defined models of CD4

count response in HIV-infected adults on ART in SSA. The aim was to arrive at a set of model

covariates and outcomes that might allow the comparison of modeling results between

cohorts. From the studies reviewed, Sex, Age, baseline log VL, baseline CD4, ART initiation

regimen and ART duration were the most commonly adjusted covariates and also those most

often significantly associated with the different metrics of immune response across all models

reviewed. Many permutations were found, in fact, the majority of the models were different

with respect to variable transformations and scales, varying model assumptions, modeling

strategies, model reporting methods and the use of different covariates, even if the same out-

comes had been studied. In particular:

In the CPH models studied, authors did not adjust for time-updated variables [38–40,42]. It

was assumed that patients remained on their initiation regimen throughout the period of fol-

low-up. It is known from studies of ART regimen durability and tolerability that drug toxicity

will often occur in the period soon after initiation, necessitating drug substitutions [51,52].

Such switches are obviously important in understanding CD4 responses, particularly if more

potent drugs are subsequently employed. ‘Joint’ time-to-event and longitudinal (or repeated)

measure models may be used for time-updated covariates, in which a 2-phase process involves

combining the model/s of the endogenous longitudinal covariate/s with a CPH model [53].

All seven studies which analyzed time to immunological failure did so for only the time to

the first failure episode [17,38–41]. However, it has been conjectured that multiple failures

may actually occur and be hidden by the normal variability seen in adult CD4 counts [9]. CPH

models are not appropriate for multiple failure-time points since the outcome terminates after

the first event. Further, the assumption of the independence of outcomes is violated since

events within an individual are correlated [54]. Corrections to such models for correlated fail-

ure time points have been implemented in the form of Andersen-Gill, Marginal Wei-Lin-

Weissfeld or Prentice-Williams-Peterson methods [54,55]. If multiple episodes of immuno-

logic failure are present, as defined by the WHO criteria, then the Andersen-Gill method

would appear to be a good choice [55].

In selecting regression methods, considerations regarding covariate distributions and the

mathematical assumptions regarding their relationship/s with the outcome are important.

These assumptions can be tested a priori using the dataset at hand. Only 4 of the studies

reviewed indicated that such tests had been used to confirm that the particular covariates ful-

filled the model assumptions [15,23,32,41]. If the assumptions are violated it is not possible to

estimate the effect of the covariates on the outcome with both precision and accuracy [56].

Six studies used GEEs to model the slope of the CD4 count response. Three defined the out-

come as the change in CD4 count from baseline, i.e. from ART initiation [13,16,21] and the

others used the change in CD4 count between each subsequent visit [22–24]. Of the 11 studies

that used GLMEs, 2 used the increase from the baseline as outcome [32,33], one used change

in CD4 count between subsequent visits [27] and 8 used absolute change in CD4 counts over

time [14,25,26,28–31,34]. Only one study used non-linear mixed effects regression [36]. Select-

ing either GEE—population averaged effects, or GLMM—individual averaged effects, is possi-

ble using tests of assumptions regarding the underlying mechanisms of CD4 count response

[57]. CD4 counts vary due to both individual patient characteristics and laboratory procedures

[58–60]. Given the individual effects, GLMEs may be preferable to GEEs in this context. Non-

Linear Mixed Effect models (NLMEs) may also be used since they take into consideration

mechanistic biological assumptions and both the underlying subject-specific longitudinal

responses (CD4) and the variation of these across the study group over time [57].
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Sarfo et al 2014 [35] modelled CD4 count response using a GLMM with a Poisson distri-

bution. Baseline CD4 counts, being female, increasing ART duration and baseline WHO

stage (stage 1 and stage 2) where associated with increasing CD4 counts, while initiating

ART on efavirenz and zidovudine based regimens and higher baseline age were associated

with decreasing CD4 counts. These results apparently support prior studies [2,61]. However,

the incident rate ratios (IRR) in their final model were close to null. The Poisson distribution

assumption may have biased the results towards the null and presumably explains their

rounding off IRR to 3 decimal places of [35]. The Poisson model assumes that the probability

of the occurrence of any two events p(x\y) is negligible, and the probability of the occur-

rence of an event p(x) is constant throughout the interval, Δt. In [35] the sampling frequency

for CD4 count was 6 monthly, thus, the probability of having another CD4 count measure-

ment was never negligible. Further, the probability of increasing CD4 counts throughout the

sampling interval is variable due to adherence, opportunistic infections, and drug resistance

[62].

There was also variation in approaches to adjustment for confounding between covari-

ates. Confounding usually refers to a�10% change in the coefficient estimate of the main

predictor after adjusting for the effect of a covariate [56]. It does not relate to the significance

of the p-values for covariates in the model. Four studies did not report the criteria used to

select covariates to be adjusted for in the multivariate models [39,40,47,50]. In others

[36,38,41,46], covariates were excluded from the final model since they were not statistically

significant. This practice may exacerbate confounding [63,64]. Directed Acyclic Graphs

(DAGs) can be used as a non-statistical modeling strategy for multivariate analysis [65].

Such causal diagrams, which are based on clinical or biological assumptions, are useful for

deciding on the minimal set of covariates to adjust for. Some studies [17,40,42,43,46] did not

adjust for covariates, such as age and baseline CD4 count, even if appropriate data had been

collected. Prior reviews by Pinzone et al 2012 [2] and Corbeau et al. 2011 [61] have shown

that both baseline age and baseline CD4 count are associated with immunological response

to ART.

Covariate scale transformations were reported to have been assessed in only five studies

[14,24,25,32,34]. Others, report a square root transformation of CD4 counts [14,32,36]. Vari-

able transformations are obviously important in meeting the distributional assumptions of the

model/s [56]. Reda [32] investigated a wide range of variable transformations for all variables

in their model, while Sudfeld et al 2012 [24] transformed only the main predictor—Vitamin D

levels. Other studies employed polynomial transformations of time on treatment [14,25,34] or

regression splines on time [22–24,28]. Graphical inspection of the effect of covariate transfor-

mation are possible prior to modelling, while statistical tests such as Akaike’s Information Cri-

terion (AIC) and the Bayesian Information Criterion (BIC) are useful afterwards [66]. It is also

possible to apply Martingale residuals [55] for CPHs. Caution is always required in variable

transformation since, for example, categorizing continuous variables may result in residual

confounding [67,68]. Further, the interpretation or translation of results into practice becomes

problematic as it is no longer direct.

In terms of model validation, only 5 out of 34 studies provided goodness of fit metrics.

These included the AIC [15], Hosmer-Lemeshow test [43], and the Log-likelihood ratio

[31,32,45] goodness of fit tests. Other possible techniques include cross-validation, i.e. regress-

ing the model on the training dataset to see if it still predicts the outcome, and graphical meth-

ods, i.e. analyzing whether model residuals are random by plotting predicted versus observed

values. Without such validations there is a risk of overfitting to data [56]. Similarly, the dissem-

ination of results also has a bearing on the comparability of models. Six studies reported only
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p-values without beta coefficients or confidence intervals [22–25,46,48] and two studies

reported only model coefficients and p-values [34,46]. Ideally, both model coefficients and

confidence intervals should be reported. Significant p-values continue to be commonly

employed in modeling practice, but these do not indicate clinical significance nor the precision

of parameter estimates [69].

Criticism of routine CD4 monitoring in ART has occurred due to the innate biological vari-

ation in these counts [9]. However, the value of such criticism seems questionable when it is

presented in the absence of suggestions for alternatives, particularly given the fact that HIV is a

disease which targets the immune system. Arguably, the limitation of immunological monitor-

ing to only CD4, particularly in SSA, has been based more on considerations of public-health

affordability than individual patient welfare. Alternative biomarkers, though considered as

indirect immune markers [3], have existed for some time, including among others: Natural

Killer (NK) cells, which secrete interferon activating macrophages, which in turn feed off

infected and stressed cells and Plasmacytoid Dendritic Cells, which secret type-1 antiviral

interferons [3]; β-defensins, which aid in the production of NK cells have also been associated

with immunologic response [25,70]; and Co-stimulatory CD28 or co-inhibitory cytotoxic T-

lymphocyte antigen 4 proteins, which are expressed by all T-cells in HIV infected people

[2,3,71]. The possibility obviously exists to use a combination of CD4 and alternative biomark-

ers to provide a robust description of the immune system in ART.

This study has limitations. Publication bias may be present in view of the inclusion of only

studies published in peer reviewed journals. While specified in the inclusion criteria, only sta-

tistical or empirically-derived models were reviewed. This excluded those originating in mech-

anistic biological theory but did include those expressly incorporating assumptions regarding

biological causality. All data collected regarding the models was contingent on the information

provided in each study, and based on the assumption that these models should be reproducible

using other similar datasets. In comparing the frequency of variables across models, we used a

threshold of�3 which may have excluded ‘rare’ covariates in SSA cohorts. Only a small num-

ber of studies analyzed covariates on comparably transformed or untransformed scales. This

negated the possibility of a meta-analysis, i.e. direct quantitative comparisons, since the models

adjusted for varying sets of covariates. This situation may be understandable in terms of the

facts that certain studies aimed at elucidating particular treatment effects, and that authors are

incentivized to publish unique results.

In conclusion, for purposes of comparing immunological, i.e. CD4 count, outcomes across

cohorts in SSA, statistical models would benefit from the application of more uniform model-

ling techniques. The value of the historic models to public health in SSA is questionable since

the modeling was apparently performed in the absence of a priori comparisons across studies.

That is, since such efforts have produced results that are anecdotal to individual cohorts only.

However, this study was able to define ‘prior’ knowledge, in the Bayesian sense. Qualitative

and semi-quantitative, rather than quantitative and completely comparable effect sizes, for var-

iables in models of immunological response to ART were defined. Such information has value

in terms of prospective modeling efforts in the future.
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