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ABSTRACT Pseudomonas sp. strains ALS1279 and ALS1131 were isolated from
wastewater treatment facilities on the basis of their ability to use furfural, a key
lignocellulose-derived inhibitor, as their only carbon source. Here, we present the
draft genome sequences of both strains, which can shed light on catabolic pathways
for furan compounds in pseudomonads.

Lignocellulosic biomass such as corn stover and wheat straw can be used in
biofuel production. However, their utilization as feedstocks requires pretreat-

ments that generate by-products that inhibit microbial biocatalysts (e.g., furfural
and 5-hydroxymethylfurfural [HMF]) (1, 2). Consequently, biodegradative routes for
lignocellulose-derived inhibitors such as furan derivatives have attracted increasing
interest due to their potential to be exploited in biodetoxification strategies to remove
these compounds from hydrolysates (3, 4). Here, we report the draft genome sequences
of Pseudomonas sp. ALS1279 and Pseudomonas sp. ALS1131, two strains that were
isolated from wastewater treatment facilities on the basis of their ability to grow with
furfural as their sole carbon and energy source (5). Moreover, we tested additional
catabolic capabilities, which revealed that both strains were able to use furfuryl alcohol
and furoic acid as growth substrates and that ALS1279 was also able to grow with HMF,
HMF acid, or HMF alcohol as its sole carbon source.

Pseudomonas sp. strains ALS1279 and ALS1131 were cultured in R2A broth (Neo-
gen), and genomic DNA was obtained by using the GenElute bacterial genomic DNA kit
(Sigma-Aldrich), for sequencing by MicrobesNG (Birmingham, UK) using Illumina MiSeq
paired-end technology (2 � 250 bp). Libraries with a median insert size of 504 bp
(ALS1279) or 487 bp (ALS1131) were generated using the Nextera XT library preparation
kit (Illumina) following the manufacturer’s protocol. A total of 641,615 reads (ALS1279)
and 1,224,184 reads (ALS1131) were obtained after sequencing and trimming using
Trimmomatic v0.30 (6). Reads were assembled using SPAdes v3.9 (7), and assemblies
were polished with two rounds of Pilon v1.23 (8). Default parameters were used for all
software programs during bioinformatic analysis. The draft genome of Pseudomonas sp.
ALS1279 consisted of 183 contigs (N50, 63,516 bp) and was 5,309,122 bp in size, with a
G�C content of 62.5% and average coverage of 50�, while the genome of Pseudomo-
nas sp. ALS1131 consisted of 43 contigs (N50, 256,635 bp) and was 5,564,837 bp in size,
with a G�C content of 62.4% and average coverage of 89�. Gene annotation was
performed using PGAP v4.7 (9) and indicated 4,737 coding proteins for ALS1279 and
5,078 coding proteins for ALS1131. Taxonomic classification for both strains was
performed, as described previously (10), by combining multilocus sequence analysis
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(MLSA) and average nucleotide identity (ANI) analysis with JSpeciesWS v3.2 (11), using
10 publicly available genomes of type strains of Pseudomonas species. As depicted in
Fig. 1, the strain most similar to Pseudomonas sp. ALS1279 was Pseudomonas cheng-
duensis DSM 26382 (ANI using MUMmer average nucleotide identity [ANIm], 95.5%),
suggesting that these strains are closely related (12). The strain closest to Pseudomonas
sp. ALS1131 was Pseudomonas guguanensis JCM 18416 (ANIm, 90%); therefore, we were
unable to identify this strain at the species level (12).

The genes involved in furfural biodegradation, encoding 2-furoyl-CoA synthetase (hmfD)
(GenBank accession no. TRO33638 [ALS1131] and TRO30335 [ALS1279]), furoyl-CoA
dehydrogenase (hmfA, hmfB, and hmfC) (GenBank accession no. TRO33635, TRO33636,
and TRO33637 [ALS1131] and TRO30332, TRO30333, and TRO30334 [ALS1279]), and
2-oxoglutaryl-CoA hydrolase (hmfE) (GenBank accession no. TRO33639 [ALS1131] and
TRO30336 [ALS1279]), were identified in both strains. In addition, specific genes for
HMF degradation, encoding 2,5-furan-dicarboxylic acid decarboxylase (hmfF and hmfG)
(GenBank accession no. TRO30339 and TRO33004), were identified only in ALS1279.

Data availability. The draft genome sequences of Pseudomonas sp. strains ALS1279
and ALS1131 have been deposited in GenBank under accession no. SCGA00000000 and
SCGB00000000, respectively. Illumina sequencing reads are associated with BioProject
no. PRJNA513496 and have been deposited in the SRA repository under accession no.
SRR10040621 (ALS1279) and SRR10040622 (ALS1131). The versions described in this
paper are the first versions of both genomes.
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