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Abstract
In recent years, the field of artificial intelligence (AI) in oncology has grown ex-
ponentially. AI solutions have been developed to tackle a variety of cancer- related 
challenges. Medical institutions, hospital systems, and technology companies are de-
veloping AI tools aimed at supporting clinical decision making, increasing access to 
cancer care, and improving clinical efficiency while delivering safe, high- value oncol-
ogy care. AI in oncology has demonstrated accurate technical performance in image 
analysis, predictive analytics, and precision oncology delivery. Yet, adoption of AI 
tools is not widespread, and the impact of AI on patient outcomes remains uncertain. 
Major barriers for AI implementation in oncology include biased and heterogeneous 
data, data management and collection burdens, a lack of standardized research report-
ing, insufficient clinical validation, workflow and user- design challenges, outdated 
regulatory and legal frameworks, and dynamic knowledge and data. Concrete actions 
that major stakeholders can take to overcome barriers to AI implementation in oncol-
ogy include training and educating the oncology workforce in AI; standardizing data, 
model validation methods, and legal and safety regulations; funding and conducting 
future research; and developing, studying, and deploying AI tools through multidis-
ciplinary collaboration.
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1 |  INTRODUCTION

Artificial intelligence (AI) is a subfield of computer science 
that studies algorithms to perform tasks typically associated 
with human cognition.1 AI has been applied to problems in 
medicine for many years but is now experiencing accelerated 
adoption due to dramatic growth in large, machine- accessible 
healthcare data, powerful computing systems, and innovative 
software technologies. AI encompasses a variety of meth-
ods (Table  1) and processes many different forms of data 
(Figure 1) to gain insights that inform health care and its de-
livery. Similar to humans, AI can use existing knowledge and 
experience to recognize patterns in data; but unlike humans, 
AI can synthesize large amounts of complicated and dispa-
rate data quickly without being prone to fatigue.

AI algorithms have the potential to transform health and 
healthcare delivery by helping solve complex problems, such 
as improving quality of life, prolonging survival, maximiz-
ing safety, and increasing value. An AI algorithm consists 
of rules or processes developed using AI methods that are 
applied to a specific scenario to parse, learn from, or make 
informed decisions about data. They can be developed using 
rule- based approaches that require human input (i.e., super-
vised) or statistical approaches that do not require human 
input (i.e., unsupervised) (Table 1). Common applications 
in health care include identifying conditions, events, risk 

factors, associations, and patterns of difference or similar-
ity, which can be used to support clinical decision making, 
enable population health management, reduce administrative 
burdens, increase efficiency, and facilitate discovery.2

The opportunity for AI to impact oncology- related prob-
lems is great because oncology has become exceptionally 
complex. However, few AI tools have yet had a significant 
and widespread impact in oncology.3 The goals of this manu-
script are to review current and future AI- based solutions for 
oncology problems; to discuss barriers to implementation of 
impactful, cancer- focused AI solutions; and to propose steps 
that will help foster the development and deployment of AI 
tools in routine clinical practice. Although our discussion re-
garding the solutions, barriers, and opportunities of AI fo-
cuses on oncology, many of the issues we discuss are relevant 
for other fields of medicine.

2 |  OVERVIEW

Several features of oncology enable AI to have a substantial 
impact. First, the societal burden of cancer is great. More than 
1.8 million people are diagnosed and approximately 600,000 
people die from cancer each year in the United States.4 
Second, cancer care is extremely expensive and costs are in-
creasing rapidly, with an estimated annual U.S. spending on 

T A B L E  1  Artificial intelligence and data science terminologies

Terms Definition

Machine learning Algorithms and models which machines can use to learn without explicit instructions.1

Supervised learning Machine learning that is based on input– output pairs.1

Unsupervised 
learning

Machine learning that proceeds without direction from a human, targeted at predicting outputs.1

Deep learning A subset of machine learning that generally uses neural networks.1

Natural language 
processing

Machine learning specifically to understand, interpret, or manipulate human language.

Computer vision Machine learning that trains computers to interpret and understand the visual world.

Knowledge 
representation

A surrogate that is used to enable an entity to determine consequences by thinking rather than acting and is a set of 
ontological commitments, a fragmentary theory of intelligent reasoning, and a medium for pragmatically efficient 
computation and human expression.87

Ontology Controlled terminology invoking formal semantic relationships between and among concepts, manifested as a type of 
description logic, which is a subset of first- order predicate logic, chosen to accommodate computational tractability.88

Fast Healthcare 
Interoperability 
Resources 
(FHIR)

Standard for exchanging healthcare information electronically created by Health Level Seven International (HL7), a not- 
for- profit, American National Standards Institute- accredited standards developing organization.78

Minimal Common 
Oncology 
Data Elements 
(mCODE)

A collaboration between the American Society of Clinical Oncology, Inc., CancerLinQ LLC, and MITRE to identify 
minimal cancer data elements that are essential for analyzing treatments across patients via their electronic health 
records.54

Informatics The science of how to use data, information, and knowledge to improve human health and the delivery of healthcare 
services.89
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cancer exceeding $140 billion and reaching $173 billion by 
2020.5 Third, optimal treatment planning requires interpret-
ing and synthesizing large amounts of complex data from 
different sources, including pathology, laboratory, radiol-
ogy, and advanced molecular diagnostics. Although these 
characteristics make oncology ripe for the application of AI 
solutions, they also introduce significant obstacles to their 
development.

First, oncology treatment planning is challenging because 
cancer includes many distinct conditions, each with unique 
and complex patterns of care; and cancer treatments often 
have narrow therapeutic indices with serious adverse ef-
fects. Therefore, balancing harms and benefits is a constant 
struggle. Second, treatment paradigms are changing rapidly 
due to the pace of scientific discovery. Third, cancer care is 
multidisciplinary— requiring coordinated input from multi-
ple stakeholders (e.g., medical oncologists, radiation oncolo-
gists, surgeons, primary care providers, patients, caregivers, 
and others). Fourth, cancer care is inherently multisite— with 
services being delivered at inpatient hospitals, outpatient 
treatment centers, ambulatory clinics, and other locations that 
often have different and siloed methods of recording, storing, 
and transmitting data. Finally, cancer care is typically ad-
ministered longitudinally across disparate settings, including 
initial/adjuvant/curative/maintenance care, survivorship, re-
lapse/recurrence, and end- of- life care. Although these com-
plexities create substantial barriers for machines, they also 
create large hurdles for humans and represent opportunities 

where AI algorithms could have significant impact on the 
quality and value of cancer care, especially in communities 
that lack oncology subspecialists.6,7

3 |  APPLICATIONS

To date, some of the most promising work on AI in oncol-
ogy is taking place within the area of cancer imaging, spe-
cifically digital pathology, radiographic imaging, and clinical 
photographs.8 In digital pathology, AI has been applied to 
both low-  and high- level image processing and classifica-
tion tasks (e.g., tumor detection and segmentation as well as 
predicting disease diagnosis and treatment responses based 
on image patterns) to automate time- consuming tasks and 
to improve diagnostic accuracy.9– 12 In radiology, multiple 
evaluations have demonstrated that AI tools can differen-
tiate between high-  and low- risk lesions on a wide variety 
of imaging modalities.13– 21 Integration of radiographic im-
aging with other sources of data (e.g., clinical features and 
genetic/biochemical markers) to risk stratify image- detected 
lesions already exists and will likely be more commonplace 
in the future.22,23 AI is also being used to help improve di-
agnostic accuracy and reduce diagnostic uncertainty among 
dermatologic and gastrointestinal malignancies on clinical 
imaging.24– 28

AI can provide accurate estimates of a patient's risk for 
experiencing a host of outcomes, including rehospitalization, 

F I G U R E  1  Data types and sources 
processed by artificial intelligence. The 
right column exemplifies commonly used 
data types that can be processed by artificial 
intelligence. The left column categorizes 
the data types into three main areas: patient, 
medical, and contextual
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cancer recurrence, treatment response, treatment toxicity, and 
mortality.29– 34 Enhanced predictions may offer potential ad-
vantages, including facilitating treatment planning, guiding 
population management efforts, and fostering discussions 
about goals of care.35,36 Predictive analytics may aid the de-
livery of oncology treatments to populations that are disad-
vantaged or underrepresented in clinical trials for whom it 
is challenging to apply evidence- based medicine.37 For ex-
ample, among older adults, AI predictive analytics may help 
oncologists anticipate problems that are not detected during 
a comprehensive geriatric assessment or identify risk fac-
tors for chemotherapy toxicity that are overlooked in daily 
practice.38– 40

Another application of AI involves precision oncology. 
The rapid growth of genomic tumor characterization has led 
to the development of computational methods to aid inter-
pretation of these data and to foster the delivery of precision 
oncology.41 For example, AI can facilitate tumor genomic 
data analysis by reporting potentially actionable variants 
on tumor next- generation sequencing assays. One AI- based 
system produced results more rapidly and accurately than 
humans and facilitated identification of eligibility for par-
ticipation in biomarker- selected clinical trials.42,43 Machine 
learning (ML) (Table 1) can also predict tumor type from a 
targeted panel of DNA sequence data and thereby support 
the selection of more appropriate therapy.44 Additionally, ML 
and deep learning (Table 1) have been shown to augment the 
detection ability and accuracy of liquid biopsies.45– 47 As uti-
lization of liquid biopsies become more widespread,48,49 AI- 
based tools may become invaluable to clinicians who must 
appropriately order and interpret these complex tests.

There are substantial opportunities for AI to impact pri-
mary cancer prevention as well (Figure  2). Approximately 
half of cancers could be prevented by applying knowledge we 
currently possess about cancer risk mitigation.50 Behavioral 
modification is a key to cancer prevention, but behavioral 
change interventions remain underutilized.51 AI can bridge 
this gap by helping policymakers and clinicians efficiently 
synthesize, interpret, and disseminate evidence for can-
cer prevention. One research group is creating an ontology 
(Table 1) of behavioral change evaluations; training an auto-
mated feature extraction system to annotate evaluation reports 
using this ontology; developing ML models to predict effect 
sizes for combinations of behaviors, interventions, popula-
tions, and settings; and building interfaces for interrogating 
and updating the knowledge base.52 In the future, this technol-
ogy could help clinicians deliver precision prevention by rec-
ommending interventions that incorporate a patient's unique 
biologic, behavioral, and socioeconomic characteristics.53

4 |  SPECIFIC BARRIERS

Although the promise for AI applications in oncology remains 
great, the benefits for oncology still seem far off. Important 
challenges and questions remain, including the burden of data 
standardization, collection, and management; the bias inher-
ent to training data sets; the lack of robust reporting standards; 
the relative scarcity of prospective clinical validation studies; 
user- design and workflow implementation challenges; out-
dated regulatory and legal frameworks that surround AI; and 
the exponential growth of knowledge and dynamic data.

F I G U R E  2  Stage of development 
and deployment among applications of 
artificial intelligence in oncology. The 
location of a topic represents the farthest 
that topic has come in its development, not 
necessarily the point in development where 
all solutions in that topic area have reached. 
Each topic's shape represents its application 
within the levels of cancer prevention 
(circle = primary, triangle = secondary [or 
tertiary], diamond = tertiary)
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4.1 | Burdens of data standardization 
collection and management

Healthcare data are often recorded and stored in highly 
heterogeneous, idiosyncratic, and unstructured ways. 
Therefore, AI algorithms developed using one system's 
data may perform less well if applied to a different sys-
tem's data. Standardization of terminology and data collec-
tion will increase the proportion of electronic health record 
(EHR) data that are ontology- integrated; this is essential 
for AI to have a meaningful impact in oncology. Efforts, 
such as the minimum Common Oncology Data Elements 
(mCODE) initiative (Table 1), are addressing these chal-
lenges,54 but deploying solutions widely and consistently 
will take substantial effort. Ideally, data standardization 
should occur before algorithm development, when infor-
mation is first collected. Patient- reported outcome meas-
ures (PROMs) represent an ideal mechanism to collect 
standardized data early in the process directly from the pa-
tient. In oncology, PROMs are already being used to iden-
tify early signs of patient distress and to evaluate quality of 
care; however, they face some of the same implementation 
challenges discussed above.55 In particular, the demand 
to collect more data could exacerbate clinician burnout. 
Some AI solutions rely on data from multiple sources (e.g., 
patient- level EHR data and medical knowledge databases), 
which further exacerbates the data collection and manage-
ment burdens. The administrative and financial costs of 
managing and maintaining disparate data types are sub-
stantial and may be prohibitive for smaller practices.

4.2 | Biased training data

AI, in its current form, is essentially focused on pattern 
recognition. Therefore, any pattern embedded within the 
data used to develop a model will be propagated to the 
predictions generated by that model. This could be prob-
lematic if the data used to develop the model differ sys-
tematically from the data to which the model is applied. 
Figure 3 illustrates how biased sampling, a form of statisti-
cal bias,56 may lead to inaccurate predictions. For example, 
when clinical trial data serve as the foundation for an AI al-
gorithm, traditionally underrepresented populations (e.g., 
adolescents and young adults, women, ethnic minorities, 
the elderly)37,57 within the data set may affect the ability 
for AI to generate an accurate recommendation for these 
particular subgroups. Ensuring representative sampling 
across time (i.e., recently vs. historically treated patients) 
and data sources (e.g., medical record data from different 
health systems) is also important to prevent this type of 
bias.

AI is also vulnerable to social bias, which is when in-
equities in healthcare delivery systematically lead to sub-
optimal outcomes for certain groups.56 For example, if an 
AI model were developed to assist with pain control, the 
resulting algorithm could potentially provide suboptimal 
predictions for black patients (Figure  4). Here, the issue 
is not that black patients were excluded from the training 
data set, but rather clinicians have historically undertreated 
pain among black patients due to unconscious biases.58,59 
Therefore, a pattern of behavior that is intrinsic to a training 

F I G U R E  3  Statistical biases associated 
with artificial intelligence (AI) algorithm 
predictions. AI- based tools look for patterns 
of association in the data made available 
to them; they do not establish causation. 
The sample of data used to develop an AI 
algorithm may not represent data from other 
patients treated in other health systems 
over time. For example, if most of the data 
used to develop an AI algorithm came 
from patients <65 years old treated before 
2018, then an AI algorithm may not provide 
reliable estimates for patients >65 years old 
treated after 2020
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data set can be propagated into the future when the model 
is applied in a clinical setting. Because AI uses latent or 
obscure representations as independent variables, it can be 
hard to explain why predictions are made and difficult to 
gauge when predictions do not make sense. Consequently, 
using AI for predictive tasks risks propagating errone-
ously learned patterns into recommendations and clinical 
practice.

Increased inclusion of underrepresented groups in the 
training data will be necessary to ensure prediction accuracy 
across all populations. However, this will take time and will 
require multilevel interventions that influence attitudes, com-
munication, and actions at the patient, oncologist, and inter-
personal levels.60 Meanwhile, AI- based solutions will need to 
address the inextricable biases that are often present in train-
ing data sets. Computational methods that detect, understand, 
and mitigate preexisting bias in a training data set are being 
developed.61,62 Potential solutions could involve developing 
methods to estimate the bias of a specific data set and estab-
lishing standards that determine when the bias is sufficiently 
concerning to question the use of that particular data set for 
algorithm training or as a target for deployment.

4.3 | Lack of research reporting 
standards and prospective clinical validation

The absence of AI reporting standards has contributed to 
a reproducibility crisis, which could limit the widespread 
adoption of AI.63 Because AI algorithms, especially deep 
learning methods, are sensitive to subtle nuances in the data 
that cannot be identified, lack of reproducibility is a real pos-
sibility that could be hard to overcome. Increasing reporting 
requirements regarding an algorithm's source code and train-
ing conditions could help address this problem, but transpar-
ency could raise concerns regarding intellectual property and 
competitive advantage for companies that invest in AI.

Additionally, few published studies in oncology have 
compared the effects of AI or AI- assisted interventions with 
the standard of care on patient outcomes.18,64 Consequently, 
the extent to which AI will impact patient outcomes and 
cost remains uncertain. Establishing clinical validity and 
cost- effectiveness would require conducting randomized 
controlled trials (RCTs) with patient- relevant endpoints. 
However, RCTs are expensive and time- consuming, and 
the design will need to consider the multiple dimensions of 

F I G U R E  4  Social biases associated with artificial intelligence algorithm predictions. This figure depicts the gap between what we need to 
show the model (i.e., both factual and counterfactual scenarios) versus what happens when machine learning (ML) is trained on existing data. 
In this example, an ML model is used to identify oncology patients who require opioids for pain management. When using existing data (i.e., 
secondary use of data collected as part of routine work), the data reflect not only the association between the patient's condition and opioid 
prescribing, but rather it reflects this association conditioned on the staff's determination if the patient's complaint of pain is legitimate or not. If 
the staff's decisions are not uniform (e.g., biased by demographics), then some of the patients who were not prescribed opioids will have the wrong 
label (“opioids not needed for pain control”), whereas they should have had the label (“opioids needed for pain control”). Therefore, the model will 
be shown the wrong labels and will learn an erroneous pattern
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uncertainty when evaluating AI interventions, especially for 
those that augment rather than replace human activity.65

4.4 | Workflow and user- design challenges

Successful implementation of AI must address the socio-
technical challenges encountered within complex adaptive 
healthcare systems.66 To encourage widespread adoption, 
AI- based solutions must be integrated seamlessly into the 
clinician's workflow, be intuitive to use, and provide value to 
the user. This is a greater challenge for some applications of 
AI than others. Although not all AI applications that analyze 
data need to be delivered through interactive environments 
for use by clinicians, key factors for adoption include having 
explainable and actionable output and being well integrated 
into clinical workflows. Clinical decision support systems 
(CDSS) for oncologists, however, often require interfaces 
that are more interactive and explanatory. To the extent that 
AI- based solutions can be adaptive or multifaceted, the dy-
namic aspects of these solutions must be apparent to the end- 
user. For example, if AI- based CDSS adapt longitudinally 
to changes that occur during therapy (e.g., anatomic and 
physiologic changes to tumor and surrounding normal tissue 
during radiotherapy), these facets must be transparent to the 
clinician.67

Clinicians must understand the basis of a recommenda-
tion, find it relevant, and trust the evidence on which the al-
gorithm is based.68 Although algorithm output should always 
strive to be comprehensible, the threshold for understanding 
AI output will vary depending on the use case and AI method 
utilized. For example, for direct patient care (e.g., an oncol-
ogist using AI to predict a patient's treatment mortality risk), 
the threshold for output comprehensibility is high as the re-
sults will greatly influence clinical decision making, espe-
cially because clinician experience with and trust in AI- based 
solutions are currently low. In this circumstance, supervised 
ML (Table 1), which predicts a specific output (e.g., mortal-
ity risk) using inputs (e.g., patient data), would be advisable 
because a gold standard output is required. However, in cir-
cumstances, where some uncertainty is expected or consid-
ered reasonable, unsupervised ML (Table 1), where there is 
no target output to predict, may be appropriate.

Even if AI predictions are accurate and comprehensible, 
the desired improvement will not result if users do not take 
appropriate action. Designing AI tools that incorporate be-
havioral economics principles and support positive behavior 
change (e.g., setting default options or behavioral nudges) 
for clinicians and patients may help.69,70 However, design-
ing AI tools that optimize user adoption must be counterbal-
anced by both ethical and safety considerations, including 
minimizing automation complacency, which is when a user 
accepts the system's recommendations as infallible or using 

the recommendations to confirm initial assumptions without 
critically considering alternatives.71

4.5 | Regulatory and legal frameworks

How legal and regulatory frameworks should guide the de-
velopment and deployment of AI in health care is a topic of 
great debate.72 The legal and regulatory challenges facing 
AI- based decision support tools, which have bedeviled de-
cision support systems for many years and are not unique 
to oncology, will have to be addressed for these tools to 
have any chance to become part of routine clinical practice. 
Legally, the dearth of case law involving medical AI makes 
navigation of medical liability complex. Current tort law may 
incentivize physicians to minimize the potential value of AI 
by using it as a confirmatory tool rather than as a way to 
improve care.73 Moreover, many physicians are concerned 
about the level of patient safety and their legal responsibility 
for diagnostic errors made by AI.74 Consequently, ambiguous 
malpractice liability policies may remain a significant barrier 
to clinicians proactively adopting AI into routine practice.

4.6 | Dynamic knowledge and data

Regardless of the regulatory framework in place, algorithms 
implemented in a real- world oncology setting will need to 
keep pace with the exponential growth in cancer research. 
They will also have to account for dynamic changes in source 
data, which may be precipitated by evolving data standards 
and ontologies; modernizing electronic health record sys-
tems; changing documentation and reimbursement policies; 
or novel diagnostic technologies. Methods for repeatedly 
evaluating algorithm accuracy or updating algorithms when 
their performance begins to drift secondary to shifts in un-
derlying data distributions must be developed. Certain algo-
rithms may also need to have an automatic expiration, which 
would prompt reevaluation after a defined period of time.75

5 |  NEXT STEPS

The challenges facing AI in oncology are formidable and 
span the entire ecosystem of oncology care. Yet, these chal-
lenges are surmountable and can be addressed methodically 
and systematically (Table 2). We recommend the following 
actions that major oncology stakeholders can take to foster 
the development and deployment of AI tools in routine clini-
cal care.

First, we recommend training and educating current and 
future oncology workforce and leadership to become profi-
cient adopters of AI- based CDSS and to stimulate and expand 
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oncology career tracks in informatics (Table 1).76 Oncology 
professional societies should develop AI education modules 
for oncologists and formal training should be included in fel-
lowship. If possible, institutional leaders and academic deans 
should include engineers and informaticians in their faculty to 
assist learners in their understanding and use of AI. Fostering 
close collaboration between oncologists- in- training and non-
clinical experts in the development of AI applications will 
also push research regarding assessment, understanding, and 
application of data in the care of patients.77 However, most 
clinicians do not need to become informaticians or computer 
scientists to use AI tools in practice. Instead, they should un-
derstand AI at a high level; specifically, how AI applications 
operate, what the pitfalls are, and what science is needed to 

show that they work. Additionally, health system administra-
tors and leaders should receive training because their under-
standing will support prioritization of AI- based tools relative 
to other business needs, facilitating identification and selec-
tion of AI- based solutions most likely to impact business pro-
cesses and clinical outcomes.

Second, efforts to standardize oncology terminology 
should continue, which would allow for reports to con-
sist largely of structured data elements. Fast Healthcare 
Interoperability Resources (FHIR) standards (Table  1) and 
the mCODE initiative are significant advances to facilitate 
interoperability of oncology patient data.54,78 These efforts 
should be further expanded toward other areas of oncology, 
including genomics-  and patient- reported outcomes, whose 
integration and analysis by AI have been hindered by lack 
of data standardization and limited EHR integration. AI de-
velopers should also actively engage with EHR vendors to 
facilitate access to data for AI initiatives within and across 
institutions and to enable incorporation of AI- based strate-
gies into clinical workflow while minimizing data collection 
and management burdens.

Third, formalizing standards for external and continuous 
validation of AI models and increasing research on algo-
rithm fairness are needed to minimize AI bias in oncology. 
As noted above, using nonrandomized, real- world, historical 
data could introduce bias into the algorithm, which could af-
fect the validity of predictive modeling.79 At their core, data- 
driven AI methods (e.g., ML and deep learning) recognize 
the patterns in the training data, and when presented with 
real- world data, such methods will propagate any bias al-
ready present in the data. Therefore, standards and guidelines 
for the validation of AI systems are needed to promote clear 
and uniform measures of their accuracy and correctness. 
However, even in the absence of biases in the data, fairness 
remains a challenge. Differences in disease patterns may pre-
clude equal accuracy of models across different groups, and 
algorithm developers will have to trade off competing aspects 
of fairness (e.g., types of inequality).80 Because simply re-
moving group membership from the data does not guarantee 
fairness,81 further research on unfairness sources, mitigation 
methods, and testing standards are needed to facilitate fair-
ness in practical applications of AI in oncology.79

Fourth, establishing consensus around a robust yet sensi-
ble regulatory framework that fairly assigns liability due to 
AI- related error while ensuring an acceptable level of qual-
ity and safety for AI tools is necessary to foster trust with 
both oncologists and patients. However, updating preexist-
ing legislative frameworks to regulate AI in healthcare will 
likely be insufficient. Lawmakers should obtain multidisci-
plinary counsel from ethicists, computer scientists and in-
formaticians, clinicians, patients, professional societies, and 
health technology companies to construct a new regulatory 
framework that takes into consideration AI's self- learning 

T A B L E  2  Next steps toward artificial intelligence (AI) 
implementation in oncology

Training and educating the oncology workforce

• Develop educational modules for practicing oncologists who 
address interpretation and application of AI- based tools

• Incorporate formal training on basics of medical informatics and 
implementation science in fellowship curricula

• Expand and stimulate career tracks focused on informatics 
applied to oncology

• Train health system administrators and information system 
leaders regarding the demands and impacts of AI- based 
solutions.

Standardizing data, research and validation methods, and regulatory 
standards

• Develop and expand use of standard oncology terminologies and 
ontologies

• Develop standards that foster systematic evaluation of 
performance of AI- based tools

• Establish consensus regarding regulatory and legal frameworks 
for AI- based tools

Funding and conducting future research

• Conduct research that fosters development of optimal methods 
for balancing competing aspects of fairness

• Conduct randomized controlled trials that test the impact 
of AI- based tools on patient survival, quality of life, and 
cost- effectiveness.

• Conduct implementation science research that study optimal 
methods for deploying AI- based tools in routine care settings.

• Conduct behavioral research on how data visualizations of 
AI- based recommendations affect clinical decision- making in 
oncology

Developing, studying, and deploying AI tools through 
multidisciplinary collaboration

• Increase engagement with clinical information system vendors 
and EHR companies

• Support partnerships between informatics companies, academia, 
professional societies, health systems, and community- based 
practices to enable widespread deployment
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characteristic. The US Food and Drug Administration re-
cently published an action plan that embraces this multidisci-
plinary stakeholder approach to promote good ML practice, 
incorporate transparency to users, develop regulatory science 
methods related to algorithm bias and robustness, and moni-
tor real- world performance.82

Fifth, standardizing research reporting and conduct-
ing prospective RCTs that demonstrate improvement in 
traditional patient outcomes are essential for AI adoption. 
Because AI systems are costly, healthcare leadership will 
be more willing to adopt AI systems when there is evidence 
of improved patient outcomes (e.g., survival, quality of life, 
and cost- effectiveness). Researchers have recently published 
consensus- based guidelines for evaluating and reporting 
clinical trials for AI interventions.83,84 Others have recom-
mended a phased approach akin to the phases of clinical tri-
als required for the approval of drugs and devices.85 Careful 
adherence to such a robust and sequential evaluation can 
avoid common pitfalls in AI implementation in clinical set-
tings. However, this approach is resource intensive and will 
likely require partnerships between academia, community- 
based practices, public agencies, and industries. Moreover, 
self- learning AI tools are dynamic and their safety and ef-
ficacy profile will likely change over time, which will make 
diligent and frequent postmarket safety monitoring espe-
cially important.

Finally, implementation science and behavioral research is 
needed to understand how to optimize workflow integration 
of AI in oncology and how data visualizations of AI- based 
recommendations affect clinical decision- making around 
cancer treatment, respectively. Current AI- based CDSS avail-
able to oncologists are add- on tools that interrupt clinician 
workflow and are time- consuming to use. To achieve wide-
spread adoption, AI- based tools should integrate seamlessly 
into clinician workflows and be platform agnostic, includ-
ing but not limited to the EHR, tumor board platforms, and 
payer precertification systems. Also, decision- making about 
cancer treatments is a high stakes endeavor that is inherently 
complex and riddled with human biases and heuristics.86 
Consequently, AI designers should understand how visu-
alizations of AI recommendations affect clinical decision- 
making and incorporate patient priorities to better ensure that 
its recommendations are presented in a way that is ethical, 
evidence- based, and patient- centered.

6 |  CONCLUSION

The inherent organizational complexity of cancer care de-
livery, the need to interpret and synthesize vast amounts of 
data from different sources, the narrow therapeutic window 
of treatment, and the heterogeneity of cancer make oncol-
ogy a challenging, yet ideal area to develop and implement 

AI tools. To date, AI in oncology has demonstrated accurate 
technical performance in image analysis, predictive analyt-
ics, and precision oncology delivery and may potentially be 
used to facilitate primary cancer prevention in the future. 
However, additional research is needed to understand AI's 
effect on patient outcomes and cost. Additionally, barriers to 
AI implementation in oncology are formidable and span the 
entire ecosystem of oncology care. The level of effort needed 
to train and educate the oncology workforce; standardize data 
sets, research reporting, validation methods, and regulatory 
standards; and fund and conduct future research will require 
an enormous multidisciplinary effort. Therefore, establishing 
partnerships across healthcare systems, academia, industry, 
and public agencies may be essential to AI implementation 
in the era of big data in oncology.
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