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RAD50 is commonly depleted in basal-like breast cancer with concomitant absence of
INPP4B and several tumor suppressors such as BRCA1 and TP53. Our previous study re-
vealed that INPP4B and RAD50 interact and such an interaction is associated with breast
cancer survival at the transcriptional, translational and genomic levels. In the present study,
we explored single nucleotide polymorphisms (SNPs) of these two genes that have syner-
gistic effects on breast cancer survival to decipher mechanisms driving their interactions at
the genetic level. The Cox’s proportional hazards model was used to test whether SNPs of
these two genes are interactively associated with breast cancer survival, following expres-
sion quantitative trait loci (eQTL) analysis and functional investigations. Our study revealed
two disease-associating blocks, each encompassing five and two non-linkage disequilib-
rium linked SNPs of INPP4B and RAD50, respectively. Concomitant presence of any rare ho-
mozygote from each disease-associating block is synergistically prognostic of poor breast
cancer survival. Such synergy is mediated via bypassing pathways controlling cell prolif-
eration and DNA damage repair, which are represented by INPP4B and RAD50. Our study
provided genetic evidence of interactions between INPP4B and RAD50, and deepened our
understandings on the orchestrated genetic machinery governing tumor progression.

Introduction
As the second leading cause of deaths worldwide, great attention has been paid in order to reveal the un-
derlying factors that drive the genesis of cancer [1]. Evidences showed that various factors are linked with
growth and development of different types of cancer which include mutation [2], radiation [3], inflamma-
tory bowel disease [4], viral [5,6] and bacterial infection [4,7]. Breast cancer is the leading cause of deaths
among women with the annual mortality rate being estimated over 570000 worldwide [8,9]. Most breast
cancers are sporadic cancers caused by accumulation of acquired yet uncorrected genetic alterations in
somatic genes, while other cases are associated with inherited genetic changes in disease predisposing
genes [10]. As one of the most common types of genetic variations in human genome, single nucleotide
polymorphisms (SNPs) in genes involved in DNA damage repair, metabolism, carcinogen metabolism,
cell-cycle control, apoptosis and immunity are likely to be associated with genetic susceptibility to various
cancer types including breast cancer [11,12]. So far, common SNPs can account for 18% of breast cancer
familial risk among women [13].

SNPs can be located in either coding or non-coding regions. SNPs located in the coding regions are
assumed to be able to affect protein production and functionalities, and thus more likely to cause pheno-
typic changes [14]. SNPs located in the non-coding region are less toxic and more easily to be inherited.
However, recent advances suggest that SNPs in the non-coding regions may also play a functional role
including, e.g. RNA splicing, genome imprinting, long non-coding RNAs binding etc [11].
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Figure 1. Schematic diagram of the analytic flow in the present study

The purple oval and blue rhombi represent the SNPs in TCGA and analytical methods, respectively. Rectangle represents obtained

results at each stage of analysis, where green represents ‘genes’, yellow represents ‘SNPs’, bronze represents ‘block’. Abbreviation:

TCGA, The Cancer Genome Atlas.

RAD50 is crucial to maintain genomic integrity and prevent tumorigenesis [15]. It is a key protein involved in
DNA double-strand breaks repair and frequently deleted in basal-like breast tumors [16]. RAD50 is a breast cancer
susceptibility gene associated with genomic instability [17]. Loss of RAD50 often co-occurs with deletion of one or
more tumor suppressor genes BRCA1, TP53, PTEN, RB1 and INPP4B [18]. INPP4B is involved in the control of
cell proliferation, cell metabolism and apoptosis [19]. INPP4B resides in the PI3K/Pten/mTOR pathway which is a
complex network that controls cell proliferation and survival and is deregulated in over 70% of breast cancers [20].
Moreover, INPP4B deficiency affects BRCA1, ATM and ATR protein stability, which may lead to the defect of DNA
repair machinery and, ultimately, uncontrolled cancer growth [21].

We have previously demonstrated that INPP4B and RAD50 collectively affect breast cancer survival at the tran-
scriptional and translational levels [22]. To further identify the synergies between INPP4B and RAD50 on clinical
consequences at the genetic level, we are motivated to identify the relevant disease-associating SNPs that affect the
expression of each gene and are collectively prognostic of the clinical outcome of breast cancer patients.

Materials and methods
The workflow of the methods is presented in Figure 1.

Datasets
We retrieved 184485 SNPs of INPP4B and 19974 SNPs of RAD50 from the dbSNP NCBI database [23]. Among these
SNPs, 269 SNPs of INPP4B and 15 SNPs of RAD50 were mapped to the Affymetrix SNP6.0 Array which was used
in The Cancer Genome Atlas (TCGA). Information of the 284 SNPs covering 501 samples was retrieved from TCGA
(http://cancergenome.nih.gov) and used for the downstream analysis. The gene expression data were retrieved from
TCGA bioportal (http://www.cbioportal.org/), which contained 20440 genes and 1102 samples.

The GSE24450 dataset containing gene expression and clinical information of 183 breast tumors from the Helsinki
University Central Hospital was retrieved from GEO with 10-year follow up information included in this dataset
[24,25].
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TCGA cohort and GEO cohort were merged followed by log2 transformation and batch correction using the ‘Com-
Bat’ function in ‘sva’ package (version 3.30.1) in R [26]. These merged data were used in expression Quantitative Trait
Loci (eQTL) analysis and pair-wise expression survival analysis.

Pair-wise SNP survival analysis
We conducted breast cancer overall survival (OS) analysis on interactions between SNPs of INPP4B and RAD50
using the Cox’s proportional hazard model. The recessive model was used in the pair-wise SNP association analysis,
where the heterozygote was combined with the common homozygote assuming that the disease-associating pheno-
type is caused by the concomitant presence of both rare alleles in both interacting SNPs. The 10-year breast cancer
OS survival analysis utilizing the ‘survival’ package (version 2.44.1.1) [27]. An SNP pair was considered interactive if
the P-value of the Cox repression model was <0.05, the P-value of the interaction term was <0.05, and the number
of iterations showing the model convergence rate was <10.

Block-wise SNP survival analysis
Haplotype block refers to the inheritance of a cluster of SNPs [28]. LDlink (https://analysistools.nci.nih.gov/LDlink/)
was used to calculate pair-wise linkage disequilibrium (LD) among SNPs associated with the same gene. SNPs with r2

greater than 0.8 were considered linked to the same haplotype. Non-LD linked SNPs were considered independent.
We randomly selected one SNP among its LD-linked peers, and grouped independent SNPs of INPP4B and RAD50
into distinct disease-associating blocks, respectively.

Block-wise survival analysis was performed between the disease-associating blocks of INPP4B and RAD50, re-
spectively, assuming that the presence of the rare allele of any SNP within the block contributes equally to the syn-
ergistic clinical association. PredictSNP2 [29], a unified platform for predicting SNP effect, was employed to analyze
the functionalities of non-LD linked SNPs. SNP2TFBS tool was used to check whether an SNP affects transcription
factor binding site affinity [30].

eQTL analysis
To identify genes whose expressions are significantly affected by the identified SNPs in each disease-associating block
or the disease-associating block as a whole, we conducted the eQTL analysis. In single SNP eQTL analysis, gene
expression was modeled against the allele status of an SNP using logistic regression. SNPs with a P-value of the linear
model <0.01 were considered eQTLs of a gene. SNPs significantly affecting patient OS and expression of the gene it
resides in were defined as disease-associating SNPs. In block-wise eQTL analysis, the allele statuses were combined
and binarized such that concomitant presence of all rare alleles in a disease-associating block was considered as ‘1’ and
block alleles containing any common allele was considered as ‘0’. Top genes filtered using P<0.01 and the coefficient
β > 0.3 from the linear regression were selected as being significantly affected by the disease-associating block at the
transcriptional level.

Pair-wise expression survival analysis
We conducted breast cancer OS analysis on interactions between the expressions of a gene identified in the eQTL
analysis to identify the quantitative association of a gene and its eQTLs using the Cox’s proportional hazard model.
Gene expression of a gene was binarized by its median level, and the 10-year breast cancer OS survival analysis was
conducted using the ‘survival’ package [27]. A gene pair was considered interactive if the P-values of the Cox repres-
sion model and the interaction term were both 0.05.

In addition, the expression of one gene was stratified by that of another to assess the influence of one gene on
another or the interactions between two genes at the transcriptional level. ANOVA test was used to assess the statistical
significance with P<0.05 being the threshold.

Functional analysis
In order to investigate the functional consequences introduced by SNPs, pathway enrichment analysis was performed
using genes affected by SNPs with statistical significance. Gene Ontology (GO) term, KEGG pathway and Reactome
pathway were enriched using the web interface ‘Metascape’ [31]. Genes identified from the enriched pathways were
collected for gene regulatory network construction using GeneMANIA (http://www.genemania.org) [32]. GeneMA-
NIA uses the label propagation algorithm to predict gene–gene interactions at 7 levels (co-expression, co-localization,
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Table 1 SNPs significantly affecting breast cancer OS

Gene SNP Position Alleles MAF Consequence

RAD50 rs3798134 chr5:132629487 G>A 0.2564 Intron variant

rs3798135 chr5:132629417 C>T 0.2556 Intron variant

rs2040704 chr5:132637485 A>G 0.3297 Intron variant

rs2706347 chr5:132569425 G>T 0.3095 Intron variant

INPP4B rs1219269 chr4:142174118 A>T 0.2726 Intron variant

rs17016021 chr4:142373233 A>T 0.0260 Intron variant

rs2636683 chr4:142176930 C>T 0.3758 Intron variant

rs336298 chr4:142094199 T>C 0.4002 Intron variant

rs9996933 chr4:142087174 T>C 0.2676 Intron variant

‘MAF’ represents minor allele frequency.

genetic interaction, physical interaction, shared protein domain, pathway and predicted) where interactions from ge-
netic interaction are selected to construct our network. It outputs a regulatory network using the user-defined gene
list based on databases and publications from multiple resources [32].

Results and discussion
SNPs of INPP4B and RAD50 synergistically affect breast cancer survival
Multivariate Cox regression model was constructed to perform pair-wise interaction analysis using SNPs of INPP4B
and RAD50 on breast cancer OS. The results revealed nine SNPs, five from INPP4B (rs1219269, rs17016021,
rs2636683, rs336298, rs9996933) and four from RAD50 (rs3798134, rs3798135, rs2040704, rs2706347), having sig-
nificant association with patient clinical outcome (Table 1).

Concomitant presence of rare homozygotes of SNPs from
disease-associating blocks is associated with poor breast cancer OS
The four identified SNPs of RAD50 are linked to two haplotypes, i.e. the r2 between rs2706347 and rs2040704 is 0.911,
and that between rs3798135 and rs3798134 is 0.999 (Figure 2A). All SNPs of INPP4B are non-LD linked (Figure 2B).

Two disease-associating blocks were constructed where one SNP was randomly selected if multiple SNPs resided
in one haplotype. That is, the INPP4B block includes rs336298, rs9996933, rs1219269, rs2636683, rs17016021, and
the RAD50 block contains rs3798134 and rs2040704. The results of the block-wise OS analysis using recessive model
indicated that concomitant presence of the rare homozygote of any SNPs from each disease-associating block is as-
sociated with significantly reduced breast cancer OS (Figure 2E). The presence of all common homozygotes in either
INPP4B or RAD50 is sufficient to rescue patient clinical outcome.

On the other hand, either of the two disease-associating blocks drives significant differences on patient OS (Figure
2C,D), suggesting that it is the interaction between the two disease-associating blocks that differentiate breast cancer
clinical outcome but not either one of the two blocks.

We performed the eQTL analysis followed by the pair-wise expression survival analysis, which revealed that con-
comitant presence of the rare allele in the disease-associating block of INPP4B was positively associated with low
BCKDHB expression that is risky (P=0.023, HR = 0.81, Figure 3), and that of RAD50 was positively associated with
RMND5A and PWP2 high expression which were risky (RMND5A: P=0.0005, HR = 1.39; PWP2: P=0.029, HR =
1.23, Figure 3). In addition, RMND5A or PWP2 overexpression was associated with breast cancer clinical outcome
under BCKDHB low-expression, which were both risky (RNMD5A and BCKDHB: P=0.0025, HR = 1.48; PWP2
and BCKDHB: P=0.03, HR = 1.32, Figure 4), and such a prognostic value diminishes under BCKDHB high expres-
sion. Therefore, the joint prognostic value of the two disease-associating blocks was in agreement with those from the
pair-wise joint expression between BCKDHB and RMND5A, BCKDHB and PWP2. Further, BCKDHB interacts
with INPP4B, where low BCKDHB under low INPP4B expression was risky (P=0.03, HR = 0.75, Figure 3), high
RMND5A or PWP2 was risky under high RAD50 expression (RMND5A: P=0.001, HR = 1.54; PWP2: 0.015, HR
= 1.37, Figure 3). On the other hand, low INPP4B and high RAD50 expression are risky (P=0.00296, HR = 3.15,
Figure 4), and high INPP4B and low RAD50 convey unfavorable clinical outcome (P=0.03, HR = 1.6, Figure 4).
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Figure 2. Interactions between SNPs in INPP4B and RAD50

Heatmaps showing LD associations among SNPs of (A) RAD50 and (B) INPP4B. OS analysis of (C) interactions of disease-asso-

ciating block of RAD50, (D) disease-associating block of INPP4B, and (E) disease-associating blocks of INPP4B and RAD50. In

subgraph (E), green curve represents concomitant presence of the rare homozygote of SNPs in both disease-associating blocks of

INPP4B and RAD50; pink curve represents concomitant presence of the common homozygote of SNPs in both disease-associating

blocks of INPP4B and RAD50; purple curve and bronze curve each represents the presence of the rare homozygote of SNPs in

the disease-associating blocks of INPP4B and RAD50, respectively. The x-axis indicates the follow-up time, and the vertical axis

shows the cumulative OS of breast cancer patients.
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Figure 3. Associations between each disease-associating block and the corresponding gene

(A) Correlation between RMND5A gene expression and allele status of the RAD50 disease-associating block. The prognostic value

of RMND5A on breast cancer OS (B) alone, (C) under low RAD50 gene expression, (D) under high RAD50 gene expression. (E)

Correlation between PWP2 gene expression and allele status of the RAD50 disease-associating block. The prognostic value of

PWP2 on breast cancer OS (F) alone, (G) under low RAD50 gene expression, (H) under high RAD50 gene expression. (I) Correlation

between BCKDHB gene expression and allele status of the INPP4B disease-associating block. The prognostic value of BCKDHB

on breast cancer OS (J) alone, (K) under low INPP4B gene expression, (L) under high INPP4B gene expression.
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Figure 4. Pair-wise gene interactions

(A) The prognostic value of INPP4B gene expression on breast cancer OS under high and low RAD50 expression. (B) The prog-

nostic value of RAD50 gene expression on breast cancer OS under high and low INPP4B expression. (C) The prognostic value of

PWP2 gene expression on breast cancer OS under high and low BCKDHB expression. (D) The prognostic value of RMND5A gene

expression on breast cancer OS under high and low BCKDHB expression.
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Gene function analysis of non-LD linked SNPs
We obtained 89 genes from the eQTL analysis, whose expression were significantly affected by the allele status of
identified non-LD linked SNPs. GO and KEGG gene enrichment analysis showed that these genes were significantly
enriched in ‘PI3K/AKT activation process’ (Figure 5A).

The regulatory network involving INPP4B and RAD50 showed that BCKDHB and INPP4B, as well as RMND5A
and RAD50 have direct genetic interactions, PWP2 and RAD50 have indirect genetic interactions via ALDH1L1 and
NAA40 (Figure 5B).

Discussion
Through pair-wise and block-wise interactive OS analyses on SNPs of INPP4B and RAD50, we identified two
disease-associating blocks, each containing five SNPs (INPP4B) and two SNPs (RAD50), respectively, which syn-
ergistically affect breast cancer clinical outcome. Specifically, concomitant presence of the rare homozygotes of all
SNPs within each block is associated with decreased breast cancer OS, while neither one of these blocks differen-
tiate breast cancer clinical outcome with statistical significance. Both RAD50 and INPP4B are crucial to maintain
genomic integrity and prevent tumorigenesis [7,12,13], and co-deletion of both genes commonly co-occurs in many
types of cancers including breast cancer [10]. Our results further consolidate our understandings on cells and car-
cinogenesis, i.e. cells are robust systems having multiple ways to suppress tumorigenesis, and carcinogenesis is likely
to occur when all tumor suppressive systems are dysfunctional.

The two disease-associating SNP blocks were each associated with the expression of genes that interacted with
INPP4B and RAD50, respectively, with consistent directions regarding their prognostic values. For instance, con-
comitant presence of rare alleles in the disease-associating block of INPP4B was positively associated low BCKDHB
expression, and the rare status of the RAD50 disease-associating block was positively correlated with high RMND5A
or PWP2 expression. Importantly, concomitant presence of rare statuses of INPP4B and RAD50 was risky, which
was consistent with joint low BCKDHB and high RMND5A or PWP2 expression (risky). This makes it possible
to associate interactions at the genetic level with interactions at the gene expression level regarding clinical out-
comes. Meanwhile, BCKDHB interacted with INPP4B, RMND5A and PWP2 each interacted with RAD50, and
INPP4B interacted with RAD50 regarding clinical associations, and these clinical associations shared consistent di-
rections. That is, low BCKDHB and low INPP4B is risky, high RMND5A and high RAD50 is risky, low BCKDHB
and high RMND5A is risky, low INPP4B and high RAD50, where the clinical association of each of these genes is
transferable among these pair-wise joint clinical associations. Provided the strong correlation between the INPP4B
disease-associating block and BCKDHB, and RAD50 disease-associating block and RMND5A, it is highly likely that
BCKDHB and RMND5A reflected and/or mediated interactions between INPP4B and RAD50 at the gene expres-
sion level which also applies for pair BCKDHB and PWP2. Indeed, we found from GeneMania that BCKDHB had
genetic interactions with INPP4B and RAD50, respectively, which were previously reported by [32], and RMND5A
and PWP2 had known genetic interactions with RAD50, which were in agreement with what we observed in the
present study and supported our findings. Interestingly, BCKDHB was also genetically associated with TGFβ1 that
plays critical roles in TGFβ signaling and responsible for cancer stemness; and PWP2 genetically interacted with
RAD50 via ALDH1L1 that is associated with neural stem cells in vivo [33], suggesting a trilateral connection among
uncontrolled cell proliferation (as represented by INPP4B and PI3K/Pten pathway), DNA damage repair (as repre-
sented here by RAD50), and cancer stemess (as featured by TGFβ-mediated signaling and ALDH1L1).

Among the three genes mediating interactions between INPP4B and RAD50, only RMND5A has known evidence
which is a tumor vasculature-associated gene with transmembrane or secreted protein products identified through
expression profiling of ovarian cancer vascular cells [34]. BCKDHB encodes the E1 β subunit of branched-chain
keto acid dehydrogenase and is a multienzyme complex associated with the inner membrane of mitochondria [35].
PWP2 is involved in humoral immunity [36]. Their relevance with cancer initiation and progression is worthy to be
investigated. INPP4B and RAD50 were also genetically connected via TRIM47 and TRIM65, and TRIM family pro-
teins are known players in innate immunity, and have recognized roles in carcinogensis [37]. These together suggest
the involvement of immune response, metabolism and angiogenesis in mediating synergies between INPP4B and
RAD50.

We further identified disease-associating SNPs in both disease-associating blocks. That is, both rs2040740 re-
siding in the intron of RAD50 and rs17016021 from the intron of INPP4B are deleterious; and the rare allele of
rs2040740 is significantly associated with reduced RAD50 expression. The minor allele frequency (MAF) of the
RAD50 disease-associating SNP (rs2040704) is the highest among all SNPs in the RAD50 disease-associating block,
which is ∼0.33 (Table 1), suggesting its prevalence. Actually all SNPs in the RAD50 disease-associating block have a

8 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 5. Pathway enrichment and network construction using genes quantitatively associated with INPP4B and RAD50

disease-associating blocks

(A) GO and KEGG enrichment analysis. (B) Network constructed using GeneMania where only genetic interactions were preserved.
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relatively high prevalence (i.e. ranging from 0.25 to 0.33, Table 1), indicating that the pathway represented by RAD50
is more likely to be dysfunctional. However, the MAF of the INPP4B disease-associating SNP (rs17016021) is rather
rare, i.e. 0.026 (Table 1), suggesting that dysfunction of the pathway represented by INPP4B is less likely to occur
whose mutation functions as a pivotal switch toward enhanced cancer cell proliferation potential.

Importantly, PCR assays testing the polymorphisms of both SNPs in clinical materials that are associated with
differential clinical outcomes are necessary before translating our discovery into clinics, and this would be our next
endeavor to make.

As aforementioned, we hypothesize that synergies created from the identified disease-associating blocks of
INPP4B and RAD50 are related to cell progression and mutation accumulation that ultimately affect patient clinical
outcome from our eQTL and pathway enrichment analyses. Such synergies may also involve altered immune response
and cancer stemness. However, the exact underlying mechanism still awaits to be explored and experimentally vali-
dated.

Conclusion
We identified two disease-associating blocks of INPP4B and RAD50, each containing five and two SNPs, respec-
tively. Concomitant presence of any rare homozygote from each of the two disease-associating blocks is associated
with decreased breast cancer survival, through disenabling breast cancer cell proliferation and DNA repair signaling
pathways as represented by INPP4B and RAD50. Our study provides genetic evidence on the prognostic synergies
between INPP4B and RAD50 on breast cancer outcome and deepens our understandings toward cancer progression
that ultimately facilitates cancer precision medicine.
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29 Bendl, J., Musil, M., Štourač, J. et al. (2016) PredictSNP2: a unified platform for accurately evaluating SNP effects by exploiting the different

characteristics of variants in distinct genomic regions. PLoS Comput. Biol. 12, e1004962, https://doi.org/10.1371/journal.pcbi.1004962
30 Kumar, S., Ambrosini, G. and Bucher, P. (2017) SNP2TFBS - a database of regulatory SNPs affecting predicted transcription factor binding site affinity.

Nucleic Acids Res. 45, D139–D144, https://doi.org/10.1093/nar/gkw1064
31 Zhou, Y., Zhou, B., Pache, L. et al. (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun.

10, 1523, https://doi.org/10.1038/s41467-019-09234-6
32 Warde-Farley, D., Donaldson, S.L., Comes, O. et al. (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and

predicting gene function. Nucleic Acids Res. 38, W214–W220
33 Foo, L.C. and Dougherty, J.D. (2013) Aldh1L1 is expressed by postnatal neural stem cells in vivo. Glia 61, 1533–1541,

https://doi.org/10.1002/glia.22539
34 Dahiya, N., Sherman-Baust, C.A., Wang, T.L. et al. (2008) MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS

ONE 3, e2436, https://doi.org/10.1371/journal.pone.0002436
35 Nobukuni, Y., Mitsubuchi, H., Endo, F. et al. (1990) Maple syrup urine disease. Complete primary structure of the E1 beta subunit of human branched

chain alpha-ketoacid dehydrogenase complex deduced from the nucleotide sequence and a gene analysis of patients with this disease. J. Clin. Invest.
86, 242–247, https://doi.org/10.1172/JCI114690

36 Yamakawa, K., Gao, D.Q. and Korenberg, J.R. (1996) A periodic tryptophan protein 2 gene homologue (PWP2H) in the candidate region of progressive
myoclonus epilepsy on 21q22.3. Cytogenet. Cell Genet. 74, 140–145, https://doi.org/10.1159/000134402

37 Hatakeyama, S. (2017) TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem. Sci. 42, 297–311,
https://doi.org/10.1016/j.tibs.2017.01.002

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

11

https://doi.org/10.3322/caac.21583
https://doi.org/10.7150/ijbs.21635
https://doi.org/10.7314/APJCP.2013.14.6.3403
https://doi.org/10.18632/oncotarget.22372
https://doi.org/10.1101/gr.2421604
https://doi.org/10.1186/1471-2156-9-10
https://doi.org/10.1002/jcb.21067
https://doi.org/10.1002/ijc.21934
https://doi.org/10.1093/carcin/bgi360
https://doi.org/10.1007/s10549-011-1846-y
https://doi.org/10.1186/bcr3039
https://doi.org/10.1002/ijc.24831
https://doi.org/10.1186/1471-2164-16-S7-S8
https://doi.org/10.1007/s10549-014-3241-y
https://doi.org/10.1093/nar/29.1.308
https://doi.org/10.1186/bcr3076
https://doi.org/10.1186/bcr3015
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.18632/oncotarget.22747
https://doi.org/10.1371/journal.pcbi.1004962
https://doi.org/10.1093/nar/gkw1064
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1002/glia.22539
https://doi.org/10.1371/journal.pone.0002436
https://doi.org/10.1172/JCI114690
https://doi.org/10.1159/000134402
https://doi.org/10.1016/j.tibs.2017.01.002

