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Hyperspectral imaging (HSI) technology can be used to detect human emotions based on the power of material discrimination
from their faces. In this paper, HSI is used to remotely sense and distinguish blood chromophores in facial tissues and acquire an
evaluation indicator (tissue oxygen saturation, StO2) using an optical absorption model. ,is study explored facial analysis while
people were showing spontaneous expressions of happiness during social interaction. Happiness, as a psychological emotion, has
been shown to be strongly linked to other activities such as physiological reaction and facial expression. Moreover, facial ex-
pression as a communicative motor behavior likely arises from musculoskeletal anatomy, neuromuscular activity, and individual
personality. ,is paper quantified the neuromotor movements of tissues surrounding some regions of interest (ROIs) on smiling
happily. Next, we selected six regions—the forehead, eye, nose, cheek, mouth, and chin—according to a facial action coding
system (FACS). Nineteen segments were subsequently partitioned from the above ROIs. ,e affective data (StO2) of 23 young
adults were acquired by HSI while the participants expressed emotions (calm or happy), and these were used to compare the
significant differences in the variations of StO2 between the different ROIs through repeated measures analysis of variance. Results
demonstrate that happiness causes different distributions in the variations of StO2 for the above ROIs; these are explained in depth
in the article. ,is study establishes that facial tissue oxygen saturation is a valid and reliable physiological indicator of happiness
and merits further research.

1. Introduction

,ere is a growing interest in the more positive emotions
such as happiness [1–3]. Moreover, a state of happiness can
overcome negative emotions such as stress [4, 5]. When
people are engaged in social experiences that make them feel
happy, people may exhibit measurable physiological char-
acteristics such as blushing, facial expression features such as
smiling, and body behavior such as dancing. With the ex-
ception of facial expression, specifically, happiness pre-
sumably includes a greater involvement of, for example,
human physiology, psychology, behavior, and other human
factors. Comprising a complex mix of behavioral, facial,
physiological, and psychological traits, happiness is sus-
pected to play a key role in many fields, including task

execution [6, 7], healthcare [8, 9], and teaching and learning
[10, 11].

2. Review of the Literature

Various in-depth studies have explored human emotions in
terms of facial expressions. Witt and Flores-Mir [12, 13] and
Janson et al. [14] investigated the facial smile paradigm by
observing the subjects’ lips and dentition. Arigbabu et al.
[15] investigated smile detection from face images in un-
constrained environments. A proposed framework provided
a very competitive detection rate and exploited image
alignment as an important stage for improving the per-
formance of smile detection. Of course, the studies based on
facial expressions mostly are based on the hypothesis that
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smile is often assumed to indicate happiness, which con-
tradicts the fact that smile sometimes is pretended to de-
liberately adapt to a certain subjective understanding, which
is actually not happiness.

Physiological signals is another significant entity that is
studied in the field of emotional research. It is noteworthy
that physiological signals are not influenced by human
subjective consciousness. In addition, emotional reactions
have been found to cause fluctuations in a variety of
physiological indicators used to measure nervous activi-
ties. Kreibig [16] summarized 134 studies and found
significant differentiation between the following physio-
logical indices: heart rate (HR, the most commonly used
indicator), skin conductance (SC), blood pressure (BP),
and respiration rate (RR). Using images or videotapes as
emotional stimuli, Codispoti et al. [17] and Bianchin and
Angrilli [18] found that the heart rate (HR) was slower in
positive emotional states than in neutral states. Gendolla
et al. [19] and Neumann and Waldstein [20] reported that
significantly higher systolic blood pressure (SBP) occurred
in negative emotional states rather than in positive states.
Using the multivariant correlation method, Wen et al. [21]
analyzed the affective physiological changes in multi-
subject galvanic skin response (GSR), the first derivative of
GSR (FD_GSR) and HR, and obtained an overall accuracy
rate of 74% for quinary classification of amusement, anger,
grief, fear, and the baseline state. Von Leupoldt and
Dahme [22] verified that both positive and negative
emotions can lead to respiratory resistance because of
airway constriction when a picture stimulus pattern is
introduced. Vianna and Tranel [23] found a higher pos-
itive correlation (r � 0.64) between the peak amplitude of
the electrogastrogram (EGG) and the degree of arousal
assessed subjectively by film-elicited methods. Pavlidis
et al. [24] quantified the perspiration responses in the
perinasal area—regarded as a physiological phenomenon.
In addition, these authors introduced thermal imaging
(TI) technology for the unobtrusive detection of perspi-
ration signals.

Traditionally, various classic physiological indicators,
including HR, BP, GSR, respiration, and EGG, require
diverse contact sensors to measure changes in body re-
sponses. ,e inconvenience of applying these measuring
techniques to certain fields in particular motivated re-
searchers to investigate more reliable assessment methods
using noninvasive technology. ,us, more attention has
been paid to contactless detection technologies such as TI
and hyperspectral imaging (HSI). ,ese instruments are
unobtrusive and require minimal interaction between
subjects and examiners. ,e two imaging technologies, TI
and HSI, allow measurement of physiological features such
as blood flow, pulse rate, and breathing rate by spectral
technologies. TI is directly related to tissue blood flow and
eventually detects the changes in skin temperature and
perspiration responses of the targeted regions. However,
the technology becomes considerably less reliable when the
ambient temperature changes suddenly. Consequently, we
selected an alternative technique, HSI, to measure the af-
fective features.

3. HSI Technique

HSI enables the imaging of a scene in hundreds of con-
tiguous, narrow wavebands, with a bandwidth of ap-
proximately 10 nm, particularly in the visible and infrared
regions of the electromagnetic spectrum, to form image
cubes with both spatial and spectral dimensions [25, 26].
Due to the nature of light reflection by the object in the
scene, HSI can capture the intensity of the reflected light
within a narrow slice of wavebands across the whole
spectrum and transform the extent in terms of pixels.
Compared with conventional photography, HSI uses a
narrow bandwidth for spectral sensing, enhancing the color
discrimination ability. Its power of material discrimination
is the reason why HSI is used as the primary technique in
this research.

In this paper, HSI instrument employed records the
imaging only for one row line of an object at a time—this
only requires the scanning movement of HSI camera. Each
of the recording process consists of the imaging under
different wavebands within the whole spectrum. Next, it
constructs a two-dimensional image (spatial and spectral
axis). With a predetermined scanning frequency, it can
obtain the total image slices of the object. ,en, a 3D cube
can be created by stacking all the 2D slices in sequence.
,erefore, depending on the configuration, HSI can be
introduced to remotely sense and discriminate blood
chromophores from body tissues; the amount of oxygena-
tion within the blood is subsequently quantified using an
optical absorption model.

To recap, the HSI method is a noncontact detection
technology for detecting physiological signals. Because of the
power of material discrimination, HSI technology has in-
creasingly been explored in various areas of research [27–
29]. As a technology of longer spectrum width and higher
imaging precision, HSI was utilized directly to remotely
sense StO2 [30–32]. ,us, HSI is convenient to both subjects
and testers. Additionally, this method can effectively
counteract the aforementioned defects remaining in TI, and
most important of all, it is not easily affected by environ-
mental uncertainties.

4. Purpose of the Study

,is study is based on the hypothesis that a happy state of
mind results in measurable physiological changes that can
ascertain whether someone is experiencing genuine hap-
piness. ,e authors introduce facial tissue oxygen satura-
tion (StO2), an innovative physiological measure to
evaluate the effects of happiness on facial tissues by using
HSI technology and test the reliability and repeatability of
these measures.

,e aims of this study were to examine (1) whether
happiness causes fluctuations of affective signal (StO2) in
facial regions, (2) the affective meanings of the changes in
the neurophysiological movements of tissues using StO2 as a
measure, and (3) the relative distribution pattern of StO2 for
six facial regions of interest (ROIs)—forehead, eye, nose,
cheek, mouth, and chin—when smiling happily.
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5. Methodology

,is section describes the population and sample for the
study, research design, and data analysis. ,e study used two
distinct self-reporting questionnaires and an interview with
the expert to arrive at the sample from the population for the
study. ,e process is explained in the following sections.

5.1. Population and Sample. Twenty-six healthy young-adult
volunteers (16 females) participated in this study. ,e
sample size for determining the main and interactive effects
of emotion and ROI was computed to achieve a priority
power� 0.80 and detection of medium effect sizes Cohen’s f,
calculated by GPower. None of the participants had known
functional insufficiencies, and all participants were selected
from Southwest University of Chongqing, China. After
receiving a full description of the study, all volunteers gave
written informed consent. ,ey were paid a fixed amount
(¥30) to participate. ,e inclusion criteria were as follows:
(1) willingness to participate; (2) good dental health with
functional dentitions; (3) no congenital orofacial abnor-
malities; (4) no prior history of neurological or psychiatric
problems; (5) ability to follow study instructions; (6) normal
or corrected-to-normal vision; and (7) no known facial
impairment or orofacial pain that could interfere with facial
expression or affective motor behavior. ,e exclusion cri-
teria were predefined based on an earlier study by Kokich
et al. [33] and additionally included the following: (1) an
alexithymia score greater than 62 on the Toronto Alex-
ithymia Scale (TAS) [34]; (2) decayed or missing teeth, sans
3rd molars; (3) orofacial defects or abnormalities; (4) prior
history of organic or congenital diseases; (5) reported
neuromotor or musculoskeletal impairments that would
interfere with smile production (e.g., as described by [35]);
and (6) reported use of medications with known motor side
effects, e.g., abnormal involuntary movements or extrapy-
ramidal symptoms. Sample characteristics are displayed in
Table 1.

5.2. Research Protocol. ,e study protocol was approved by
the Academic Committee of the Institute of Signal and
Information Processing at Southwest University, which
monitors the ethics of research involving human subjects.
,is study was conducted in accordance with the Decla-
ration of Helsinki revised in 1989. Based on the protocol,
data from three female participants were removed from the
analyses (two persons are self-reported having the alex-
ithymia scores of TAS greater than 62; another person re-
ported with poor sleep at the night right before the
experiment). All participants were instructed to read a brief
description of the research and sign an informed consent
form.

Each participant was informed about the three qualifier
tests before the commencement of the study. ,e qualifier
tests comprised of a learning session and a testing session.
In the learning session, authors conducted face-to-
face interviews with the participants to ensure that they

felt comfortable with the procedure and had a full un-
derstanding of it.

,e data from 23 participants (mean age± SD� 21.6± 1.6),
who met the inclusion and exclusion criteria described above,
were used for further analysis.

5.3. Questionnaires and Interview. ,is study used two self-
reporting questionnaires and one interview with an expert as
qualifiers for the population. ,e two questionnaires are
Toronto Alexithymia Scale (TAS) and Affect Questionnaire
[36].

,e TAS [34]—a measure of difficulty in differentiating,
describing, and expressing emotions—was utilized to screen
and exclude subjects who could not vividly express their
emotional states (TAS score> 62). ,e TAS score of 62 is
often considered as a valid, conservative cutoff point esti-
mate of alexithymia in nonclinical populations [37]. Each
item was scaled on a five-point Likert scale from 1� strongly
disagree to 5� strongly agree; the TAS has a reliability of
0.82.

,e Affect Questionnaire was used to test whether
specific emotions are elicited effectively during arousal tasks.
,e questionnaire comprises the following 28 items of affect
adjectives: happy, delighted, excited, astonished, aroused,
tense, alarmed, angry, afraid, annoyed, distressed, frustrated,
miserable, sad, gloomy, depressed, bored, droopy, tired,
sleepy, calm, relaxed, satisfied, at ease, content, serene, glad,
and pleased. Each subject was required to finish the ques-
tionnaire prior to, and following, each task. Each adjective
item is then rated on a five-point scale (where 1� very
slightly or not at all, 2� a little, 3�moderately, 4� quite a
bit, and 5� very much). ,e subjects who passed the two
questionnaires were then interviewed by an expert trained in
FACS.

,e interview session was conducted by an expert
trained in the facial action coding system (FACS) [38, 39].
,e FACS is designed to exclude those subjects who do not
show their facial expressions when feeling happiness.

Based on the results of the three tests, members of the
population who scored at or above the required score
participated in the study. To recap, this procedure was
chiefly aimed at ensuring that subjects who participated in
the study elicited smiles spontaneously when feeling hap-
piness; subjects who displayed self-control in displaying
emotional facial expression were excluded.

5.4. Stimulation Protocol. ,e emotion stimulation material
is an important tool to induce experimental emotion. On the
basis of the different channels, the existing emotion stim-
ulation materials may be divided into visual stimulation

Table 1: Demographic characteristics.

Characteristics Mean (SD)
Age (years) 21.6 (1.6)
Education (years) 15.0 (1.0)
Body mass index 22.1 (3.0)
Alexithymia 50.3 (8.0)
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materials, auditory stimulus materials, olfactory stimulation
materials as well as the multimedia materials, and so on.
,erefore, emotion stimulation research treated as an ex-
traordinary issue has received more extensive attentions.
Along with the deepening of emotion research, Gross and
Levenson [40, 40] have found that film can induce the
stronger emotional feelings and acquire more cognitive
participation as an emotion elicitation way compared with
other stimuli such as music, picture, and recall, etc. In this
work, therefore, we choose short-length video clips for
emotion elicitation.

,e elicitation stimuli used in this work are some funny
audiovisual video clips which are chosen by prior ques-
tionnaire surveys using the nine-point Likert scale. Mean-
while, validation results from 391 subjects also demonstrate
that the materials could obviously elicit the human’s emo-
tions in some sense and help them achieve the desired
movements [41]. During the selection of the film clips, the
film plots which have aroused certain target emotion of the
subjects are labeled as emotion-eliciting film plots. Once the
experiment begins, the subject can only follow the experi-
ment instructions which have been informed to the subject
before. When the labeled film plots occur instantly (i.e., the
emotion elicitation frames appear in time), it will trigger the
capturing of HSI instrument by the start click operation of
the experimenter. ,en, in the process of emotion eliciting,
the original data will be collected and transferred to a
computer disk.

5.5. Experimental Setup. All subjects were seated com-
fortably in a brightly illuminated and acoustically and
electrically restricted room. To capture affective data, an
HSI camera (imaging spectrometer V10 E from SPECIM
Inc, Finland; CCD from Lumenera Inc, Canada) was
placed at about eye level 200 cm near the level of the
subject’s Frankfort horizontal plane. Additionally, after
being synchronized for videotaping the visual data, a
visual camcorder was aligned with the subject’s mid-
sagittal plane to provide a full frontal view of the face.
Figure 1 shows the experimental setup. ,e specified
resolution of this camera is 1392 ×1040 pixels with a
spectrum range of 400–1000 nm.

,e subjects who passed the three qualifying tests were
invited to participate in the experiment, which comprised of
three sessions: Calm (for baseline data), Happiness Session 1,
and Happiness Session 2. Two happiness sessions were
employed to evaluate the reliability of the test.

Before the test, each subject was required to rest for
about 5minutes. After the short rest, baseline data were
collected while the subject remained “calm.” ,en he/she
would rest once again—this time for about four minutes.
Subsequently, the test required the subject to be prompted to
elicit spontaneous emotions of happiness by the stimulus
material. Simultaneously, the instrument would collect and
transfer the original data to a computer disk. ,e data
transfer would last about four minutes depending on the
amount of block data and the processing speed. Meanwhile,
the subject was asked to rest quietly. After the data had been

successfully saved, the subject would be instructed to embark
on another happiness task, but this time with another
stimulus material for the purposes of comparative analysis.
Once again, the relevant data was stored on a computer disk.
,e whole experiment typically lasted for about 20minutes
per participant. ,e experimental procedure is illustrated in
Figure 2.

6. Data Collection

6.1. Action Units. In this study, the selected smiles were
based mainly on certain distinct facial movements defined
as action units (AUs). Most smiles essentially include the
following AUs: (1) AU6 (“Cheek Raiser and Lid Com-
pressor”), contraction of the orbicularis oculi; (2) AU10
(“Upper Lip Raiser”), contraction of the zygomaticus
minor and levator labii superioris; (3) AU12 (“Lip Corner
Puller”), contraction of the zygomaticus major; (4) AU20
(“Lip Stretcher”), contraction of the risorius; and (5) AU25
(“Lips Part”), relaxation of the lips and orbicularis oris in
the mouth area. Besides the above AUs, smiles can more or
less naturally trigger the movements of other muscles such
as the depressor labii inferioris, mentalis, buccinator,
masseter, nasalis, procerus, and temporalis because the
muscles of the face function as a whole rather than in-
dividually.,e distribution of muscles implicated in a smile
is illustrated in Figure 3. In particular, AU6 (usually re-
ferred to as “Duchenne’s marker”) has been highlighted as
the primary unit to represent spontaneous smiles or
genuine happiness [42]. Indeed, many studies have
revealed that AU6 was observed when subjects genuinely
experience more positive emotions such as happiness, and
these same subjects also generated concomitant changes in
neuromuscular movements [43].

6.2. Regions of Interest. In previous studies, researchers have
selected different regions of interest (ROIs) to conduct
extensive investigations in their respective study fields, using
various advanced technologies. ,e analytical methods used
in these investigations have achieved good results.

Figure 1: Experimental setup: hyperspectral data are recorded by
an HSI camera while the subject smiles.

4 Computational Intelligence and Neuroscience



Pavlidis et al. [24] studied stress by measuring transient
perspiratory responses in the perinasal area through
thermal imaging. ,e results showed that different re-
sponses genuinely existed in human movements resulting
from the manifestation of latent neurophysiological
mechanisms. Chen et al. [30] utilized an HSI technique to
detect stress in the forehead area. ,e accuracy for stress
recognition from baseline using a binary classifier was
76.19% and 88.1% for the automatic and manual selections
of the classifier threshold, respectively. Fischer et al. [44]
analyzed the differences in the muscles (frontalis, nasalis,
and orbicularis oris) between the lower face and upper
face using focal transcranial magnetic brain stimulation.
Kim and Provost [45] investigated the temporal charac-
teristics of specific ROIs such as eyebrow, cheek, forehead,
and mouth. ,is led the authors to conclude that com-
bining different ROIs enhanced the overall accuracy of the
findings.

6.3. HSI Data. Based on the AUs associated with the smile,
the authors considered both the neuromuscular movements
and the previous research findings of the characteristic
correlations between ROI and psychophysiological re-
actions. A detailed correlation among ROIs, muscle groups,
and AUs is shown in Table 2. ,e last column of the table
lists studies which have explored the psychophysiological
responses associated with each ROI. According to the lit-
erature, we located the positions of the corresponding ROIs
manually for each participant. For example, for forehead
M1, we identified its location manually (i.e., from the center
of the left eyebrow to the center of the right eyebrow and
from the top of the eyebrows to 1/2 the distance from the top
of the eyebrows to the top of the head). Other regions of
ROIs can be similarly determined according to the associ-
ated literature. To this end, 19 ROIs (NROI � 19) were in-
vestigated in this study; these are depicted in Figure 4. Each
ROI was marked with a black rectangle. ,e ROIs contained
unequal pixels owing to individual and regional differences.

,is study aimed to quantify the neuromotor-controlled
movements relating to happiness for further analysis. First,
the reflective digit number of the human face using an HSI
camera was obtained. According to the literature [57, 58],
StO2 is considered as a psychophysiological signature to
evaluate the effectiveness of differentiating the emotion
states. ,en, owing to differences in molar absorptivities in
the subjects, the affective data (StO2) was computed using an
optical absorption model [30–32, 59], which is cited as a
scientific rationale. ,is study primarily used the Beer–
Lambert law to calculate StO2 fromHSI raw data. Here, StO2
is defined as the ratio of the amount of oxy-hemoglobin
(HbO2) to the total amount of HbO2 and deoxy-
hemoglobin (Hb) in body tissues.

,e StO2 was calculated for 23 subjects for each ROI,
which generates a subset of 23 data points for each ROI.
Table 3 shows the distributions of the StO2 variables.
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Figure 2: Procedure of experiment.

Risorius

L.l..superioris

Z. minor

O. oculi

Z. major

Orbicularis oris

D.l..interioris

Masseter

Buccinator

Procerus
Temporalis

Nasalis

Triangularis
Mentalis

Frontalis

Figure 3: Distribution of the muscles implicated in the smiles.

Computational Intelligence and Neuroscience 5



7. Data Analysis

7.1. Descriptive Statistics. Based on a five-point Likert scale,
the 23 participants completed their estimate of Affect
Questionnaire by rating their arousal responses. In addition
to the self-reporting scores of specific affect, we collected
further data by calculating the composite scores to represent
each of the four quadrants of the Circumplex Model [60] by
summing the self-estimate ratings as follows: Quadrant 1:
sadness (distressed, miserable, gloomy, bored, tired, sad,
depressed, droopy, and sleepy); Quadrant 2: anger (alarmed,
afraid, astonished, tense, angry, annoyed, and frustrated);
Quadrant 3: relaxation (calm, satisfied, content, relaxed, at
ease, and serene); and Quadrant 4: joy (happy, excited,
aroused, glad, delighted, and pleased).,e composite groups
were mainly utilized to evaluate whether the targeted specific
affect was aroused during each task session. Table 4 shows
the means and standard deviations of the composite
groups and specific affects. Analysis of variance (ANOVA)
revealed that the participants displayed significantly more
intense feelings on the calm adjectives during the calm
session and on the happy adjectives during both happiness

sessions than the other three groups (p< 0.001). However,
for the “joy” groups, no significant differences were found
between the two happiness sessions (p � 0.352> 0.05).
,e authors therefore concluded that the stimuli could
effectively elicit the subjects’ happiness. For the specific
affects, further analysis showed that there was no signifi-
cant difference in scores between the males and females
(p � 0.577> 0.05) with homogeneity of variance (F(1, 21)�

1.652, p � 0.205> 0.05). A paired t-test revealed that the
arousal responses did not differ significantly within the two
happiness sessions (p � 0.327> 0.05) and were highly pos-
itively correlated (r(45)� 0.494, p � 0.01). ,e authors also

Table 2: Association between ROIs, muscle groups, AUs, and related studies.

Symbola Quantity Principal muscle groups Associated AU of
smile ROI-related studies

L1, R1 Upper eyelid Orbicularis oculi AU6 Matzke et al. [46], Forte et al. [47]

L2, R2 Eye corner around
temple Temporalis AU6 Ekman [42], Knoll et al. [48]

L3, R3 Eye corner around
ophryon Orbicularis oculi AU6 Rajoub and Zwiggelaar [49],

Pavlidis et al. [50]
L4, R4 Cheek Zygomaticus AU6, AU10, AU12 Kim and Provost [45], Kohler et al. [51]
L5, R5 Lower eyelid Orbicularis oculi AU6 Knoll et al. [48], Kashima et al. [52]
L6, R6 Oculonasal groove Levator labii superioris AU10 Matzke et al. [46], Whitton et al. [53]

L7, R7 Angulus oris Composites of buccinator, masseter or
risorius

AU12, AU20,
AU25 Fischer et al. [44]

M1 Forehead Frontalis Kim and Provost [45], Chen et al. [30]

M2 Ophryon Procerus Finzi and Rosenthal [54], Vitti and
Basmajian [55]

M3 Nose Nasalis Fischer et al. [44]
M4 Perinasal Orbicularis oris AU25 Pavlidis et al. [24]
M5 Mandible Mentalis AU25 Harrison et al. [56]
aL� left; R� right; M�middle.
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Figure 4: Regions of interest investigated.

Table 3: Distributions of StO2.

Symbola Baseline Session 1 Session 2
Calm (%) Happiness (%) Happiness (%)

L1 50.57± 7.96 57.13± 9.98∗ 58.51± 8.59∗
L2 49.88± 7.57 56.00± 8.56∗ 55.57± 9.10∗
L3 49.24± 7.89 54.25± 9.06b 53.08± 8.53b
L4 54.35± 8.66 58.40± 8.76∗ 59.54± 9.68∗
L5 53.79± 6.81 56.53± 7.56b 56.60± 6.87b
L6 45.17± 7.60 51.28± 7.44∗ 51.94± 8.44∗
L7 37.24± 7.15 44.51± 8.57∗ 46.34± 9.01∗
R1 49.87± 9.21 56.49± 11.73∗ 56.04± 10.59∗
R2 47.10± 7.90 52.88± 8.96∗ 52.91± 11.93∗
R3 50.77± 7.90 54.73± 8.84∗ 54.67± 8.20∗
R4 54.72± 8.91 59.21± 9.36∗ 59.89± 10.40∗
R5 52.67± 7.23 57.15± 9.25b 55.70± 7.25b
R6 46.73± 7.85 52.58± 9.05∗ 52.14± 9.45∗
R7 38.40± 7.85 43.82± 9.57∗ 44.29± 10.83∗
M1 45.71± 7.19 53.44± 9.06∗ 52.43± 8.73∗
M2 42.85± 9.80 51.23± 11.27∗ 49.97± 10.59∗
M3 40.75± 10.32 46.96± 9.86∗ 45.08± 10.93b
M4 45.57± 7.63 51.65± 7.40∗ 49.79± 8.09b
M5 41.02± 7.99 50.05± 9.99∗ 49.20± 10.33∗

Data shown as mean± SD. aL� left; R� right; M�middle. ∗,edifference is
significant at the αA level by paired t-test, compared with calm group.
αA � 0.05/(3∗19)� 0.00088 (Bonferroni). b,e difference is significant at
the 0.05 level by paired t-test, compared with calm group.
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concluded that the arousal responses were seemingly only
influenced by the stimulus alone and not by other additional
factors such as the interval and memory load.

7.2. Inferential Statistics. To examine whether the StO2
differed among the different emotion tasks (Calm, Happi-
ness Session 1, and Happiness Session 2) for each ROI,
multivariate analysis of variance (MANOVA) was per-
formed using the emotion types (calm and happiness) as
independent variables. First, the ln(·) transformation was
used to comply with analysis of variance assumptions.

Furthermore, in order to compare the changes in the
subjects’ emotional responses within different sessions, a
modified baseline correction was applied to compensate for
the individual differences by transforming to comparable
scales (changing rate) based on a calm state for a given
subject. ,e ln(·) transformation was applied to comply with
analysis of variance assumptions. As a result, two-way re-
peated measures ANOVA was conducted using ROIs as
independent variables.

,e results showed that the error variances of the de-
pendent variables were equal across the groups, as evaluated
by Levene’s test. A Greenhouse–Geisser correction for
nonsphericity was applied if Mauchly’s test of sphericity was
significant. For simplicity, the whole facial region was di-
vided into three parts by sagittal plane: left region (LR);
middle region (MR); and right region (RR). ,e LR com-
prised L1, L2, L3, L4, L5, L6, and L7; the MR included M1,
M2,M3,M4, andM5; and the RRwasmade up of R1, R2, R3,
R4, R5, R6, and R7. ,e results discuss these three parts:
analysis for each ROI, within-region analysis, and between-
region analysis.

8. Results and Discussion

First, MANOVA is used to analyze the main effect of the
emotion factor for each ROI. Second, in the within-region
analysis, the LR, MR, and RR are discussed separately to
determine any significant correlations within them. ,ird,
the between-region analysis explores the interrelationships
between the LR, MR, and RR.

8.1. Analysis for Each ROI. For the ROIs, MANOVA was
performed for three sessions (Calm, Happiness Session 1,
and Happiness Session 2). ,e comparable distributions of
their correlations and differences are shown in Tables 3 and

Table 4: Descriptive statistics.

Composite groups
Specific affect

Quadrant 1: sadness Quadrant 2: anger Quadrant 3: relaxation Quadrant 4: joy
Calm 8.10± 1.31 7.83± 1.43 21.65± 4.81∗ 17.85± 5.16 3.61± 0.81
Session 1 (Happiness) 7.82± 1.40 8.16± 2.13 17.40± 5.11 21.25± 5.75∗ 3.50± 0.75
Session 2 (Happiness) 7.95± 1.78 8.54± 2.11 18.13± 4.94 21.10± 5.16∗ 3.34± 0.78
Data shown as mean± SD. ∗p< 0.001.

Table 5: Correlation analysis and effect size.

r value Cohen’s d

L1
C vs S1 0.752∗ 0.727
C vs S2 0.742∗ 0.960
S1 vs S2 0.887∗ 0.148

L2
C vs S1 0.713∗ 0.758
C vs S2 0.723∗ 0.679
S1 vs S2 0.827∗ 0.049

L3
C vs S1 0.445a 0.589
C vs S2 0.595a 0.467
S1 vs S2 0.855∗ 0.132

L4
C vs S1 0.782∗ 0.465
C vs S2 0.793∗ 0.565
S1 vs S2 0.918∗ 0.124

L5
C vs S1 0.605a 0.381
C vs S2 0.574a 0.411
S1 vs S2 0.810∗ 0.010

L6
C vs S1 0.587∗ 0.812
C vs S2 0.606∗ 0.843
S1 vs S2 0.797∗ 0.083

L7
C vs S1 0.655a 0.921
C vs S2 0.505a 1.119
S1 vs S2 0.832∗ 0.209

R1
C vs S1 0.595a 0.628
C vs S2 0.632a 0.622
S1 vs S2 0.829∗ 0.041

R2
C vs S1 0.572a 0.684
C vs S2 0.610a 0.574
S1 vs S2 0.738∗ 0.003

R3
C vs S1 0.675∗ 0.472
C vs S2 0.748∗ 0.484
S1 vs S2 0.890∗ 0.008

R4
C vs S1 0.718∗ 0.491
C vs S2 0.805∗ 0.533
S1 vs S2 0.852∗ 0.068

R5
C vs S1 0.486a 0.540
C vs S2 0.510a 0.418
S1 vs S2 0.712∗ 0.175

R6
C vs S1 0.738∗ 0.690
C vs S2 0.858∗ 0.622
S1 vs S2 0.822∗ 0.047

R7
C vs S1 0.762∗ 0.619
C vs S2 0.736∗ 0.623
S1 vs S2 0.776∗ 0.046

M1
C vs S1 0.516a 0.945
C vs S2 0.560a 0.841
S1 vs S2 0.897∗ 0.113
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5. In Table 3, it can be seen that the average intensity of StO2
was a little greater in Session 1 or Session 2 than in the Calm
state for each ROI. In addition, the proportion of StO2
increased from 2.74% to 9.03% in Session 1 and varied
within the range of 2.81%–9.10% in Session 2. ,us, the
increase in fluctuations observed was in a similar range for
both happiness sessions. Furthermore, it was found that the
average values in the two sessions were very close.

An intuitive explanation is that these results are indeed
all about smile processing and may have an approxi-
mately equal emotional expression in terms of neuromotor
mechanism.

However, this is only a subjective judgment; further
analysis will be evaluated and discussed in the following
section. Moreover, another aspect for consideration is that
since the individuals each have their own distinct differences
in personalities, they may vary in their affective reactions so
that StO2 as a physiological signal differs according to a given
emotional state. ,e experimental results in Table 3 show
that the 19 different regions do not exhibit the same re-
activity for a specific state. At the baseline, L7 has the
minimal value of 37.24%, and R4 has the maximal score of
54.72%. While emotions are elicited, they would be corre-
spondingly enhanced.

Figures 5(a)–5(c), respectively, describe the raincloud
distributions of StO2 under three sessions (Calm, Session 1,
and Session 2) for different ROIs such as LR, RR, and MR.
,ese plots also specifically illustrate the individual differ-
ences of ROIs within each session group. ,ey visually
characterize the intuitive interrelations between individual
and group distributions. Figure 5(d) shows the distributions
of average StO2 during the calm state and the two sessions.
Using a Bonferroni-adjusted significance level (α′� 0.05/
3� 0.017), the analysis showed that the subjects displayed
more happiness in the two task sessions than in the calm
state (ANOVA, p< 0.017 for both happiness sessions).
However, no significant difference in arousing happy feel-
ings was found between the two task sessions (ANOVA,
p> 0.017). ,is finding reflects not only the changes in the
different ROIs for the same person for a given emotional

state but also reveals the oscillation of StO2 during different
states. Figure 5(e) shows a scatter plot of StO2 versus ROI
distributions. ,e results clearly show that the happiness
sessions could not be distinguished from each other, but that
both of these sessions could be distinguished from the calm
state.

Subsequently, the authors tested whether the subjects
had equivalent mean responses across the three sessions. For
each ROI, there is a family of n � 3 tests. Hence, the sig-
nificance level α� 0.05 is Bonferroni adjusted to α′� 0.05/
(3∗19)� 0.00088. ,e significant differences are shown in
Table 3. It could be concluded that compared to the calm
groups, the physiological indicators revealed significant
happiness differences for most ROIs in both happiness
sessions using a paired t-test (p< 0.00088), while there are
no significant differences between Session 1 and Session 2
for the ROIs (p> 0.00088).

Additionally, another evaluation index (effect size,
Cohen’s d) was used. Table 5 shows the correlations and
divergences for the groups. ,e correlation coefficients
between the two happiness sessions were greater than those
between other sessions. Such intercorrelations indicate that
if people smile happily, the range of increase in StO2 is
proportional in each ROI.

After considering all of the above indicators, it was
concluded that StO2 increased significantly in different
periods for every ROI, with fewer overlapping regions be-
tween happiness and calm states and a similar increasing
gradient for two individual changing stages from calm to
happiness. Moreover, no significant variation in physio-
logical signals was observed between the two happiness
sessions with larger superposed areas. ,is suggests that
arousal does not influence neuromuscular signals. Fur-
thermore, for a specific emotional state, distinct differences
in the physiological movements measured by StO2 were
observed in all ROIs. ,ese significant differences will be
discussed in the following sections.

8.2. Within-Region Analysis. For the within-region analysis,
the LR, MR, and RR were analyzed separately. In order to
compare the subjects’ happiness responses with calm re-
sponses on an equal footing, it was necessary to apply a
modified baseline correction for every subject to calibrate
the individual differences. ,e ln(·) transformation was used
to ensure analysis of variance assumptions.

For each segmented region, LR, MR, and RR, and the
whole region abbreviated as AR, two-way repeated measures
ANOVA was used for the task type; these results are shown
in Table 6. ,e results show that the interrelation between
ROI and session was insignificant. Furthermore, the effects
between the sessions are also insignificant, but ROI is found
to be highly significant in all the experiments.

First, for the LR, a post hoc analysis with a paired t-test
for each session was performed and the results are displayed
in Table 7. It was found that for both Sessions 1 and 2,
L5 differed significantly from L1, L2, L6, and L7, and the
difference was also significant between L4 and L7. ,e
mean differences between the other tests had no statistical

Table 5: Continued.

r value Cohen’s d

M2
C vs S1 0.630a 0.793
C vs S2 0.727∗ 0.698
S1 vs S2 0.842∗ 0.115

M3
C vs S1 0.638a 0.615
C vs S2 0.743∗ 0.407
S1 vs S2 0.764∗ 0.180

M4
C vs S1 0.677∗ 0.809
C vs S2 0.466a 0.536
S1 vs S2 0.555∗ 0.240

M5
C vs S1 0.595a 0.998
C vs S2 0.686∗ 0.886
S1 vs S2 0.797∗ 0.083

C� calm; S1� Session 1; S2� Session 2. ∗,e coefficient is statistically sig-
nificant at the αA level by correlation analysis. αA� 0.05/(3∗19)� 0.00088
(Bonferroni). a,e coefficient is statistically significant at the 0.05 level.
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Figure 5: Distributions of StO2 for different ROIs during three sessions: (a) LR; (b) RR; (c) MR. (d) Box-plot diagram of the average StO2 during
three sessions; (e) scatter plot of the average StO2 versus ROI for three sessions. ,e number of X-axis indicates the label of ROI. Note that we,
respectively, denote by E(x) the average StO2 value of an entire ROI and by μE(x) the average StO2 intensity of all subjects under a certain ROI.
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significance. Additionally, L3 was significantly different
from the regions L1, L6, and L7, and a difference was also
found between L1 and L4. ,e differences in other com-
parisons were not significant. ,ese interrelationships are
illustrated in Figure 6(a).

By observing the distribution patterns of StO2 for dif-
ferent sessions, no significant interaction effect (p> 0.05)
was noticeable between ROI and session.

Second, the same analysis was performed for the RR, and
the results are shown in Tables 6 and 7. In Session 1, R1 and
R6 were both found to be significantly greater than the other
regions R3, R4, and R5. ,e mean differences in the other
tests were not statistically significant. However, in Session 2,
R5 was significantly different from the other regions R1, R2,
R6, and R7. ,e differences in the other comparisons were
not significant. Figure 6(b) illustrates these interrelation-
ships. Once again, no interaction effects were observed
between ROI and session. While minor differences between
the two sessions in the ROIs were apparent (in R4, for
example), none of these were significant for any of the ROIs
(p> 0.05).

In terms of the symmetry characteristics of the LR and
RR, the variation trends of the ROIs were identical which

complied with an intuitive judgment. ,e intensity levels of
the average StO2 of the corresponding ROI between the LR
and RR—such as the StO2 of L4 in the LR versus the StO2 of
R4 in the RR—were markedly different. One explanation of
this is that the subjects’ neuromuscular responses did not
involve the same mechanism of action because of the
emotion mode. For example, smile intensities were stronger
in the left regions than in the right regions when the par-
ticipants elicited genuine happy smiles. ,ese interesting
findings of partial asymmetry (lateralization of affective
processing) have also been addressed in many studies
[61–64]. ,ey concluded the hemiface differences in visual
exploration patterns when displaying genuine emotions.
Lindell [61] reviews research examining asymmetries in the
expression of facial emotion in humans, representing the
right hemisphere’s dominance for emotion processing. More
specifically, it is the right hemisphere that innervates the
lower left hemiface, resulting in more intense expressions.
Najt et al. [62] reevaluated empirical evidence with respect to
three competing yet partly conflicting models (the Right
Hemisphere Hypothesis, the Valence-Specific Hypothesis,
and the Approach/Withdrawal model). Results from their
investigations showed that they did not fully support the
models, demonstrating a left hemisphere advantage for the
perception of happy expressions and a right hemisphere
advantage only for a subset of negative emotions including
anger, fear, and sadness (rather suggesting a “negative va-
lence model”). Prete et al. [63, 64] concluded that the right
hemisphere was more responsive to emotional faces than the
left hemisphere. Additionally, the authors presented that
there was no correspondence between behavioral and
electrophysiological results concerning asymmetries for
emotion processing, and that the Valence-Specific Hy-
pothesis and the Right Hemisphere Hypothesis were not
mutually exclusive. ,erefore, it is very complicated to
evaluate the hemifacial asymmetries in expressivity.

An analysis of the MR produced similar results: the
difference between the two sessions and the interaction
effects between ROI and session were not significant (Ta-
ble 6). With a paired t-test, comparing Session 1 and Session
2 and adjusting for Bonferroni’s correction, the results were
not significant. Subsequently, an ANOVA revealed signifi-
cant differences between M5 and both M3 and M4 for
Session 1 and Session 2, as shown in Table 7. ,e deviations
of the mean differences in the other comparisons were not
significant. Figure 6(c) shows the interactions between
session and ROI for the MR.

Not surprisingly, other than the partial asymmetries
of the left/right hemiface, upper and lower parts of the
face would also express the “partial asymmetries” for the

Table 6: Two-way repeated measures ANOVA.

LRa RRa MRa ARa

F value p value F value p value F value p value F value p value
ROI 19.669 ≤0.001 7.685 ≤0.001 4.246 0.006 21.291 ≤0.001
Session 0.277 0.601 0.080 0.778 0.076 0.784 0.060 0.807
ROI∗session 0.529 0.783 0.444 0.845 0.049 0.995 0.368 0.985
aLR� left regions; RR� right regions; MR�middle regions; AR� all regions.

Table 7: Post hoc with paired t-test.

t-Value Session 1 (Session 2)
L1 L2 L3 L4 L5 L6 L7

L1 0.758 1.501 2.816 5.637∗ 0.187 1.563
L2 2.675 1.056 2.313 4.813∗ 0.440 2.049
L3 3.531∗ 1.600 0.689 1.736 1.318 2.701
L4 3.477∗ 0.979 0.888 1.464 2.491 3.789∗
L5 6.796∗ 3.443∗ 0.640 2.418 3.709∗ 4.603∗
L6 0.640 1.266 3.321∗ 2.745 4.338∗ 2.125
L7 1.888 3.244 4.040∗ 4.014∗ 4.801∗ 2.903

R1 R2 R3 R4 R5 R6 R7
R1 1.014 2.992a 2.857a 2.546a 0.966 0.487
R2 0.082 1.083 2.010 1.359 0.364 0.564
R3 1.934a 1.440 0.431 0.008 2.755a 1.666
R4 1.463 1.843 0.550 0.475 3.118a 1.957
R5 3.170a 2.826a 0.819 1.866 2.251a 1.454
R6 0.504 0.513 1.919 1.438 2.866a 0.230
R7 0.493 0.424 2.072 1.787 2.354a 1.114

M1 M2 M3 M4 M5
M1 0.214 1.351 1.301 0.691
M2 0.612 1.337 1.200 0.464
M3 1.342 1.728 0.313 2.489a

M4 1.140 1.390 0.036 2.184a

M5 0.907 0.598 2.703a 2.506a

Upper triangular matrix denotes Session 1 and lower triangular matrix
denotes Session 2. ∗,e difference is significant at the 0.05 level (Bonfer-
roni). a,e difference is significant at the 0.05 level (no adjustments).

10 Computational Intelligence and Neuroscience



perception of emotions [65–67]. Ross et al. [66, 67] claimed
overwhelmingly independent motor control of the upper
and lower face in the studies. In addition, they found evi-
dence that the right and left face may also exhibit in-
dependent motor control, thus supporting the concept that

spontaneous facial expressions are organized predominantly
across the horizontal facial axis and secondarily across the
vertical axis. Unlike the cognitive control of facial expres-
sions for social purposes in the lower face, the upper face
may often display/leak a person’s true feeling state by
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Figure 6: Session and ROI interaction plots for (a) LR, (b) RR, (c) MR, and (d) all regions. We used the ln(·) transformation to comply with
analysis of variance assumptions.
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producing a brief facial emotion. Meletti et al. [68] pre-
sented, by ERPs study, the response patterns of EEG with
faces encoding happiness and fear in the eye region com-
pared to those encoding emotions in the whole faces or in
the mouth region. Zeng et al. [69] revealed that blocking the
facial feedback of lower face significantly boosted the rec-
ognition accuracy of subtle and intense microexpressions
under all duration conditions, highlighting the important
role of applying the upper face in judging the subtle
movements of microexpressions. As known from the above
observations in the experiment, most of the upper ROIs
demonstrate the significant signatures than the lower ROIs,
which are almost consistent with the previous findings.

8.3.Between-RegionAnalysis. Having performed contrastive
analysis for the three individual regions, we then needed to
investigate the interactions among them. Following the
above analysis, in order to effectively determine their deeper
connections, we divided the regions into two groups
according to the degree of significance, i.e., a high-StO2
correlation group (HCG) and a low-StO2 correlation group
(LCG). ,us, L3, L4, and L5 of the LR and R3, R4, and R5 of
the RR were grouped into the LCG, while the other sub-
divisions of the LR (L1, L2, L6, and L7) and the RR (R1, R2,
R6, and R7) were included in the HCG. MR was not divided
into groups. Owing to the specialty of the MR in the
midsagittal plane and the symmetry of the LR and RR, we
studied only the interrelations between the LR vs. the MR
and the RR vs. the MR. Figure 6(d) shows the distribution of
the average StO2 for all of the ROIs.

Firstly, we performed a comparison analysis between
the LR and MR. In the contrastive analysis between the
LCG and the MR, two-way repeated measures ANOVA
revealed that the interaction effect was not significant
(p � 0.891 > 0.05) and the sessions had no effect on the
variations in StO2 (p � 0.929> 0.05). However, the main
effect of the ROI was significantly different (p � 0.0005<
0.05). After adjusting for Bonferroni’s correction, the re-
sults of our post hoc analysis showed that L5 was signif-
icantly lower in StO2 than M1, M2, and M5 in Session 1
(p � 0.0002< 0.05 for M1, p � 0.04< 0.05 for M2, and p �

0.015< 0.05 for M5), withM1 significantly higher than both
L3 and L4 (p � 0.045< 0.05 for L3 and p � 0.010< 0.05 for
L4). In Session 2, only M1 showed a significant difference
with L3 or L5 (p � 0.018< 0.05 for L3 and p � 0.045 < 0.05
for L5). Next, we used ANOVA between the HCG and the
MR, which demonstrated that the interaction effect was
also insignificant (p � 0.929> 0.05), with session insignif-
icant (p � 0.883 > 0.05) and ROI significant (p � 0.0004<
0.05). However, the differences in ROI between the two
sessions were no longer significant after adjusting for
Bonferroni’s correction. With no adjustment in the least
significant difference (LSD), we found that both M1 and
M5 showed more significant intensities in StO2 than L2
in Session 1 (p � 0.027< 0.05 for M1 and p � 0.034 < 0.05
for M5), with L7 more significant than M1 (p � 0.033 <
0.05), M3 (p � 0.015 < 0.05), and M4 (p � 0.015 < 0.05) in
Session 2.

We then performed a comparison analysis between the
RR and MR. Firstly, we conducted an analysis on the LCG
and theMR. ANOVA revealed that the interaction effect was
insignificant (p � 0.851> 0.05), with session also in-
significant (p � 0.885> 0.05). However, the main effect
of ROI was significantly different (p � 0.0004< 0.05). In
Session 1 after Bonferroni correction, M1 was found to
have a significantly greater StO2 than either R3 or R4
(p � 0.001< 0.05 for R3 and p � 0.036< 0.05 for R4). Also,
StO2 was significantly greater in M5 than in R3 (p �

0.006< 0.05), R4 (p � 0.014< 0.05), and R5 (p � 0.034<
0.05). Furthermore, in Session 2, after Bonferroni correction,
R3 was significantly lower in StO2 than the ROIs (M1:
p � 0.010< 0.05, M2: p � 0.016< 0.05, and M5: p � 0.015<
0.05). Moreover, the StO2 of R5 was also significantly lower
than M1, M2, and M5 (p � 0.025< 0.05 for M1,
p � 0.032< 0.05 for M2, and p � 0.013< 0.05 for M5).
Subsequently, the test study between the HCG and the MR
verified an insignificant interaction effect (p � 0.996> 0.05)
and session effect (p � 0.994> 0.05) and a significant ROI
effect (p � 0.025< 0.05). Post hoc analysis shows that the
differences in both Session 1 and Session 2 were insignificant
after adjusting for Bonferroni’s correction. We nevertheless
applied the LSD test to compare each of the two groups. In
Session 1, M1 and M5 both showed more significant hap-
piness than R6 in terms of changing rate (p � 0.026< 0.05
for M1 and p � 0.003< 0.05 for M5), with M5 more sig-
nificant than R2 (p � 0.049< 0.05). ,e differences in ROIs
for Session 2 were all found to be insignificant.

8.4. Effects Size for Each ROI. ,e size of the selected ROI
determined the number of pixels involved in computing the
average StO2 and subsequently further analysis. Generally
speaking, the smaller the ROI, the fewer the number of
pixels; therefore, higher variations in emotional signals
would be generated. By increasing the size of the ROI ap-
propriately, the variable effect was reduced and variations
were uniformly diminished. Figure 7 shows the distribution
of StO2 for a random region L4. It illustrates that neither
smaller nor larger ROIs could attain the maximum value of
the average StO2. StO2 reaches an optimal average score for
13px-by-13px region. ,e average values obtained from the
regions whose sizes were smaller than N� 13px almost
reached the optimal value. ,is shows that the smaller re-
gions had already included the most effective information.
Only by significantly expanding the ranges could we acquire
more extensive data; yet by continuing to enhance the
ranges, more noises are introduced into the dataset.
Moreover, the average range of values for the whole region
only varied slightly—from 61.31% to 64.65%. Smaller ROIs
mean higher oscillations which leads to an unstable dis-
tribution, while larger ROIs result in unnecessary noises
becoming amplified in true signals. Both of the above sce-
narios are likely to lead to poor StO2 average values. Ac-
curate results are achieved by using suitably sized ROIs.
Regularities similar to those of L4 were observed with the
other ROIs, and the observations were confirmed by vali-
dating the distribution of StO2.
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9. Summary of Findings and Conclusions

Happiness as a psychological activity has attracted signifi-
cant interest as a key area of research because it is associated
with physical well-being. HSI technology, as a contact-free
detection technique, is used to distinguish and quantify
the amount of blood chromophores (Hb and HbO2). Sub-
sequently, StO2, as a neurophysiological indicator, is con-
sidered to represent the affective response signals of
neuromuscular activities.

In summary, this research shows that when people elicit
genuine smiles, which indicate happiness, all of the facial
regions are involved in displaying this emotion. However,
there are significant variations in the degree of facial regions
that show changes. ,e largest changes are seen in the upper
eyelid, angulus oris, and mandible, which are controlled by
the orbicularis oculi, risorius, and mentalis muscles, re-
spectively. ,e forehead and ophryon exhibit the second
largest variations in emotional intensities, managed by the
frontalis and procerus muscles, respectively. ,e regions of
the eye corner around the temple, oculonasal groove, nose,
and perinasal area exhibit the second smallest variations in
happiness measurements. ,e variations in the regions of
the eye corner around the ophryon, lower eyelid (both
controlled by the orbicularis oculi muscle), and cheek
(controlled by the zygomaticus muscle) are least distinct.
,us, it may be concluded that although all the facial regions
are more or less engaged in happiness and serve to create
different effects, certain muscles, such as the orbicularis
oculi, exert distinct effects on specific regions: the upper
eyelid, lower eyelid, eye corner around the temple, and eye
corner around the ophryon.

It was found that the regions involved in the observed
expressions, as defined by action units (AU), produced
statistically significant excitement based on the neuro-
physiological measurements. ,ey include the regions of
orbicularis oculi of AU6, zygomaticus minor and levator
labii superioris of AU10, zygomaticus major of AU12,
risorius of AU20, and orbicularis oris of AU25. Considering
the above findings, it may be concluded that all of the above

mentioned muscles show an increased degree of in-
volvement when people display happiness. However, not all
of them exhibit maximum variations.

For each ROI, the average intensities of StO2 increased
significantly in both happiness sessions compared to the
intensities found in the calm state as shown in the ANOVA
results in Table 3. ,is indicated that the two arousal tasks
prompted a statistically significant emotional response in the
participants compared to the calm state (ANOVA, p< 0.017
for both happiness sessions). Additionally, the happiness
intensities in the two sessions were not significantly different
(ANOVA, p> 0.017).,e results show that the physiological
activities as a neuromotor mechanism have approximately
equal emotional expression, and this is not affected by the
time interval. Other evaluation indexes such as effect size
(Cohen’s d) and correlation coefficient also support the
above mentioned conclusions.

To facilitate subsequent analysis, the whole facial region
was divided into three parts: LR, MR, and RR, according to
the sagittal plane. Both within-region and between-region
interaction effects were studied separately to determine sig-
nificant correlations among them, using two-way repeated
measures ANOVA. It was found that the interaction effects
between ROI and task factors were not significant. Only the
ROI was found to be significant in all the experiments.

For the within-region analysis, in the LR segment, it was
concluded that L1, L2, L6, and L7 could be divided into a
group with higher variations in the changing rate of StO2
and L3, L4, and L5 into another group with lower variations.
In the RR segment, though the variable regularities were not
the same as for LR, similar general trends emerged. It was
concluded that R1, R2, R6, and R7 form one group while R3,
R4, and R5 form another group. One explanation of this
nonuniform distribution could be that the subjects’ neu-
romuscular responses did not involve the same mechanism
of action because of the emotion mode. For example, by
virtue of the hemiface differences caused by lateralization of
affective processing, more neuropsychological responses
may have occurred on the left side of the face than on the
right side.

Lastly, in the MR, it was concluded that M5 showed a
significantly greater changing rate than either M3 or M4 in
both happiness sessions. ,us, M5 is a group in itself, while
M1, M2, M3, and M4 form a second group.

For the between-region analysis, after adjusting for
Bonferroni’s correction and a LSD test, considering corre-
lation differences in the changing rate of StO2, and taking
into account the conclusions drawn from the within-region
analysis, the authors concluded that the groups should be
organized as follows: (1) L1, L7, and M5; (2) M1 and M2; (3)
L2, L6, M3, and M4; and (4) L3, L4, and L5, with a similar
organization in the RR. It is proposed that these grouping
strategies be investigated further and may serve as a basis for
further research.

10. Recommendations for Further Research

Genuine happiness manifests distinct responses among
individuals which are measurable using remote-sensing
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Figure 7: Distribution of StO2 over the size of ROI (N by N) for
happiness state on the region of L4. ,e blue mark “+” represents
the mean StO2 at the N by N scale. And the blue line denotes the
connection line of the mean value in each N by N scale.
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technology. ,e blood-supply system in the facial muscles
shows significant changes when people smile, and is sug-
gested to be an indicator of genuine happiness. ,e authors
will continue to further study this topic with the aim of
learning more about, and modeling, patterns of happiness.
In this work, we do conduct the experimental investigation
only focusing on eliciting the genuine happiness. ,e in-
teraction effects of the single psychological emotion on
physiological activities have not been investigated in this
experiment. Also, the contribution of neuromuscular ac-
tivity (i.e., making a facial expression without any real
emotion) still needs to be investigated further.,erefore, the
individual contribution of how psychological emotion and
neuromuscular activity affect the interactive performance of
physiological reactions will be explored in the future work.
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