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Background: COVID-19 has stronger infectivity and a higher risk for severity than most other contagious
respiratory illnesses. The mechanisms underlying this difference remain unclear.
Methods: We compared the immunological landscape between COVID-19 and two other contagious res-
piratory illnesses (influenza and respiratory syncytial virus (RSV)) by clustering analysis of the three dis-
eases based on 27 immune signatures’ scores.
Results: We identified three immune subtypes: Immunity-H, Immunity-M, and Immunity-L, which dis-
played high, medium, and low immune signatures, respectively. We found 20%, 35.5%, and 44.5% of
COVID-19 cases included in Immunity-H, Immunity-M, and Immunity-L, respectively; all influenza cases
were included in Immunity-H; 66.7% and 33.3% of RSV cases belonged to Immunity-H and Immunity-L,
respectively. These data indicate that most COVID-19 patients have weaker immune signatures than
influenza and RSV patients, as evidenced by 22 of the 27 immune signatures having lower enrichment
scores in COVID-19 than in influenza and/or RSV. The Immunity-M COVID-19 patients had the highest
expression levels of ACE2 and IL-6 and lowest viral loads and were the youngest. In contrast, the
Immunity-H COVID-19 patients had the lowest expression levels of ACE2 and IL-6 and highest viral loads
and were the oldest. Most immune signatures had lower enrichment levels in the intensive care unit
(ICU) than in non-ICU patients. Gene ontology analysis showed that the innate and adaptive immune
responses were significantly downregulated in COVID-19 versus healthy individuals.
Conclusions: Compared to influenza and RSV, COVID-19 displayed significantly different immunologi-
cal profiles. Elevated immune signatures are associated with better prognosis in COVID-19 patients.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Background

The coronavirus disease 2019 (COVID-19) caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been
reported to exceed 126 million cases and resulted in more than
2.7 million deaths globally as of March 26, 2021 [1]. COVID-19
shares similar clinical presentations with influenza and respiratory
syncytial virus (RSV), such as cough, fever, severe lung infections,
and occasional respiratory failure causing deaths [2], nevertheless,
COVID-19 has also demonstrated distinct clinical characteristics,
such as gastrointestinal discomfort, nerve injuries, and hypogeusia
[3,4]. Compared to other contagious respiratory illnesses, such as
influenza and RSV, COVID-19 has stronger infectivity and a higher -
risk for severity, such as respiratory distress and systematic
inflammation [3,5]. More seriously, COVID-19 often has a long
incubation period that significantly increases its transmissibility
[3,5,6]. Unlike many other respiratory viruses, SARS-CoV-2 infec-
tion may result in host hyperinflammatory response, characterized
by a high level of circulating inflammatory cytokines and
interleukine-6 (IL-6) [7]. Several studies have shown that a large
amount of type I interferon promoted inflammatory cytokines pro-
duction and resulted in lethal pneumonia [8,9]. Immune dysfunc-
tion is also a characteristic of COVID-19 [10]; as shown in severe
COVID-19 cases, the total numbers of T and B cells are reduced,
resulting from overproduced pro-inflammatory cytokines [11].
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To uncover potential mechanisms underlying the significantly
different clinical characteristics of COVID-19, we compared the
immunological landscape between COVID-19, influenza, and RSV
based on their gene expression profiles. We performed a clustering
analysis to identify immune subtypes of COVID-19, influenza, and
RSV based on the enrichment levels of 27 immune signatures. We
identified three immune subtypes with high, medium, and low
immune signatures, respectively, and dissected these subtypes’
molecular features. We also explored correlations between these
immune signatures and various clinical characteristics in COVID-
19 patients. This study aimed to provide new insights into the
immunological landscape of COVID-19.

2. Methods

2.1. Datasets

We collected eight gene expression profiling datasets, including
four COVID-19 RNA-seq datasets [12-15], one RSV RNA-seq dataset
from the Gene Expression Omnibus database (GEO, https://www.
ncbi.nlm.nih.gov/geo/), one RSV microarray dataset [16], one influ-
enza microarray dataset from GEO, and one microarray dataset for
both RSV and influenza [17] (Table 1). First, we collected raw data
of these datasets, composed of 1,036 patients and 273 healthy con-
trols. The 1,036 patients included 842 COVID-19, 44 influenzas,
and 150 RSV patients. The median age of these patients was
53 years (interquartile range: 38–67 years). Among these patients,
404 (38.96%) were females, 348 (33.61%) were males, and 284
(27.43%) were unidentified. There were 100 COVID-19 cases in
the dataset GSE157103, including 50 intensive care unit (ICU) cases
and 50 non-ICU cases. The four COVID-19 datasets included
patients from the USA. The two influenza datasets included
patients from Canada and the UK, respectively, and the two RSV
datasets included patients from the UK and the USA. The patients’
tissues in these datasets originated from the upper airway, periph-
eral blood mononuclear cell, leukocytes, and blood. Next, we per-
formed quality control analysis to detect outliers in each dataset
using WGCNA [7]. Finally, we merged these datasets using the
‘‘merge” function in the R package ‘‘base” and performed the
adjustment of batch effects and normalization of the combined
data using the ‘‘normalizeBetweenArrays” function in the R pack-
age ‘‘limma.” Because this study aimed to compare immune signa-
tures between COVID-19, influenza, and RSV, the bacterial and
other anonymous viruses-associated samples were excluded.

2.2. Clustering

We performed an extensive literature search for immune signa-
tures associated with respiratory viruses’ infection and collected
27 immune signatures involving 136 marker genes [18-21]. We
first quantified the enrichment levels of the 27 immune signatures
in each sample by the single-sample gene-set enrichment analysis
Table 1
A summary of the datasets analyzed.

Dataset Disease Platform Number o
patients

GSE152075 COVID-19 RNA-Seq 430
GSE152418 COVID-19 RNA-Seq 76

GSE156063 COVID-19 RNA-Seq 234
GSE157103 COVID-19 RNA-Seq 102
GSE155237 RSV RNA-Seq 46
GSE100161 RSV Microarray 70
GSE21802 Influenza Microarray 19
GSE42026 Influenza, RSV Microarray 59
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(ssGSEA) [22]. Based on the ssGSEA scores of the 27 immune signa-
tures, we performed hierarchical clustering of the samples in the
merging dataset based on the Euclidean metrics.

2.3. Gene-set enrichment analysis

We identified gene ontology (GO) and KEGG pathways upregu-
lated and downregulated in COVID-19, influenza, RSV, and their
immune subtypes by GSEA [23] (R implementation) with a thresh-
old of adjusted P value < 0.05.

2.4. Identification of gene modules enriched in immune subtypes

We used WGCNA [7] to identify gene modules significantly
enriched in immune subtypes based on gene co-expression net-
work analysis. Based on the expression correlations between the
gene modules’ hub genes, we identified the GO terms significantly
correlated to specific traits.

2.5. Statistical analysis

In the comparison of different groups of data, we used Student’s
t-test or ANOVA test if they were normally distributed; otherwise,
we used the Mann–Whitney U test or Kruskal–Wallis test. We used
the Pearson correlation coefficient (R) to evaluate the expression
correlation between two genes and the Spearman correlation coef-
ficient (q) to assess correlations between other variables. We
adjusted P values in multiple tests using the false discovery rate
(FDR), which were calculated by the Benjamini-Hochberg method.
We performed all statistical analyses using R programming (ver-
sion 4.0.2).

3. Results

3.1. The immune subtypes of COVID-19, influenza, and RSV

Based on the 27 immune signatures’ enrichment scores, we
hierarchically clustered the 809 virus-infected patient samples
based on the Euclidean distance metric. We obtained three clear
clusters, termed Immunity-H, Immunity-M, and Immunity-L,
which displayed the highest, medium, and lowest immune signa-
tures levels, respectively (Fig. 1A). In fact, among the 27 immune
signatures, 21 displayed significantly higher enrichment scores in
Immunity-H than in Immunity-M and Immunity-L (one-way
ANOVA test, P < 0.05) (Fig. 1B). We found 20%, 35.5%, and 44.5%
of COVID-19 cases included in Immunity-H, Immunity-M, and
Immunity-L, respectively; all influenza cases were included
in Immunity-H; 66.7% and 33.3% of RSV cases belonged
to Immunity-H and Immunity-L, respectively. These results indi-
cate that most COVID-19 patients have weaker immune signatures
than the patients infected with other viruses. This was evidenced
by that 22 of the 27 immune signatures displayed lower enrich-
f Number of
controls

Excluded
outliers

Source of samples

54 3 upper airway
69 3 Peripheral blood

mononuclear cell
41 1 upper airway
26 0 leukocytes
32 0 upper airway
14 1 blood
4 0 blood
33 0 blood
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https://www.ncbi.nlm.nih.gov/geo/


Fig. 1. Identification of immune subtypes of COVID-19, influenza, and RSV. (A) Hierarchical clustering yields three subtypes: Immunity-H, Immunity-M, and Immunity-L,
based on the enrichment scores of 27 immune signatures. (B) Comparisons of the enrichment scores of 27 immune signatures between the three immune subtypes. (C)
Comparisons of the enrichment scores of 27 immune signatures between COVID-19, influenza, and RSV patients. (D) Comparisons of the expression levels of ACE2 and IL-6
between the three immune subtypes and between the three immune subtypes containing COVID-19 only. (E) Comparisons of COVID-19 patients’ ages between the three
immune subtypes. (F) Comparisons of viral loads in COVID-19 patients between the three immune subtypes. (G) Spearman correlation between the expression levels of ACE2
and IL-6 and viral loads in COVID-19 patients. (H) Pearson correlation between the expression levels of ACE2 and IL-6 in COVID-19 patients. * P < 0.05, ** P < 0.01, *** P < 0.001.
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ment scores in COVID-19 than in influenza and/or RSV patients
(Fig. 1C).

Angiotensin-converting enzyme 2 (ACE2) is the host cell recep-
tor of SARS-CoV and SARS-CoV-2 [3]. We found that ACE2 expres-
sion levels were the highest and lowest in Immunity-M and
Immunity-H, respectively (two-tailed Student’s t-test, P < 0.05)
(Fig. 1D). IL-6 has been indicated as an adverse prognosticator of
COVID-19. Notably, the expression levels of IL-6 were the highest
and lowest in Immunity-M and Immunity-H, respectively
(P < 0.05) (Fig. 1D). When the cases of influenza and RSV were
excluded, the expression levels of ACE2 and IL-6were still the high-
est and lowest in Immunity-M and Immunity-H, respectively
(P < 0.05) (Fig. 1D). It indicated that the COVID-19 cases in
Immunity-M and Immunity-H may have different prognoses.
Indeed, the COVID-19 patients were the youngest and oldest in
Immunity-M and Immunity-H, respectively (Kruskal–Wallis test,
P = 0.003) (Fig. 1E). Moreover, the COVID-19 patients had the low-
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est and highest viral loads in Immunity-M and Immunity-H,
respectively (P = 0.004) (Fig. 1F). The expression levels of ACE2
and IL-6 were inversely correlated with viral loads in COVID-19
patients (Spearman correlation, q = � 0.29, P < 0.001, q = � 0.12,
P < 0.015, respectively) (Fig. 1G). Meanwhile, we observed a strong
expression correlation between ACE2 and IL-6 in COVID-19
patients (Pearson correlation R = 0.65, P < 0.001) (Fig. 1H).

Overall, these results indicate that the host immune response to
SARS-CoV-2 infection is likely to be more heavily dysregulated
than the response to the other viruses’ infection.

3.2. Differentially expressed genes and pathways between COVID-19
patients and influenza and RSV patients

ACE2 and TMPRSS2 are two crucial molecules for SARS-CoV-2
invading host cells [24]. We found that ACE2 expression levels
were significantly higher in COVID-19 patients than in healthy
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controls, influenza, and RSV patients (P < 0.05) (Fig. 2A). TMPRSS2
expression levels were significantly lower in COVID-19 patients
than in healthy controls, while it was significantly higher in
COVID-19 patients than in influenza and RSV patients (P < 0.05)
(Fig. 2A). Furthermore, we identified 41 genes showing signifi-
cantly different expression levels between COVID-19 patients and
healthy controls (FDR < 0.1, fold change greater than 2). Among
them, 12 genes encoding transcriptional factors (TFs) were upreg-
ulated in COVID-19 patients. The 12 TFs included five viral replica-
tion and cellular response inhibitors (IFIT3, DDX58, MX1, OAS1, and
TRIM22), one chemokine (CXCL10), two interferon-gamma signal-
ing mediators (XAF1 and GBP1), one macrophage activation modu-
lator (EPSTI1), two immune response modulators (STAT1 and
EIF2AK2), and one interferon’s antiviral activity modulator
(IFITM3). In influenza and RSV patients, 14 and 40 TF genes were
upregulated relative to their healthy controls, respectively. IFITM3
was the only TF gene commonly upregulated in COVID-19, influen-
za, and RSV patients. However, IFITM3 had significantly lower
expression levels in COVID-19 than in influenza and RSV patients
and showed strong positive expression correlations with immune
signatures (Fig. 2B). Again, these results indicate the differences
in host immune response in COVID-19 versus influenza and RSV
patients.

GSEA identified 81 GO terms enriched in COVID-19 patients,
which were mainly involved in the regulation of metabolism,
extracellular matrix, Toll-like receptors (TLRs), Hippo signaling,
and immune response. In contrast, two GO terms involved in reg-
ulating ubiquitin and innate immunity were downregulated in
COVID-19 patients (Fig. 2C). In addition, GSEA identified 272 GO
terms enriched in influenza patients, most of which were involved
in the regulation of inflammatory and immune responses (Fig. 2D).
49 GO terms were enriched in RSV patients, most of which were
associated with immune regulation (Fig. 2E). Surprisingly, none
of these GO terms were commonly upregulated or downregulated
among the three groups of virus-infected patients, indicating
unique molecular alterations in each group of virus-infected
patients.

We also conducted a comparison of gene expression profiles
between the COVID-19 patients and influenza and RSV patients.
We found 126 GO terms highly enriched in COVID-19, most of
which were involved in the regulation of metabolism, chemokines,
and cytokines. In addition, 32 GO terms were downregulated in
COVID-19, which were mainly associated with genomic stability
regulation (Fig. 2F and Supplementary Fig. S1A). Besides, we com-
pared gene expression profiles between Immunity-H, Immunity-
M, and Immunity-L. We found 107 GO terms significantly upregu-
lated in Immunity-H versus Immunity-L, and 136 GO terms signif-
icantly upregulated in Immunity-M versus Immunity-H
(Supplementary Fig. S1B, C, D). As expected, these GO terms were
mainly involved in the regulation of the immune system. Collec-
tively, these results indicate that the host immune response to
SARS-CoV-2 is significantly different from that of the other viruses
and that SARS-CoV-2 infection may affect the host metabolic pro-
cess and genomic stability.

3.3. Gene modules enriched in immune subtypes and diseases

We used WGCNA [7] to identify similar co-expression gene
modules that differentiated patients by subtype (Immunity-H,
Immunity-M, and Immunity-L) or disease (COVID-19, influenza,
and RSV). We identified 12 gene modules highlighted in different
colors: turquoise, green, purple, tan, magenta, yellow, blue, brown,
black, pink, green-yellow, and red (Fig. 3A). As expected, the
immune response, a representative GO term for the yellowmodule,
was highly enriched in Immunity-H versus Immunity-M and
Immunity-L (r = 0.26, P = 4.0 � 10�14). The viral transcription
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was also highly enriched in Immunity-H (r = 0.77, P = 3.0 � 10
�160), while it was impoverished in Immunity-M (r = �0.28, P = 2
.0 � 10�16) and Immunity-L (r = �0.47, P = 2.0 � 10�46). It is rea-
sonable because high levels of viral replication may cause a stron-
ger host immune response. The extracellular matrix was highly
enriched in Immunity-M (r = 0.47, P = 2.0 � 10�46), while it was
downregulated in Immunity-H (r = �0.52, P = 1.0 � 10�57). The
defense response to virus was also upregulated in Immunity-M
(r = 0.12, P = 5.0 � 10�4), while it was downregulated in
Immunity-L (r = �0.15, P = 1.0 � 10�5) and showed no significant
correlation with Immunity-H (r = 0.045, P = 0.2). It indicated that
Immunity-M and Immunity-L had the strongest and weakest
defense response to virus infection among the three subtypes.
The epithelial cell proliferation was highly enriched in Immunity-
L and Immunity-M, while it was downregulated in Immunity-H.

Likewise, WGCNA identified 12 gene modules that significantly
differentiated these patients by disease (COVID-19, influenza, and
RSV) (Fig. 3B). Notably, ten gene modules displayed higher enrich-
ment in COVID-19 relative to influenza and RSV. Interestingly, the
immune response was highly enriched in COVID-19 versus influ-
enza and RSV (r = 0.46, P = 8.0 � 10�44). The defense response to
virus was also enriched in COVID-19 compared to influenza and
RSV (r = 0.1, P = 0.004). It suggests that COVID-19 patients have
a stronger immune response to virus infection than influenza and
RSV patients, which may be described as an inflammatory response
to antigenic stimulus. In addition, two gene modules for which rep-
resentative GO terms were nucleus and chromosome, respectively,
were significantly upregulated in COVID-19. In contrast, the viral
transcription was significantly downregulated in COVID-19 versus
influenza and RSV (r = �0.72, P = 6.0 � 10�127).
3.4. Associations between immune signatures and clinical features in
COVID-19 patients

We further analyzed associations between the 27 immune sig-
natures and clinical features in COVID-19 patients in GSE157103.
The clinical features included ICU, the Acute Physiology and
Chronic Health Evaluation (APACHE II), the Sequential Organ Fail-
ure Assessment (SOFA), Charlson score, C-Reactive Protein (CRP),
D-dimer, ferritin, fibrinogen, hospital free days (45 days follow-
up), lactate, procalcitonin, and ventilator-free days. Both APACHE
II and SOFA scores measure the severity of ICU patients [25]. The
Charlson score predicts the ten-year mortality for a patient with
a range of comorbid conditions [26]. The CRP, D-dimer, ferritin, fib-
rinogen, lactate, and procalcitonin are laboratory measurements
whose high levels were correlated with the severity of COVID-19
[27]. Notably, we found that 20 immune signatures had signifi-
cantly lower enrichment levels (ssGSEA scores) in ICU than in
non-ICU patients (P < 0.05) (Fig. 4A). Only two immune signatures
(type II IFN reponse and inflammatory cytokines) had significantly
higher ssGSEA scores in ICU than in non-ICU pateints. Moreover,
most of these immune signatures’ ssGSEA scores were negatively
correlated with the levels of CRP, D-dimer, ferritin, fibrinogen, lac-
tate, and procalcitonin (Fig. 4B). In constrast, a majority of these
immune signatures’ ssGSEA scores were positively correlated with
hospital free days and ventilator-free days. Collectively, these
results suggest that elevated immune signatures are likely to be
associated with better prognosis in COVID-19 patients.
4. Discussion and conclusions

Respiratory tract infection is liable for undue disease burden
[28]. The innate and adaptive immune responses to respiratory
virus infection are critical for sustaining a healthy respiratory sys-
tem and preventing pulmonary disease [29]. Although COVID-19



Fig. 2. Identification of differentially expressed genes and gene ontology (GO) between COVID-19 patients and influenza and RSV patients. (A) Comparisons of the expression
levels of ACE2 and TMPRSS2 between virus-infected patients and healthy controls. (B) IFITM3 shows significantly lower expression levels in COVID-19 than in influenza and
RSV patients and strong positive expression correlations with immune-promoting signatures. GO terms upregulated and downregulated in COVID-19 (C), influenza (D), and
RSV (E) patients versus healthy controls. (F) GO terms highly enriched in COVID-19 versus influenza. * P < 0.05, ** P < 0.01, *** P < 0.001.
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shares certain primary symptoms with influenza and RSV [30,31],
its transmissibility and destructivity far exceed influenza and
RSV [1]. The unique host immune response in COVID-19 patients
could greatly contribute to this disease’s high transmissibility
and destructivity [32]. For example, SARS-CoV-2 infection may
not always employ interferon production but delay or suppress
interferon II or III production in lung tissues [33].

Upon infection, the influenza virus is recognized by host cells
through pathogen-associated molecular patterns (PAMPs) [34].
PAMPs are recognized by TLRs, RIG-I, and NLRP3 to generate pro-
inflammatory cytokines and type I interferon production, which
has strong antiviral activity by limiting virus replication in host
cells. Type I interferons can induce STAT activation and transcrip-
tion of the interferon-stimulated gene to influence innate and
adaptive immune responses. Furthermore, host immune cells
recruit alveolar macrophages to activate apoptotic influenza
virus-infected cells, while blood-derived macrophages infected
with influenza viruses produce large amounts of pro-
inflammatory cytokines [34]. RSV infection elicits a strong innate
immune response, especially respiratory tract neutrophil response
[35]. The peak of neutrophil response often concurs with maxi-
mum clinical severity and viral load. However, because RSV infec-
tion can reduce natural killer (NK) cell count to regulate the
inflammatory response, a lower NK cell count is correlated with
more serious infection [36]. Upon acute infection, the adaptive
immune response among RSV patients is activated via recruiting
CD8+ T cells to clear viruses. Meanwhile, B cells play an important
role in the production of protective antibodies. RSV infection also
triggers interferon II production, which plays a strong protective
role against virus infection [37]. Our results demonstrated that
compared to COVID-19, influenza and RSV patients elicited a stron-
ger innate immune response, e.g., more interferons I production,
macrophages, NK cells, and dendritic cells. Furthermore, influenza
2352
and RSV patients elicited a stronger adaptive immune response
described by more B and T cell production.

Compared to influenza and RSV, COVID-19 is likely to display
lower immune signatures and higher IFN II production, leading
to poor prognosis and worse outcomes. The innate and adaptive
immune responses are significantly lower in COVID-19 than in
the other viruses-infected patients, while chemoattractant
protein-1 (IL-6) is upregulated in COVID-19 patients. Meanwhile,
we found that pro-inflammatory cytokines were remarkably
higher in COVID-19 than in influenza and RSV patients. In contrast,
anti-inflammatory cytokines were significantly lower in COVID-19
patients, which may describe the cytokines storm among COVID-
19 patients. Interestingly, COVID-19 patients displayed a higher
expression of cytolytic perforin than the patients infected with
the other viruses. However, since perforin’s important role lies in
the cytotoxic activity against pathogens, abnormal production of
this protein could be responsible for resistance to the cytotoxic
activity of NK and CD8+ T cells. It has been shown that target
pathogen cells could employ various escape mechanisms against
perforin activity [38].

The clustering analysis showed that Immunity-M and
Immunity-L harbored 80% of COVID-19 patients, suggesting that
most COVID-19 patients have an inadequate immune response to
virus infection. Furthermore, we found that molecular and clinical
features were significantly different between COVID-19 patients in
Immunity-M and Immunity-H. For example, Immunity-M patients
had significantly higher expression levels of ACE2 and IL-6 while
lower viral loads than Immunity-H patients. Immunity-M patients
were younger than Immunity-H patients. The lower viral loads in
Immunity-M than in Immunity-H patients could explain why the
former had a weaker immune response than the latter. In addition,
we found that the expression levels of ACE2 and IL-6 had a negative
correlation with viral loads in COVID-19 patients. The negative



***

***

*** ***

***
***

***

**
***

*

***

***

***

***
***

***
***

***
***

**

*

−0.5 0.0 0.5 1.0

a
a

ICU
non-ICU

ssGSEA score

B

0.03 0.21 −0.02 0.13 0.02 −0.1 −0.19 0.09 −0.02 −0.07 −0.1
−0.1 −0.19 −0.17 −0.03 −0.22 0.01 0.43 −0.05 −0.24 −0.05 0.27
−0.33 −0.07 −0.32 −0.21 −0.19 −0.1 0.47 −0.22 0.07 −0.23 0.4
−0.42 −0.12 −0.26 −0.12 −0.2 0.08 0.56 −0.2 −0.13 −0.37 0.54
−0.36 −0.05 −0.31 −0.13 −0.24 −0.07 0.51 −0.07 −0.13 −0.25 0.42
−0.46 −0.05 −0.22 −0.15 −0.09 0.06 0.47 −0.14 −0.17 −0.46 0.42
−0.44 −0.01 −0.23 −0.16 −0.1 0.04 0.43 −0.11 −0.2 −0.48 0.38
0.26 0.22 0.03 0.09 0.13 −0.05 −0.25 0.18 0.08 0.17 −0.19

−0.52 −0.1 −0.23 −0.2 −0.16 0.01 0.5 −0.24 −0.15 −0.46 0.52
−0.47 −0.16 −0.31 −0.2 −0.13 0.05 0.61 −0.29 −0.22 −0.38 0.48
−0.4 −0.08 −0.28 −0.05 −0.17 −0.22 0.43 −0.18 −0.01 −0.39 0.35
−0.35 0 −0.21 −0.22 −0.1 −0.01 0.39 −0.26 −0.08 −0.36 0.4
−0.17 0.05 −0.05 −0.16 −0.05 −0.12 −0.06 0.08 −0.01 −0.12 0.05

0.2 0.15 0.33 0.03 0.18 0.07 −0.46 0.22 0.07 0.19 −0.31
0.37 0 0.09 0.08 0.07 0.08 −0.19 0.16 0.08 0.39 −0.17

−0.14 −0.04 −0.18 −0.04 0.02 −0.02 0.08 0.04 −0.09 −0.14 0.14
−0.33 −0.07 −0.33 −0.13 −0.25 −0.08 0.5 −0.07 −0.11 −0.22 0.38
−0.32 −0.03 −0.19 −0.12 0.01 0.05 0.39 −0.07 −0.08 −0.33 0.35
−0.44 −0.18 −0.24 −0.18 −0.16 0.07 0.59 −0.29 −0.18 −0.41 0.45
−0.3 0.01 −0.18 −0.25 0.01 0.09 0.41 −0.29 −0.08 −0.29 0.37
−0.5 −0.05 −0.23 −0.32 −0.04 0.03 0.36 −0.19 −0.18 −0.34 0.4
−0.24 −0.03 −0.16 0.06 0 −0.02 0.22 −0.16 −0.11 −0.21 0.24
−0.21 0.05 −0.27 −0.03 −0.15 −0.24 0.33 −0.06 0.05 −0.11 0.27
−0.53 −0.1 −0.28 −0.18 −0.13 −0.02 0.52 −0.21 −0.13 −0.42 0.45
−0.16 −0.07 −0.22 −0.16 0.01 0.06 0.33 −0.21 −0.02 −0.19 0.35
−0.18 −0.04 −0.15 −0.08 0.03 −0.02 0.03 −0.02 −0.06 −0.22 0.13
0.26 0.14 0.23 0.25 0.02 −0.04 −0.27 0.13 0.09 0.08 −0.25type II IFN response

type I IFN response
Th2 cells
Th1 cells

resting treg T cells
resident memory T cell

pro-inflammatory cytokines
NK encoded inhibitory receptors 
NK encoded activating receptors 

NK antimicrobial protein granulysin 
naive T cell

MHC class I
macrophages

inflammatory cytokines
IL-18 co-receptor
exhausted T cell

effector treg T cells
effector T cell

effector memory T cell
dendritic cells

cytolytic protein perforin 
cytolytic activity

central memory T cell
CD8+ T cells

CD4+ Regulatory T cells
B cells

anti-inflammatory cytokines

Ap
ac

he
ii

Ch
ar

lso
n 

sc
or

e

cr
p 

(m
g/

l)
dd

im
er

 (m
g/

l_f
eu

)

fe
rri

tin
 (n

g/
m

l)

fib
rin

og
en

ho
sp

ita
l fr

ee
 d

ay
s p

os
t 

45
 d

ay
  f

oll
ow

-u
p 

(d
ay

s)
lac

ta
te

 (m
m

ol/
l)

pr
oc

alc
ito

nin
 (n

g/
m

l)

SO
FA

−0.4
−0.2
0.0
0.2
0.4

ρ

A
 type II IFN Reponse 
 type I IFN Reponse 

 Th2 cells 
 Th1 cells 

 resting treg T cells 
 resident memory T cell 

 pro−inflammatory cytokines 
 NK encoded inhibitory receptors  
NK encoded activating receptors   

NK antimicrobial protein granulysin  
naive T cell 

 MHC Class I 
 macrophages 

 inflammatory cytokines 
 IL−18 co-receptor 

 exhusted T cell 
 effector treg T cells 

 effector T cell 
 effector memory T cell 

 dendritic cells 
 cytolytic protein perforin  

cytolytic Activity 
 central memory T cell 

 CD8+ T cells 
 CD4+ Regulatory T cells 

 B cells 
 anti−inflammatory cytokines 

ve
nt

ila
to

r-f
re

e 
(d

ay
s)

Fig. 4. Associations between immune signatures and clinical features in COVID-19 patients. (A) Comparisons of the enrichment levels of 27 immune signatures between ICU
and non-ICU cases. Two-tailed Student’s t-test P values are indicated. (B) Heatmap showing Spearman correlations between the enrichment levels of 27 immune signatures
and clinical parameters in COVID-19. * P < 0.05, ** P < 0.01, *** P < 0.001. The results in (A, B) were obtained by analyzing the dataset GSE157103.
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association between ACE2 and viral loads could be attributed to
that ACE2 can reduce viral loads [39].

Interestingly, younger COVID-19 patients have a lower immune
response and fewer viral loads in Immunity-M than older patients
in Immunity-H. A potential explanation could be that the immune
2353
system is often dysfunctional and heterogeneous in older people
[40]. Through aging, the immune system often changes in twoways
[40]. One is immunosenescence; that is, dysfunctional cells become
epigenetically locked into a pro-inflammatory state, secreting
cytokines and chemokines. The other one is inflamm-aging arising
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from the overactive and ineffective alert system [40]. In addition,
when elderly alveolar TLRs detect the pathogen, they respond by
producing type I interferons to attract immune cells to the site of
infection. Furthermore, although the number of macrophages
increases with age, their plasticity to convert between pro- and
anti-inflammatory states is reduced [33]. Therefore, the higher
immune signatures in Immunity-H are likely to be associated with
dysfunctional immune responses in older COVID-19 patients, lead-
ing to worse clinical outcomes, as observed in the previous results.
Besides, we found that IFITM3, a gene playing a critical role in pro-
moting the immune system’s defense against viruses, was signifi-
cantly downregulated in COVID-19 versus influenza and RSV
patients. Again, it suggests an inadequate immune response in
COVID-19 versus influenza and RSV patients, although the levels
of pro-inflammatory cytokines are remarkably higher in COVID-
19 than in influenza and RSV patients.

In addition to the pathways of immune responses, several meta-
bolic pathways were dysregulated in COVID-19 patients. These
metabolic pathways are involved in the abnormal activity of mito-
chondrial respiratory chain, negative regulation of signaling recep-
tor activity, dysregulation of extracellular matrix binding,
dysregulation of nucleoside phosphate catabolic process, regula-
tion of cytokinesis and chemotaxis, regulation of TOR signaling,
and decreased pulmonary function. These data may explain why
many COVID-19 patients exhibited severe cardiovascular and pul-
monary injury [41]. Moreover, the extracellular matrix regulation
is enriched in several COVID-19 patients, which plays a vital role
in establishing and maintaining immune homeostasis [42]. Also,
we found a strong correlation between metabolic dysregulation
and immunogenesis in COVID-19 patients. For example, the
enrichment levels of MHC class 1 were positively correlated with
decreased pulmonary function, extracellular matrix binding,
abnormal activity of mitochondrial respiratory chain, abnormality
of the diaphragm, positive regulation of DNA metabolic process,
and negative regulation of ToR signaling. In contrast, they were
negatively correlated with the regulation of positive chemotaxis.
Regulation of positive chemotaxis and positive regulation of
cytokinesis were negatively associated with most of the 27
immune signatures, while the abnormal activity of the mitochon-
drial respiratory chain was positively associated with a majority
of these immune signatures (Supplementary Fig. S2).

Our results also showed that some COVID-19 patients had a
stronger immune response than other COVID-19 patients, while
these patients often had more severe clinical outcomes. The main
reason could be that their hyperinflammatory reaction to SARS-
CoV-2 infection, known as cytokine storm [43 44], resulted in seri-
ous organ damage. Besides, our results showed that ACE2 expres-
sion levels were significantly lower in immunity-H than in
immunity-M and immunity-L. It indicates that ACE2 upregulation
could lead to antiviral immunosuppression to cause a worse prog-
nosis in COVID-19 patients [45,46].

Although our study provides a strong base for further investiga-
tion into different immunological profiles of COVID-19, influenza,
and RSV patients, it should be noted that this study has several lim-
itations. First, there are insufficient clinical data (e.g., disease
severity) associated with our analyses, especially for influenza
and RSV patients. Second, this study was conducted without con-
sidering the patients’ underlying disease history due to limited
detailed data available. Finally, this study’s underlying bias in
study design, patient populations, source tissues, and technical
errors cannot be ruled out as residual confounding. However, our
data still provide a clear insight into the difference in immune
responses between COVID-19, influenza, and RSV patients. The sig-
nificantly different immune responses in different COVID-19
patients could be responsible for significantly different clinical out-
comes between COVID-19 cases.
2354
5. Ethics approval and consent to participate

Ethical approval and consent to participate were waived since
we used only publicly available data and materials in this study.
6. Consent for publication

Not applicable.
Funding

This work was supported by the Science and Technology Project
of Traditional Chinese Medicine in Zhejiang Province (grant num-
ber: 2017ZKL003).
CRediT authorship contribution statement

Zeinab Abdelrahman: Conceptualization, Methodology, Soft-
ware, Validation, Formal analysis, Investigation, Data curation,
Visualization, Writing - original draft. Zuobing Chen: Methodol-
ogy, Software, Validation, Formal analysis, Investigation, Data cura-
tion, Visualization, Funding acquisition. Haoyu Lyu: Software,
Validation, Formal analysis, Investigation, Data curation, Visualiza-
tion. Xiaosheng Wang: Conceptualization, Methodology,
Resources, Investigation, Writing - review & editing, Supervision,
Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

Not available.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2021.04.043.

References

[1] Center, J.H.C.R. COVID-19 Map. 2020; Available from: https://coronavirus.jhu.
edu/map.html.

[2] Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir-
Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med 2020;382
(19):1787–99. https://doi.org/10.1056/NEJMoa2001282.

[3] Z. Abdelrahman M. Li X. Wang 11 10.3389/fimmu.2020.552909
10.3389/fimmu.2020.552909.s001.

[4] Miller C, O’Sullivan J, Jeffrey J, Power D. Brachial Plexus Neuropathies During
the COVID-19 Pandemic: A Retrospective Case Series of 15 Patients in Critical
Care. Phys Ther. 2021;101(1):pzaa191. doi:10.1093/ptj/pzaa191.

[5] Shanks GD. COVID-19 versus the 1918 influenza pandemic: different virus,
different age mortality patterns. J Travel Med. 2020;27(5):taaa086.
doi:10.1093/jtm/taaa086.

[6] Li M, Zhang Z, Cao W, Liu Y, Du B, Chen C, et al. Identifying novel factors
associated with COVID-19 transmission and fatality using the machine
learning approach. Sci Total Environ 2021;764:142810. https://doi.org/
10.1016/j.scitotenv.2020.142810.

[7] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinformatics. 2008;9:559. Published 2008 Dec 29.
doi:10.1186/1471-2105-9-559.
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