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Abstract

Neutrophil spontaneous apoptosis, a process crucial for immune regulation, is mainly controlled by alterations in reactive
oxygen species (ROS) and mitochondria integrity. Exercise has been proposed to be a physiological way to modulate
immunity; while acute severe exercise (ASE) usually impedes immunity, chronic moderate exercise (CME) improves it. This
study aimed to investigate whether and how ASE and CME oppositely regulate human neutrophil apoptosis. Thirteen
sedentary young males underwent an initial ASE and were subsequently divided into exercise and control groups. The
exercise group (n = 8) underwent 2 months of CME followed by 2 months of detraining. Additional ASE paradigms were
performed at the end of each month. Neutrophils were isolated from blood specimens drawn at rest and immediately after
each ASE for assaying neutrophil spontaneous apoptosis (annexin-V binding on the outer surface) along with redox-related
parameters and mitochondria-related parameters. Our results showed that i) the initial ASE immediately increased the
oxidative stress (cytosolic ROS and glutathione oxidation), and sequentially accelerated the reduction of mitochondrial
membrane potential, the surface binding of annexin-V, and the generation of mitochondrial ROS; ii) CME upregulated
glutathione level, retarded spontaneous apoptosis and delayed mitochondria deterioration; iii) most effects of CME were
unchanged after detraining; and iv) CME blocked ASE effects and this capability remained intact even after detraining.
Furthermore, the ASE effects on neutrophil spontaneous apoptosis were mimicked by adding exogenous H2O2, but not by
suppressing mitochondrial membrane potential. In conclusion, while ASE induced an oxidative state and resulted in
acceleration of human neutrophil apoptosis, CME delayed neutrophil apoptosis by maintaining a reduced state for long
periods of time even after detraining.
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Introduction

Neutrophils play a critical role in the first line of defense against

pathogens. They rapidly migrate to the infection site, ingest the

pathogens, release reactive oxygen species (ROS) to kill the

pathogens, and even release their own DNA to form extracellular

traps [1]. Regulation of neutrophil life span by spontaneous

apoptosis has for a long time been considered to be a major way of

optimizing innate immunity under healthy conditions. Accelerated

neutrophil apoptosis often results in neutropenia and can be

associated with bacterial and fungal infections [2]. In contrast,

inhibition of apoptosis prolongs neutrophil survival and contrib-

utes to the accumulation of these cells at inflammatory sites [3].

However, neutrophil spontaneous apoptosis highly depends on

ROS level and mitochondria integrity [4]. There are three lines of

evidence supporting that ROS limits the neutrophil lifespan. First,

exogenously added oxidant accelerates neutrophil apoptosis [5]

and antioxidant delays it [6,7]. Second, neutrophils from patients

with impaired NADPH oxidase (an enzyme complex which

produces ROS) increase neutrophil lifespan as compared with

neutrophils from healthy subjects [8,9]. Third, neutrophil glutathi-

one (GSH, a major antioxidant in mamalian cells) decreases over

time, results in ROS accumulation, and limits neutrophil lifespan

[10]. Although mitochondrial is generally considered a major

source of ROS, whether mitochondrial ROS (mtROS) participate

in neutrophil apoptosis is unclear. Neutrophil mitochondria hardly

participate in energy production but usually involve in apoptosis

regulation instead [11]. Apoptotic neutrophils are functionally

compromised because their stimulation-evoked responses, such as

spreading, chemotaxis and oxidative burst, are either completely

absent or greatly reduced [12].

Despite the crucial role of neutrophils in innate immunity, how

neutrophil spontaneous apoptosis is regulated under physiological

conditions in healthy subjects is not fully understood. Exercise is

believed to be a natural way to modulate immunity; it can be

generally divided into acute severe exercise (ASE) and chronic

moderate exercise (CME), according to exercise intensity, duration

and frequency. ASE increases tissue damage and oxidative stress

[13,14], and stimulates the secretion of many pro-inflammatory

cytokines, such as TNF-a, IL-6, and IL-1b [15–17]. It also

increases the risk of upper respiratory tract infection [18,19]. In

neutrophils, some reports indicate that ASE paradigms directly
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stimulate the neutrophil ROS release [20–22], while other studies

using well-trained subjects show otherwise [23–25]. These

controversies could be due to differences in the physical fitness

of subjects, exercise protocols, and the assay methods for

neutrophil ROS [26,27]. Recent human studies show that

repeated ASE increases apoptosis and reduces mitochondrial

membrane potential (DYm) in neutrophils [28,29]. Until now, the

roles of ROS and mitochondria in ASE-evoked neutrophil

apoptosis are unclear. In contrast to ASE, few studies have

investigated how CME affects neutrophil apoptosis [30]. Never-

theless, CME lowers the levels of many pro-inflammatory

cytokines (e.g., C-reactive protein, IL-1, and IL-6) and elevates

the level of IL-10, an anti-inflammatory cytokine in the circulation

[31]. CME improves immunity in general as indicated by lowered

susceptibility to viral and bacterial infections [18,19,32].

Since ASE and CME have opposite effects on inflammatory

cytokines, they may differentially regulate neutrophil apoptosis as

well. This new concept has been supported by our recent study,

that is, neutrophil apoptosis is delayed by 2-month CME [30].

However, it is not clear whether ROS and mitochondria are

involved in the apoptosis delaying effect. Moreover, how ASE and

CME exert opposing effects on neutrophil apoptosis have not been

addressed before. Therefore, we hypothesize that alterations in

redox status and mitochondria integrity are responsible for the

opposing effects of ASE and CME on human neutrophils

apoptosis. We further propose that CME is able to prevent the

ASE-evoked neutrophil apoptosis possibly by maintaining redox

status and mitochondria integrity. To address these issues,

sedentary healthy males underwent an initial ASE and were

subsequently divided into exercise and control groups. The

exercise group underwent 2 months of CME followed by 2

months of detraining (DT). Additional ASE paradigms were

performed at the end of each month. Neutrophils were isolated

from blood specimens drawn at rest and immediately after each

ASE for assaying neutrophil spontaneous apoptosis along with

redox-related and mitochondria-related parameters.

Materials and Methods

Ethics statement
The protocol was reviewed according to the Declaration of

Helsinki and approved by the Human Ethics Committee of

National Cheng Kung University Medical College (IRB #: ER-

96-92). Written informed consent was received from all partici-

pants.

Subjects
The exercise paradigms (ASE, CME and DT) were modified

from our previous reports [33,34]. Briefly, 13 healthy sedentary

male volunteers aged between 20 and 24 years participated in this

study. They fulfilled the following requirements: no regular

exercise (#1 time per week) in the past 6 months, no smoking,

no previous medical record of cardiovascular or metabolic

diseases, no recent symptoms of upper respiratory tract infection,

and abstained from any medication for at least 1 month before the

study. All subjects were involved in studying the effects of initial

ASE. They were then randomly divided into exercise group (8

subjects) and sedentary control group (5 subjects). There were no

significant differences between groups in the initial anthropometric

data and exercise performance data (Table 1).

Exercise paradigms and blood collection
Subjects in both groups arrived at 09:00 and rested for about

30 min. All subjects performed the initial ASE on a cycle

ergometer with continuous increments of work load every 3 min

until exhaustion. The heart rate reached at least 90% of the

predicted maximal heart rate (198 bpm) at the end of ASE.

Subjects in the exercise group undertook 2 months of CME

(30 min a day, 5 days a week at 60% of maximal workload

determined by the initial ASE and adjusted 1 month later)

followed by 2 months of DT (abstained from regular exercise of

any form). Throughout the experimental period, subjects in the

exercise group underwent ASE tests once a month. Sedentary

control subjects maintained their sedentary life-style for 4 months,

and received ASE tests once every 2 months. Peripheral venous

blood samples were drawn at rest and immediately after each

ASE. Blood specimens were anti-coagulated with sodium citrate

and stored on ice. Neutrophils collected before each ASE were

defined as ‘‘resting’’ specimens.

Neutrophil isolation and culture
Neutrophils purified by density gradient centrifugation were

washed in Hanks’ balance buffer and shocked in a 0.2% NaCl

hypotonic solution for 30 sec to remove contaminating erythro-

cytes. Part of the specimen was frozen for later measurement the

GSH and glutathione disulfide (GSSG) level. The remaining was

resuspended at 56106 cells/ml in RPMI 1640 medium supple-

mented with 10% fetal calf serum. These freshly isolated

neutrophils were either used immediately for measuring redox-

related parameters or cultured for various time periods (at 37uC in

the presence of 5% CO2) for measuring apoptosis-related

Table 1. Basic physiological parameters and exercise performance in exercise and sedentary groups.

Exercise group (22±0 year old) Sedentary group (22±1 year old)

Initial 1st month 2nd month 3rd month 4th month Initial 2nd month 4th month

Body weight (kg) 6462 6262* 6262* 6362 6362 6663 6563 6663

Body mass index (kg/m2) 21.760.6 21.260.5* 21.160.6* 21.560.6 21.560.6 22.660.8 22.360.9 22.660.9

Resting heart rate (bpm) 7063 6463 6362* 7165 6963 6562 6761 6663

ASE duration (min) 3162 4061* 4862* 4461* 4262* 3062 3063 2962

Maximum workload (watt) 10967 13564* 16567* 15265* 14065* 10466 105610 10067

Maximum heart rate (bpm) 18465 18463 18562 18663 18663 18462 18263 18263

Data were analyzed by one-way ANOVA with repeated measures followed by Bonferroni post-test.
*p,0.05, compared with initial values. The differences between exercise (n = 8) and sedentary control (n = 5) groups were insignificant at the beginning as analyzed by
unpaired t-tests. There was no time-dependent effect in the sedentary control group.
doi:10.1371/journal.pone.0024385.t001

Exercise Affects Neutrophil Apoptosis and ROS
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parameters. The neutrophil purity and viability (.95%) were

routinely checked by Wright’s stain and trypan blue exclusion,

respectively.

Measurement of neutrophil redox status
Neutrophil cytosolic ROS, in the presence or absence of

phorbol myristate acetate (PMA), was estimated by using a

fluorescent indicator (Fig. S1) [35]. Briefly, freshly isolated

neutrophils were incubated with DCF-DA (1 mM; Sigma-

Aldrich, St. Louis, MO, USA) for 20 min. DCF-DA fluorescence

intensity was then recorded by flow cytometry before and after

adding PMA (10 ng/ml, 10 min) to quantify the levels of basal

cytosolic ROS and PMA-stimulated cytosolic ROS. Total GSH

and GSSG in neutrophils were assayed by GSH reductase

recycling methods [36]. After removing proteins by 5%

sulfosalicylic acid, samples were mixed with DTNB and GSH

reductase (Sigma-Aldrich) for 2 min. After adding NADPH the

colorimetric reaction kinetics was measured to calculate the total

GSH level in nmole/mg protein. For GSSG assay, deproteinized

samples were treated with 2-vinylpyridine (Sigma-Aldrich) for

1 h to remove existing GSH and this reaction was terminated by

adding triethanolamine (Sigma-Aldrich). The GSSG level was

then analyzed by the same GSH reductase recycling methods.

The reduced GSH level was calculated as the total GSH –

26GSSG. Finally, the intracellular oxidation level was indexed

by the ratio between GSSG and the reduced GSH, i.e., GSSG/

GSH.

Measurements of neutrophil apoptosis and
mitochondria-related parameters

Neutrophil apoptosis and mitochondria-related parameters

included Annexin-V (Ann-V) binding, DYm, and mtROS (Fig.

S1). Ann-V binding on the outer surface was used as an apoptosis

marker. Neutrophil DYm was quantified by measuring the red

fluorescence intensity of JC-1 [37]. MitoSOX was used to detect

mtROS [38]. Freshly isolated neutrophils were incubated for 0, 4

and 10 h in culture and then stained with JC-1 (7.7 mM;

Invitrogen, Carlsbad, CA, USA), Ann-V (620 dilution; Invitro-

gen), MitoSOX (5 mM; Invitrogen), or MitoTrakcer Red (250 nM;

Invitrogen) at 37uC for 20 min. The fluorescence intensity (FI) was

analyzed by flow cytometry.

Elevation of neutrophil ROS in vitro
To clarify the role of ROS in effects of ASE on neutrophils, 9

additional sedentary subjects (age 2161 yr, body weight 6763 kg,

height 17563 cm, resting heart rate 6862 bpm) were recruited

for neutrophil ROS manipulation experiments. To mimic the

oxidative stress during the initial ASE, neutrophils isolated at rest

were incubated with freshly prepared H2O2 (0, 100 or 1000 mM)

for 30 min. After H2O2 exposure, these neutrophils were washed

and resuspended in the medium for various time periods (0, 4 or

10 h). Parameters related to neutrophil apoptosis and redox status

were performed as described before.

Reduction of neutrophil DYm in vitro
To verify the role of neutrophil DYm reduction in neutrophil

apoptosis and ROS generation, neutrophils isolated from 6

additional sedentary subjects (age 2161 yr, body weight

6762 kg, height 17361 cm, resting heart rate 7265 bpm) were

recruited for neutrophil DYm manipulation experiments. Resting

neutrophils were incubated with various concentrations (0, 10 and

100 nM) of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone

(FCCP; Sigma-Aldrich) in the Hank’s balance buffer for various

time periods (0, 4 or 10 h) to reduce neutrophil DYm [39].

Parameters related to neutrophil apoptosis and ROS level were

performed as described before.

Statistical analysis
Unpaired t-test was used to analyze the differences between

exercise and sedentary control groups. Data from the same

subjects were analyzed by various paired or repeated analysis.

Paired t-test was used to analyze the effects of ASE, H2O2, or

FCCP before and after treatments in the self-controlled studies.

One-way ANOVA with repeated measures followed by Bonferroni

post-test was used to analyze various time-dependent or dose-

dependent effects of single treatments. Two-way ANOVA with

repeated measures followed by Bonferroni post-test was used to

analyze interactions between initial ASE effects and apoptosis

kinetics, between CME effects and apoptosis kinetics, and between

ASE effects and CME-DT states. Significant differences were

defined as p,0.05. All data were presented as mean 6 SEM,

where n was the number of subjects.

Results

Exercise effects on basic physiological parameters and
exercise performance

This study lasted 4 months and used a combination of various

exercise paradigms, i.e., ASE once every month, CME for 2

months, and followed by another 2 months of DT. Results in

Table 1 show the time-dependent effects of exercise on basic

physiological parameters and exercise performance. Two-month

CME reduced the basic physiological parameters (body weight,

body mass index, and resting heart rate) and increased both

exercise time and maximal workload. The CME effects on

physiological parameters were reverted to the pre-training state

after 1 months of DT, while effects on exercise performance were

partially reversed after 2 months of DT. All parameters remained

unchanged in the sedentary control group.

Effects of ASE on neutrophil apoptosis
Neutrophils from all subjects (n = 13) were isolated at rest and

immediately after the initial ASE. Cells were subsequently cultured

in vitro for up to 10 h to determine the kinetics of apoptosis (Ann-V

binding) and mitochondria-related parameters (DYm and mtROS)

(Fig. 1). Since apoptotic neutrophils showed gradual changes of

Ann-V binding, DYm, and mtROS, these three parameters are

considered as ‘‘apoptosis-related parameters’’ in this study. The

initial ASE accelerated all three apoptosis-related parameters

sequentially: the DYm reduction occurred immediate (0 h),

followed by the elevation of apoptosis (4 h), and finally the elevation

of mtROS (10 h). Taken together, ASE accelerated the process of

neutrophil spontaneous apoptosis, leading by the DYm suppression.

Effects of ASE on neutrophil redox status
Neutrophils freshly isolated at rest and immediately after the

initial ASE were analyzed for intracellular redox status. The initial

ASE significantly augmented the basal cytosolic ROS, the PMA-

stimulated cytosolic ROS, and the GSSG/GSH ratio (Fig. 2).

However, it altered neither the total GSH level (Fig. 2C) nor the

oxidative burst (PMA-stimulated cytosolic ROS/basal cytosolic

ROS; 1.3760.11 vs 1.3660.08, post-ASE vs pre-ASE, n = 13).

Taken together, ASE shifted the neutrophil redox status toward a

relatively oxidative state.

Exercise Affects Neutrophil Apoptosis and ROS
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Effects of CME and DT on redox status in resting
neutrophils

At various time points of the CME-DT paradigm, neutrophils

were collected at rest for the measurements of redox-related

parameters. Unlike initial ASE, neither CME nor DT significantly

affected the basal cytosolic ROS, the PMA-stimulated cytosolic

ROS, and the GSSG/GSH ratio (Fig. 3). In contrast, the total

GSH level was enhanced after 1 month of CME and remained

high after 2 months of DT. All redox-related parameters remained

unchanged in sedentary control group. Comparing with the pro-

oxidative effects of ASE, the overall CME effects enduringly

increased the antioxidant reserve without altering the basal redox

status.

Effects of CME and DT on apoptosis in resting
neutrophils

At various time points of the CME-DT paradigm, neutrophils

isolated under resting conditions were subsequently cultured in vitro

for up to 10 h to determine the apoptosis-related parameters.

Two-month of CME significantly delayed the progression of

apoptosis-related parameters (Fig. 4A). Interestingly, the anti-

apoptotic effects (including higher DYm, lower Ann-V binding

and lower mtROS) were observed as early as 1 month of CME

and they remained effective even after 1 or 2 months of DT

(Fig. 4B). Taken together, opposite to the pro-apoptotic effects of

ASE, the effects of CME were anti-apoptotic and relatively long-

lasting. Note: all of these apoptosis-related parameters in the

sedentary control group remained the same in the experimental

period.

ASE effects were prevented by CME and partially restored
by DT

In our hands, many CME effects and ASE effects on neutrophils

were in the opposite direction. To investigate whether CME-DT

could counteract the adverse effects ASE or not, the ASE effects

(after ASE values / resting values) before and after CME-DT were

determined and summarized in Table 2. Our results showed that

initial ASE effects vanished after 1 month of CME and mostly

Figure 1. Effects of ASE on neutrophil apoptosis. Blood specimens were obtained from all subjects at rest and immediately after ASE.
Apoptosis assays were carried out using neutrophils cultured in vitro for 0, 4 and 10 h. The neutrophil DYm was quantified by JC-1 aggregate FI (A–C),
Ann-V binding by the fraction of Ann-V+ cells (D–F), and mtROS by the fraction of MitoSOX+ cells (G–I). Data in (C, F, I) were analyzed by two-way ANOVA
with repeated measures followed by Bonferroni post-test. * p,0.05, after ASE vs resting; # p,0.05 compared with corresponding specimens at 0 h;
n = 13.
doi:10.1371/journal.pone.0024385.g001
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remained vanished even after 2 months of DT. Moreover, the

mitochondria obtained at different stages of CME-DT were

functionally superior to those obtained at the beginning of exercise

experiments, i.e., they showed higher DYm along with lower

mtROS both at rest and after ASE. Please note that the resting

values in table 2 were adopted from those presented in Figs. 3

and 4B.

Effects of exogenous H2O2 application on resting
neutrophil redox status and apoptosis

To test the hypothesis that redox status changes were the

underlying mechanism responsible for the neutrophil apoptosis

facilitated by a single bout of ASE, resting neutrophils were

exposed to H2O2 for 30 min. We selected 100 mM H2O2 because

it mimicked the initial ASE effects, i.e., both induced similar

changes in DYm and Ann-V binding (Figs. S2 and S3). As in post-

ASE neutrophils (Figs. 1 and 2), these H2O2-treated neutrophils

underwent comparable changes of redox- and apoptosis-related

parameters (Fig. 5). Like ASE, H2O2 exposure did not alter the

oxidative burst (PMA-stimulated cytosolic ROS/basal cytosolic

ROS; 1.5360.16 vs 1.5960.21, H2O2 vs control, n = 8).

Effects of DYm reduction on ROS levels and apoptosis in
resting neutrophils

Because DYm reduction was the early event after ASE, whether

this alteration led to changes of neutrophil ROS level and

apoptosis was studied by using FCCP to block DYm. We selected

10 nM FCCP because it induced DYm reductions compatible to

those after ASE (Fig. 6). However, FCCP did not significantly

affect basal cytosolic ROS, PMA-stimulated cytosolic ROS, Ann-

V binding, and mtROS. In our hands, even 1000 nM of FCCP

(enough to reduce about 80% DYm in freshly isolated neutrophils)

was unable to alter either ROS-related or apoptosis-related para-

meters (data not shown).

Discussion

This study is the first to show that ASE and CME differentially

affect human neutrophil apoptosis and redox balance. ASE

accelerated neutrophil apoptosis, while CME damped it. The

ASE-accelerated neutrophil apoptosis was likely to be mediated by

elevated ROS, but not by depressed mitochondria membrane

potential. Moreover, the ASE effects were diminished by CME

due to increased neutrophil GSH to prevent ROS elevation.

Figure 2. Effects of ASE on neutrophil redox status. Redox-
related parameters of freshly isolated neutrophils at rest were
compared with those immediately after the ASE. Neutrophil basal
cytosolic ROS and PMA-stimulated cytosolic ROS were measured by
DCF-DA fluorescence intensities before and after 10-min PMA
stimulation, respectively (A, B). Neutrophil intracellular redox capacity
was indicated by the total GSH amount (C). Neutrophil intracellular
oxidation level was indicated by the GSSG/GSH ratio (D). Data were
analyzed by paired t-test. * p,0.05, after ASE vs resting; n = 13.
doi:10.1371/journal.pone.0024385.g002

Figure 3. Effects of CME and DT on redox status in resting
neutrophils. At various time points of the CME-DT paradigm,
neutrophils were freshly isolated from subjects at rest to determine
the redox-related parameters, i.e. basal cytosolic ROS, PMA-stimulated
cytosolic ROS, total GSH, and GSSG/GSH ratio. Data were analyzed by
one-way ANOVA with repeated measures followed by Bonferroni post-
test. * p,0.05, compared with initial values. No differences between
exercise (n = 8) and sedentary control (n = 5) groups were found at the
beginning (analyzed by unpaired t-tests). There was no time-dependent
effect in the sedentary control group.
doi:10.1371/journal.pone.0024385.g003
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Finally the CME effects were relatively long-lasting, remained

largely intact after ceasing regular exercise for 2 months.

Our results showed that a single bout of ASE in sedentary

subjects was sufficient to increase redox- and apoptosis-related

parameters in a sequential manner, i.e., cytosolic ROS elevation,

GSH oxidation and DYm reduction at 0 h, Ann-V binding

increase at 4 h, and mtROS elevation at 10 h. Since both cytosolic

ROS level and DYm were altered immediately after ASE, their

relative roles in modulating neutrophil apoptosis deserved detailed

evaluation. Although ROS elevation and DYm reduction cause

damages in many cell types, their reaction mechanisms are subtly

different in neutrophils [4]. The spontaneous apoptosis of

neutrophils is initiated by ROS accumulation along with GSH

decomposition, followed by death receptor activation in the

plasma membrane [10]. The downstream of death receptor

signaling then leads to DYm reduction and mitochondrial

disintegration. Consistently, our results showed that both ASE

and exogenous H2O2 shifted the redox status towards oxidation

and therefore inducing neutrophil apoptosis. Besides GSH, other

antioxidants (GSH peroxidase and GSH reductase) are also

decreased after ASE [21,40,41]. In contrast, mtROS apparently

was not involved in the initial stage of ASE-accelerated neutrophil

apoptosis because it did not rise until after 10 h incubation. Since,

ROS activates neutrophil NF-kB and induces many pro-

inflammatory cytokines [42,43], the ASE-evoked oxidative stress

would shift neutrophils toward pro-inflammatory and pro-

apoptotic states, thus explaining at least in part the adverse effects

of ASE on the innate immunity.

As a comparison, DYm reduction is a sign of apoptosis in many

cell types, since mitochondria dysfunction hampers ATP generation

and affects almost all ongoing biochemical processes. However, our

DYm reduction experiments indicated that other neutrophil

apoptosis-related parameters were unaffected by FCCP treatment.

Perhaps the FCCP treatment alone in vitro was insufficient to cause

further destruction of mitochondria, such as the release pro-

apoptotic proteins. Neutrophils have relatively few mitochondria

and their ATP generation is highly dependent on glycolysis, not

DYm [11,44]. Although DYm reduction did not accelerate

neutrophil spontaneous apoptosis, it could impair chemotaxis, one

of the major functional parameters in neutrophils [39].

Opposite to the adverse effects of ASE, the effects of CME

were anti-oxidative and anti-apoptotic. CME elevated the total

Figure 4. Effects of CME and DT on apoptosis in resting neutrophils. At various time points of the CME-DT paradigm, neutrophils isolated
under resting conditions were subsequently cultured in vitro for up to 10 h to determine the apoptosis-related parameters (DYm, Ann-V binding,
and mtROS). (A): The kinetics of neutrophil apoptosis-related parameters before and after 2-month CME. (B): The CME and DT effects on apoptosis-
related parameters measured after 10 h incubation in vitro. Data in (A) were analyzed by two-way ANOVA with repeated measures followed by
Bonferroni post-test. Data in (B) were analyzed by one-way ANOVA with repeated measures followed by Bonferroni post-test. * p,0.05, compared
with initial values; # p,0.05 compared with corresponding specimens at 0 h; n = 8. No differences between exercise (n = 8) and sedentary control
(n = 5) groups were found at the beginning (analyzed by unpaired t-tests). There was no time-dependent effect in the sedentary control group.
doi:10.1371/journal.pone.0024385.g004

Exercise Affects Neutrophil Apoptosis and ROS

PLoS ONE | www.plosone.org 6 September 2011 | Volume 6 | Issue 9 | e24385



GSH level without altering the basal redox state in freshly

isolated resting neutrophils. Since ROS accumulation initiates

spontaneous apoptosis [10], the CME-induced GSH elevation

conceivably delayed the progression of spontaneous apoptosis

via retarding ROS accumulation. ROS reduction blocks

neutrophil NF-kB activation and thus reduces the release of

pro-inflammatory cytokines [45]. Interestingly, our recent

report shows that CME retards neutrophil apoptosis by

upregulating the iNOS-NO-cGMP-Mcl-1 pathway, indicating

that small amounts of NO serves as a signaling molecule

instead of a form of ROS [30]. Therefore, the beneficial effects

of CME on immunity may, at least in part, be due to the

enhanced anti-oxidative and anti-apoptotic effects on neutro-

phils.

Table 2. ASE effects on neutrophils were prevented by CME and partially restored by DT.

After ASE/Resting Initial 1-month CME 2-month CME 1-month DT 2-month DT

Neutrophil redox-related parameters

Basal cytosolic ROS (FI) 46+9

30+2
�* 32+4

30+4

31+3

31+3

33+2

30+3

40+5

32+5

PMA-stimulated cytosolic ROS (FI) 65+13

42+5
�* 49+3

45+3

49+6

47+6

47+4

40+4

60+6

45+6
�*

Total GSH (nmole/mg protein) 15+1

16+1

24+1

24+1

23+1

22+2

25+2

23+1

24+1

23+1

GSSG/GSH (%) 29+5

14+2
�* 17+1

17+2

15+1

14+1

19+1

17+1

20+1

17+1

Neutrophil apoptosis-related parameters

DYm (FI, 10 h) 118+24

168+28
�* 275+16

277+21

248+16

286+15

266+23

281+8

191+35

207+34

Ann-VP+P cells (%, 10 h) 40+9

28+8
�* 7+1

7+1

6+1

7+1

8+3

9+3

12+7

8+2

mtROSP+P cells (%, 10 h) 43+9

24+8
�* 4+1

5+1

5+2

5+1

5+1

5+1

11+8

6+1

The ASE effects (After ASE vs resting) during CME and DT periods were analyzed by two-way ANOVA with repeated measures followed by Bonferroni post-test. The
resting data were the same as presented in Figs. 3 and 4.
*p,0.05, after ASE vs resting, n = 8.
doi:10.1371/journal.pone.0024385.t002

Figure 5. Effects of exogenous H2O2 application on resting neutrophil redox status and apoptosis. After 30-min H2O2 exposure, redox-
related parameters of neutrophils were analyzed immediately (A–E), whereas the apoptosis-related parameters were determined in neutrophils
cultured for 10 h (F–H). (A): neutrophil basal cytosolic ROS levels in response to different concentrations of H2O2 (0, 100, and 1000 mM). (B–E): effects
of 100 mM H2O2 exposure on neutrophil basal cytosolic ROS, PMA-stimulated cytosolic ROS, total GSH, and GSSG/GSH. (F–H): effects of 100 mM H2O2

exposure on DYm, Ann-V binding, and mtROS. Data in (A) were analyzed by one-way ANOVA with repeated measures followed by Bonferroni post-
test. Data in other panels were analyzed by paired t-test. * p,0.05, H2O2 exposure vs untreated control; n = 9.
doi:10.1371/journal.pone.0024385.g005
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It is conceivable that ASE augments neutrophil cytosolic ROS

level via the ASE-evoked ROS elevation in the plasma and

consequently accelerates neutrophil apoptosis. ROS released from

skeletal muscles under ASE transiently tips the redox balance in

the blood stream toward pro-oxidative state [46,47], which could

directly or indirectly induce cytosolic ROS elevation in neutro-

phils. As ROS can damage macromolecules essential for cellular

functions, ROS could regulate neutrophil apoptosis by altering

certain pro-apoptosis or anti-apoptosis molecules. Several poten-

tial ROS targets have been reported in neutrophils. ROS increases

neutrophil ceramide generation, death receptor clustering, and

thus accelerates apoptosis [10]. ROS also facilitate the release of

cathepsin D from granules and consequently increases the

cytosolic activity of caspase-8 [48]. Finally, ROS might influence

the degradation of anti-apoptotic proteins crucial for neutrophil

survival, such as Mcl-1 [49] and PCNA [50,51]. Therefore,

modulations of neutrophil redox status by exercise inevitably

influence neutrophil apoptosis.

CME may achieve an anti-oxidative state in neutrophils via

mechanisms related to ‘‘hormesis,’’ a process in which exposure to

sub-threshold stimulations that are damaging at higher doses

induces an adaptive beneficial effect. Thus, low concentrations of

ROS may activate a repair system, while high concentrations of

ROS induce damaging effects (cell death). A single bout of ASE

generated large amounts of ROS (,45% increase) and accelerated

neutrophil apoptosis (Figs. 1 and 2). In contrast, acute moderate

exercise (AME) only slightly increased neutrophil ROS (,10%)

without altering apoptosis-related parameters (Fig. S4). When

subjects performed AME regularly during CME, their neutrophils

were repeated exposed to small amount of ROS and might

accumulate antioxidants accordingly. As a matter of fact, similar

mechanisms have been demonstrated in studying exercise effects

on the skeletal muscle. Acute exercise not only generates ROS via

activating xanthine oxidase but also transiently induces antioxi-

dant mRNA expression via activating NF-kB in the skeletal muscle

[52,53]. Moreover, the beneficial effects of exercise training in

terms of over-expression of antioxidant enzymes are blocked by

inhibiting xanthine oxidase [54,55].

The beneficial effects of CME on neutrophils were rather long-

lasting, i.e., most of them were durable after 2 months of DT.

Likewise, the CME-improved exercise performance (ASE duration

and maximum workload) did not fully reverse after DT for 2

months either. Our preliminary results showed that the citrate

synthase activity in neutrophils was elevated by CME and it

remained high after DT as well (data not shown). Therefore, CME

persistently elevated the aerobic capacity not only in skeletal

muscles but more so in neutrophils. In short-lived neutrophils,

such long-lasting changes could occur in the bone marrow where

their progenitor cells undergo functional differentiation [56].

However, mechanistically it is still unknown how the CME effects

persist on neutrophils after detraining. Nevertheless, the CME

effects on physiological parameters (body weight, body mass index,

resting heart rate) reverted to the pre-training state in just 1 month

after ceasing regular exercise, probably due to the unbalanced

food intake and energy expenditure during the DT period.

In addition to the opposing effects of CME and ASE on

neutrophil apoptosis, CME actually prevented the ASE-evoked

neutrophil deficits (Table 2). Since CME significantly improved

exercise capacity, neutrophils from subjects with different levels of

physical fitness are likely to behave differently as well. Therefore,

different physical fitness of subjects and different exercise protocols

used in various studies would greatly influence the experimental

outcome [23–27]. As mentioned earlier, the CME effects were

relatively long-lasting. Thus CME may be beneficial to patients

suffering acquired neutropenia, especially the disorders due to

elevated neutrophil apoptosis [57–59]. For example, patients

under chemotherapy or with HIV infection could be benefited by

taking regular moderate exercise to prolong their shortened

lifespan of neutrophils.

This study not only provides insight into mechanisms important

for explaining how different exercise paradigms affect neutrophil

spontaneous apoptosis but also points out a practical way to

improve our innate immunity. Interestingly, our early studies have

shown that ASE makes platelet hyperactive in sedentary subjects

and CME exerts opposite effects [33,34]. Taken together, it would

be advisable to perform CME but to avoid ASE in general.

Supporting Information

Figure S1 Fluorescence staining of neutrophils. Fluores-

cence stained neutrophils were allowed to adhere to the glass slide

for 20 min before being examined under a microscope. Freshly

isolated neutrophils were stained by DCF-DA at rest (A) or after

being stimulated by PMA for 10 min (B). Freshly isolated

Figure 6. Effects of DYm reduction on ROS levels and
apoptosis in resting neutrophils. Freshly isolated neutrophils were
incubated with FCCP (0, 10, and 100 nM) for 20 min (A) or 10 h (B)
before DYm determination. Neutrophils were incubated with 10 nM of
FCCP for 20 min before measuring basal cytosolic ROS and PMA-
stimulated cytosolic ROS (C, E). Neutrophils were incubated with 10 nM
of FCCP for 10 h before measuring Ann-V binding and mtROS (D, F).
Data in (A, B) were analyzed by one-way ANOVA with repeated
measures followed by Bonferroni post-test. Data in (C–F) were analyzed
by paired t-test. * p,0.05, FCCP vs untreated control; n = 6.
doi:10.1371/journal.pone.0024385.g006
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neutrophils were stained by JC-1, which formed green monomers

under low DYm (C) and red aggregates under high DYm (D).

Neutrophils cultured for 10 h were stained with Ann-V (E) and

MitoSOX (F) to show apoptosis and mtROS, respectively.

(TIF)

Figure S2 Similar effects of initial ASE and H2O2

exposure on neutrophil DYm. (A, B): at the beginning of

the program, blood specimens were obtained from a sedentary

subject both at rest and immediately after ASE. Neutrophils were

cultured for 10 h and then analyzed for DYm. (C, D): resting

neutrophils were isolated from another sedentary subject.

Neutrophils before and after being exposed to 100 mM H2O2

for 30 min. They were cultured for 10 h and then analyzed for

DYm.

(TIF)

Figure S3 Similar effects of initial ASE and H2O2

exposure on neutrophil Ann-V binding and DYm.
Neutrophils were double stained by Ann-V and MitoTracker

Red to show apoptotic cells (Ann-V+ cells %, labeled in the

bottom) and depolarized DYm (dimmed MiroTracker Red). (A,

B): at the beginning of the program, blood specimens were

obtained from a sedentary subject both at rest and immediately

after ASE. Neutrophils were cultured for 10 h and then analyzed

for Ann-V binding and DYm. (C, D): resting neutrophils were

isolated from another sedentary subject. Neutrophils before and

after being exposed to 100 mM H2O2 for 30 min. They were

cultured for 10 h and then analyzed for Ann-V binding and DYm.

(TIF)

Figure S4 Effects of acute moderate exercise (AME) on
neutrophil parameters related to ROS and apoptosis.
Five additional sedentary subjects were recruited and fulfilled the

same criteria as described in the methods section. They underwent

an ASE to determine the maximal workload. Two days after ASE,

they performed an AME for 30 min (60% of maximal workload).

Neutrophils were isolated from blood drawn at rest and

immediately after AME. The ROS-related parameters were

analyzed immediately after neutrophil isolation (A, B), whereas

the apoptosis-related parameters were determined after 10 h

incubation in culture (C–E). Data were analyzed by paired t-test.

* p,0.05, after ASE vs resting; n = 5.

(TIF)
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