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Abstract: Density functional theory (DFT) calculations were performed to investigate the mechanism
and the enantioselectivity of the aza-Henry reaction of isatin-derived ketimine catalyzed by chiral
guanidine–amide catalysts at the M06-2X-D3/6-311+G(d,p)//M06-2X-D3/6-31G(d,p) (toluene, SMD)
theoretical level. The catalytic reaction occurred via a three-step mechanism: (i) the deprotonation of
nitromethane by a chiral guanidine–amide catalyst; (ii) formation of C–C bonds; (iii) H-transfer from
guanidine to ketimine, accompanied with the regeneration of the catalyst. A dual activation model
was proposed, in which the protonated guanidine activated the nitronate, and the amide moiety
simultaneously interacted with the ketimine substrate by intermolecular hydrogen bonding. The
repulsion of CPh3 group in guanidine as well as N-Boc group in ketimine raised the Pauli repulsion
energy (∆EPauli) and the strain energy (∆Estrain) of reacting species in the unfavorable si-face pathway,
contributing to a high level of stereoselectivity. A new catalyst with cyclopropenimine and 1,2-
diphenylethylcarbamoyl as well as sulfonamide substituent was designed. The strong basicity of
cyclopropenimine moiety accelerated the activation of CH3NO2 by decreasing the energy barrier in
the deprotonation step. The repulsion between the N-Boc group in ketimine and cyclohexyl group as
well as chiral backbone in the new catalyst raised the energy barrier in C–C bond formation along
the si-face attack pathway, leading to the formation of R-configuration product. A possible synthetic
route for the new catalyst is also suggested.

Keywords: aza-Henry reaction; ketimine; guanidine–amide; DFT calculation; mechanistic investiga-
tion; catalyst design

1. Introduction

The aza-Henry reaction (or nitro-Mannich reaction) is one of the most effective meth-
ods for the construction of carbon–carbon bonds with concomitant generation of two
vicinal stereogenic centers bearing nitro and amino functional groups [1]. The resulting
β-nitroamine products can be conveniently converted into a variety of chiral building
blocks (e.g., α-amino acids [2–6] and 1,2-diamines [7–10]); therefore, the development of
efficient procedures to promote the reaction in a highly enantioselective way have received
wide attention. Since the first example of a catalytic enantioselective aza-Henry reaction
was reported by Shibasaki [11], many metal-based [12–15] and organic catalysts [16,17]
have been employed in the nucleophilic addition of aldimine, affording β-nitroamines in
high yield and stereoselectivity [18]. Compared to aldimine substrate, the reports using a
ketimine as the electrophile in the asymmetric Henry reaction were limited, due to its low
reactivity and poor prochiral face control [19].

The aza-Henry reaction of isatin-derived N-Boc ketimine could produce 3-substituted-
3-amino-2-oxindoles, which are key structural units in many natural products and phar-
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macologically active molecules [20–23]. The bis(imidazolidine) pyridine-NiCl2 [24], bis-
oxazoline-Cu(II) [25] and N,N′-dioxide-Cu(I) [26] complexes were proven to be efficient
organometallic catalysts for aza-Henry reaction of isatin-derived ketimines under mild con-
ditions. In organocatalysis, the cinchona alkaloid and its derivatives are popular catalysts
for the construction of indole skeletons [27]. A dual activation model is generally adopted
to explain catalyst–ketimine interactions as well as the stereoinduction of catalysts [28],
in which the tertiary amine group and a hydrogen-bond donor group orientated on the
chiral scaffold activate CH3NO2 and govern facial selectivity in the reaction simultaneously.
For example, Chimni et al. proposed that the OH group at C6′-position of the cinchona
alkaloid affected the reactivity and selectivity of the product. In the catalysis, the isatin
ketimine bonded to the C6′–OH group of the catalyst by hydrogen bonding. Meanwhile,
the quinuclidine tertiary amine moiety deprotonated the nitromethane and induced the
formed nitronate to attack the ketimine from the re-prochiral face [29]. Chiral thiourea [30]
and thiourea- [31] or sulphone-amide-modified cinchona derivatives [32] are also applied
into aza-Henry reactions of ketimine. They serve to simultaneously activate the electrophile
and nucleophile during C–C bond formation by hydrogen bonding, and are essential for
reaction rate and selectivity. Dixon and co-workers designed a bifunctional iminophospho-
rane organocatalysts to enhance the synergistic effects of Brønsted base and H-bond-donor
in the addition of nitromethane to unreactive ketimine [33]. Chen and co-workers the-
oretically studied the mechanism of quinine derivative-catalyzed aza-Henry reaction of
isatin-derived ketimine using the density functional theory (DFT) method. The synergistic
effects of multiple non-covalent interactions (i.e., classical, and non-classical H bonds and
anion–π interactions) were responsible for the high reactivity and enantioselectivity of
reactions [34]. In addition, chiral phase transfer catalysts with a quaternary ammonium
center derived from L-tert Leucine also exhibited good catalytic performance in the aza-
Henry reaction of isatin-derived ketimines. The urea motif captured the isatin-derived
ketimines by H-bond interactions. Meanwhile, the nucleophilic nitro group anion paired
with ammonium motifs by electrostatic interactions [35].

Due to strong basicity and hydrogen-bond donor ability, chiral guanidine organocat-
alysts have been widely used in many asymmetric catalysis (e.g., Michael reaction [33],
Henry reaction [36], and Mannich reaction [37]). It can abstract a proton from the sub-
strate and catalyze the reaction as its conjugated acid (i.e., the guanidinium cation). A
bifunctional Brønsted acid activation mode has been proposed, in which the electrophile
and nucleophile are positioned by a guanidinium cation via hydrogen bonding [38–43].
In 2015, Feng and Liu [44] developed an open-chain guanidine–amide organocatalyst for
asymmetric aza-Henry reactions of isatin-derived N-Boc ketimines. The 3-substituted
3-amino-2-oxindoles were obtained with excellent results (up to 99% yield, 94% ee). They
proposed that the guanidine moiety deprotonated the nitromethane and bonded the nucle-
ophile through dual hydrogen-bonds. The amide unit acted as a Brønsted acid to activate
the ketimine substrate simultaneously. The shielding effect from phenyl groups of the
amide unit induced the nucleophile to preferably attack the ketimine from the re-face,
affording an R-configuration product.

Herein, we performed a theoretical investigation on the mechanisms and stereos-
electivity of asymmetric aza-Henry reactions between isatin-derived N-Boc ketimines
and nitroalkane (see Scheme 1). Based on the calculations, we modified the structure
of guanidine–amide and design a new catalyst containing cyclopropenimine and 1,2-
diphenylethylcarbamoyl as well as 2,6-difluorobenzenesulfonamide group to enhance its
catalytic activity and chiral induction ability. Our hope was that through the synergis-
tic effects of the stronger Brønsted base and the hydrogen bonding donor as well as the
modification of the chiral backbone, superior reactivity and selectivity could be obtained.
These results are expected to provide useful information for the synthesis of new chiral
organocatalysts for aza-Henry reactions of ketimine.



Molecules 2021, 26, 1965 3 of 19

Molecules 2021, 26, x  3 of 20 
 

 

obtained. These results are expected to provide useful information for the synthesis of 

new chiral organocatalysts for aza-Henry reactions of ketimine. 

 

Scheme 1. Asymmetric aza-Henry reaction of isatin-derived N-protected ketimines (R1) and 

nitromethane (R2) catalyzed by guanidine–amide catalysts. 

2. Results and Discussion 

2.1. Analysis of Reactivity at N Atoms in G1 

It is well known that guanidine can act as a Brønsted base to activate the reactant by 

hydrogen bonding in organocatalysis [45,46,47,48]. Three types of nitrogen atoms (N2, N3 

and N5) exist in the structural unit of guanidine moiety; therefore, we first optimized the 

geometry of G1 and evaluated the reactivity of nitrogen atoms. As shown in Table S1, 

Supplementary Materials, the key structural parameters in G1 were similar to those of the 

corresponding crystal structure obtained in the experiment [44]. Intramolecular hydrogen 

bonding exists between the guanidine moiety and amide moiety, with an N2···H10 

distance of 1.94 Å . The proton affinity of the N2 atom (226.4 kcal·mol−1) is higher than 

those of N3 (196.3 kcal·mol−1) and N5 (199.6 kcal·mol−1). This indicated that the N2 atom 

with strong basicity [38,39,40,41,42,43,49] could work as the reacting site for the 

deprotonation of CH3NO2 in the Henry reaction. 

2.2. Catalytic Mechanism for R1a 

As shown in Scheme 2, the reaction mechanism of asymmetric Henry reactions 

between ketimine (R1a) and nitromethane (R2) consisted of three consecutive steps, 

including: (i) the deprotonation of CH3NO2 by guanidine–amide catalyst; (ii) formation of 

a C–C bond; and (iii) H-transfer from the guanidine to ketimine substrate, accompanied 

with the regeneration of the catalyst. The step associated with the activation of CH3NO2 

was predicted to be the rate-determining step (RDS) [18]. The C–C bond formation step 

was the chiral-controlling step, affording R- or S-enantiomers along re- or si-face attack 

pathways, alternatively. 

Scheme 1. Asymmetric aza-Henry reaction of isatin-derived N-protected ketimines (R1) and ni-
tromethane (R2) catalyzed by guanidine–amide catalysts.

2. Results and Discussion
2.1. Analysis of Reactivity at N Atoms in G1

It is well known that guanidine can act as a Brønsted base to activate the reactant
by hydrogen bonding in organocatalysis [45–48]. Three types of nitrogen atoms (N2, N3
and N5) exist in the structural unit of guanidine moiety; therefore, we first optimized the
geometry of G1 and evaluated the reactivity of nitrogen atoms. As shown in Table S1,
Supplementary Materials, the key structural parameters in G1 were similar to those of the
corresponding crystal structure obtained in the experiment [44]. Intramolecular hydrogen
bonding exists between the guanidine moiety and amide moiety, with an N2· · ·H10
distance of 1.94 Å. The proton affinity of the N2 atom (226.4 kcal·mol−1) is higher than
those of N3 (196.3 kcal·mol−1) and N5 (199.6 kcal·mol−1). This indicated that the N2 atom
with strong basicity [38–43,49] could work as the reacting site for the deprotonation of
CH3NO2 in the Henry reaction.

2.2. Catalytic Mechanism for R1a

As shown in Scheme 2, the reaction mechanism of asymmetric Henry reactions be-
tween ketimine (R1a) and nitromethane (R2) consisted of three consecutive steps, including:
(i) the deprotonation of CH3NO2 by guanidine–amide catalyst; (ii) formation of a C–C
bond; and (iii) H-transfer from the guanidine to ketimine substrate, accompanied with
the regeneration of the catalyst. The step associated with the activation of CH3NO2 was
predicted to be the rate-determining step (RDS) [18]. The C–C bond formation step was the
chiral-controlling step, affording R- or S-enantiomers along re- or si-face attack pathways,
alternatively.

2.2.1. Activation of CH3NO2

When G1 interacted with CH3NO2, it underwent a change of conformation, construct-
ing O8· · ·H4 intramolecular hydrogen bonding. This new conformation facilitated the N2
atom and amide moiety to interact with CH3NO2 simultaneously by intermolecular hy-
drogen bonding [50]. For the molecular complex G1-COM, the N2· · ·H16 and H10· · ·O18
distances were 2.27 Å and 2.24 Å, respectively. AIM analysis indicated that the electronic
densities (ρ) at the (3, −1) bond critical points (BCP) (a and b in Figure 1) were 0.017 a.u.
and 0.014 a.u., with the corresponding hydrogen bonding energies of Ea =−2.99 kcal·mol−1
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and Eb = −2.27 kcal·mol−1, respectively [51]. Compared to the free CH3NO2, the C15–H16
bond in G1-COM enlengthened from 1.09 to 1.10 Å. Meanwhile, the corresponding Wiberg
bond index was decreased from 0.921 to 0.875. These results suggested that the C–H bond
in CH3NO2 was significantly weakened. The deprotonation of CH3NO2 occurred via
transition state G1-TS1, accompanied with the global electron density transfer (GEDT) of
0.23 e from G1 to CH3NO2. Accordingly, an ion-pair intermediate (G1-IM1) was formed.
This step was endergonic by 3.3 kcal·mol−1, with an energy barrier of 10.6 kcal·mol−1.
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Scheme 2. Mechanism of aza-Henry reaction between ketimine (R1a and R1b) and nitromethane (R2), catalyzed by
guanidine–amide catalyst (G1).

Figure 1. Optimized structures of G1-COM, G1-TS1 and G1-IM1 and their relative Gibbs free energies
(in kcal·mol−1). The distances are in Å. Laplacian (∇2ρ) and electronic density (ρ) values of the
selected bond critical points (BCP) in G1-COM were obtained by atom in molecule (AIM) analysis.

2.2.2. Formation of C–C Bond

Starting from G1-IM1, four molecular complexes (G1-I-re-IM2 ~ G1-II-si-IM2) were
formed in models I and II, according to the different orientations of N-Boc ketimine (R1a)
and nitronate (Scheme 3). The hydrogen bonding between the protonated guanidine with
R1a and nitronate were verified by AIM analysis because the magnitudes of Laplacian of
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electron densities (∇2ρ) at (3, −1) bond critical points (a and b) were positive (Figure S1).
Electrostatic potential (ESP) analysis (Figure 2b) for the protonated guanidium fragment
in G1-IM1 indicated that the surface global maximum (121.2 kcal·mol−1) was from the
positively charged H16 atom (not H10 atom in Figure 2a), leading to preferable orientation
of the CH2NO2 anion by the H16 atom in the guanidium cation [52]. Accordingly, G1-I-
re-IM2 and G1-I-si-IM2 in model I were slightly more stable than those of G1-II-re-IM2
and G1-II-si-IM2 by 0.9~1.7 kcal·mol−1 (Figure 3). In the following step, the C=N bond
addition was achieved by nucleophilic attack of the nitronate towards the C13 atom
of R1a along four pathways (I-re, I-si, II-re or II-si), followed by easy proton transfer
from the N2 atom to N14 atom. The hydrogen bonds between the guanidine cation and
N-Boc ketimine (R1a) in four TSs were also proved by AIM analysis (Figure S2). The
relative Gibbs free energy of transition states G1-I-re-TS2 and G1-I-si-TS2 were 1.1 and
2.3 kcal·mol−1, respectively, which were lower than those of G1-II-re-TS2 and G1-II-si-TS2
(2.4 and 4.0 kcal·mol−1, respectively; Figures 3 and 4). In addition, the activation barrier in
the C–C bond formation step along the I-re path (∆G 6= = 2.4 kcal·mol−1) was lower than
that of the I-si path (∆G 6= = 4.6 kcal·mol−1) by 2.2 kcal·mol−1. For the II-re pathway, ∆G 6=

in the C–C bond formation step was 0.4 kcal·mol−1 higher than that along I-re. Meanwhile,
both G1-II-re-IM2 and G1-II-re-TS2 were less stable than the corresponding species in I-re
pathway. These results indicated that the predominant R-configuration product observed
in the experiment was predominantly produced along the I-re path. According to the
Curtin–Hammett principle [53], the theoretical enantioselectivity (ee %) was 85%, which
was close to the experimental result (91% ee).
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Figure 2. (a) The natural atom charges at H atoms in guanidine cation species, obtained by natural bond orbital (NBO)
analysis. (b) Electrostatic potential (ESP) mapped Van der Waals surface of protonated G1. The redder the color, the more
positive the ESP. The purple and red spheres represented the local minima and maxima points, respectively.

1 
 

 
  Figure 3. Energy profiles for aza-Henry reaction between N-Boc ketimine (R1a) and nitromethane (R2) catalyzed by

guanidine (G1) along re- and si-face pathways in models I and II, respectively.

We further analyzed the orbital interactions between N-Boc ketimine (R1a) and ni-
tromethane in the C–C bond formation step. The structures of G1-I-re-TS2 and G1-I-si-TS2
were decomposed into a guanidine–nitromethane ion-pair fragment (G1-R2, Frag. 1) and
an N-Boc ketimine fragment (R1a, Frag. 2). The schematic orbital interaction diagrams
are shown in Figures S3 and S4. For the highest occupied molecular orbital (HOMO) of
G1-I-re-TS2, it was mainly formed by the mixture of the occupied highest occupied frag-
ment orbital (HOFO) of the G1-R2 fragment (Frag. 1, 73.35%) and the unoccupied lowest
unoccupied fragment orbital (LUFO) of the R1a fragment (Frag. 2, 16.99%). The electronic
density delocalization between BD(π) C15–N17 to the unoccupied BD(π*) C13–N14 (E(2) =
19.2 kcal·mol−1) promoted the formation of a C13–C15 bond, contributing to the orbital
interaction energy (∆Eorb) of −45.29 kcal·mol−1. Similar molecular orbital interactions
was also observed in G1-I-si-TS2, with less contribution of the HOFO orbital of the G1-R2
fragment (63.59%) in the HOMO.
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Figure 4. Optimized geometries of four transition states along re- or si-face attack pathways. The
relative Gibbs free energies are given in kcal·mol−1.

For comparison, we also studied the dual hydrogen bond model proposed by the
experiment [44]. Four optimized geometries of transition states (G1-I-re-TS2-a ~ G1-II-
si-TS2-a) along re- and si-pathways in two models were located at the same theriacal
level (Figure S5). The ∆G of transition states in model I were significantly lower than
those in model II by 7.2~10.2 kcal·mol−1. For the TSs in model I, the CH2NO2 anion was
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positioned by two NH groups in the guanidine moiety of G1 catalyst, with a N–H· · ·O
distance of 1.95~2.47 Å. It seemed that two Cy groups in the guanidine exerted comparable
hindrance effects towards ketimine in the two competing transition states. Moreover, the
∆G of G1-I-re-TS2-a was 0.9 kcal·mol−1 less stable than that of G1-I-si-TS2-a, affording
the S-product as a major one (not the R-product observed in experimental observation).
Although the relative Gibbs free energy of G1-I-re-TS2-a in C–C bond formation steps
were lower than that of G1-I-re-TS2 by 2.6 kcal·mol−1, the guanidine–amide catalyst had
to undergo remarkable conformation changes from G1-IM1 to realize the pre-organized
structure in TSs (as shown in Figure S6, the ∆G 6= to change the orientation of two N–Cy
groups in the guanidine cation were about 10~13 kcal·mol−1). Thus, unless specified, we
just focus on the conformation of the guanidine cation with an intramolecular H4· · ·O8 in
the following discussions.

2.2.3. Origin of Stereoselectivity

To understand the origin of stereoselectivity in the aza-Henry reaction between ke-
timine (R1a) and nitromethane (R2) catalyzed by guanidine G1, we analyzed the structures
of the two key transition states (i.e., G1-I-re-TS2 and G1-I-si-TS2) in the chiral-controlling
step (i.e., C–C bond formation step). As shown in Figure 4, the N-Boc group was placed at
the same side as the bulky CPh3 group of G1 in the G1-I-si-TS2, with a distance of about
2.83 Å. The steric repulsion between them increased the Pauli repulsion energy ∆Epauli

(67.8 vs. 83.5 kcal·mol−1), as well as the strain energy ∆Estrain of the two reacting fragments
(9.8 vs. 12.9 kcal·mol−1) at TSs along the I-si pathway (Figure 5). As a result, the activation
energy barrier (∆G 6=) along the I-si pathway was higher than those along the I-re pathway
by 2.2 kcal·mol−1. In contrast, the unfavorable steric repulsion could be efficiently avoided
in G1-I-re-TS2 because the CPh3 group was far away from the N-Boc group. The stronger
interaction between the deformed reactants played the crucial factor in favoring the re-
pathway [54,55]. That is, the more stabilizing electrostatic energy (∆Velstat) and orbital
energy (∆Eorb) efficiently offset the Pauli repulsion of two reacting fragments. Moreover,
the Bn group with structural flexibility could weaken the steric hindrance from the CPh3
group, contributing to the low relative Gibbs free energy of transition state G1-I-re-TS2 (1.1
vs. 2.4 kcal·mol−1 for G1-I-si-TS2). The noncovalent interaction (NCI) plots in Figure S7,
Supplementary Materials, also reveal a large green region in G1-I-re-TS2, associated with
the stabilizing CH2· · ·π interaction between the Bn group in ketimine and CPh3 group in
the catalyst.

Figure 5. (a) ASM analysis of aza-Henry reaction between N-Boc ketimine (R1a) and nitromethane
(R2) along the reaction coordinate projected onto the C13· · ·C15 distance for re- and si-pathways.
(b) Evolution of ∆Eint of two energy components along the reaction coordinate.

When the ketimine R1b with a small N-COOEt group was used as a reactant in the
catalytic aza-Henry reaction, the repulsion between the N-protected group in R1b and
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CPh3 group in G1 was significantly decreased. Accordingly, the ∆∆G of the two competing
transition states (G1-1b-I-re and G1-1b-I-si in Figure 6 and Figure S8) was decreased to
0.4 kcal·mol−1, leading to low stereoselectivity. The inferior enantioselectivity for R1b was
also observed in the experiment [44]. In contrast to R1a, the charge accumulated on the O12
atom in R1b was slightly low (−0.580 e vs. −0.584 e in R1a). In addition, the H16· · ·O12
distances in G1-1b-I-re-IM2 and G1-1b-I-si-IM2 were 1.976 and 1.986 Å, respectively, which
were longer than those in the corresponding intermediates for R1a (1.950 and 1.917 Å).
Due to weak catalyst–R1b interactions, more energy was required to deform R1b to the TS
geometries. Accordingly, the ∆E 6=strain values of G1-1b-I-re-TS2 and G1-1b-I-si-TS2 (11.3
and 12.7 kcal·mol−1) were more destabilizing than that of G1-I-re-TS2 (9.8 kcal·mol−1),
leading to higher activation barriers.

Figure 6. Optimized structures and the relative Gibbs free energy (kcal·mol−1) of transition states
G1-1b-I-re-TS2 and G1-1b-I-si-TS2 in the C–C bond formation step in the aza-Henry reaction between
ketimine (R1b) and nitromethane (R2) catalyzed by guanidine G1.

We then removed a phenyl in G1 to obtained guanidine–amide catalyst G2. The
optimized geometries of the two key transition states (i.e., G2-1a-I-re-TS2 and G2-1a-I-
si-TS2) in the C–C bond formation step were shown in Figure 7 and energy profile was
in Figure S9, Supplementary Materials. Similar to G1, the re-face attack pathway was
still more favorable than the si-face attack pathway in model I. However, the ∆∆G of
the two competing transition states (G2-1a-I-re-TS2 and G2-1a-I-si-TS2) was decreased to
0.8 kcal·mol−1, associated with low selectivity (ee = 68%). Thus, the bulky CPh3 substituent
was the key structural unit for asymmetric induction in the chiral guanidine–amide catalyst
G1. The steric repulsion between N-Boc ketimine and CPh3 substituent in G1 increased
the Pauli repulsion as well as the strain energy of the reacting fragments in the chiral-
controlling step, contributing to the excellent stereochemical outcomes in the asymmetric
aza-Henry reaction of N-Boc ketimine.
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Figure 7. Optimized structures of transition states and the relative Gibbs free energies (kcal·mol−1)
in the aza-Henry reaction between N-Boc ketimine (R1a) and nitromethane (R2) catalyzed by guani-
dine G2.

2.2.4. Turnover Frequency (TOF) Analysis

To evaluate the efficiency of the catalyst G1 along four pathways in Figure 3, the
theoretical turnover frequency (TOF) of the catalytic cycle was calculated [56]. As shown
in Table 1, G1-1a-I-re-IM2 ~ G1-1a-II-si-IM2 were predicated to be TOF-determining inter-
mediates, and G1-1a-I-re-TS2 ~ G1-1a-II-si-TS2 were the TOF-determining transition states.
The TOF value along the re-face pathway in model I was 2.06 × 1010 s−1, which was higher
than those of other three pathways. That is, G1 exhibited better catalytic efficiency when
the Henry reaction of N-Boc ketimine R1a occurred along the I-re-pathway.

Table 1. Turnover frequency (TOF) of the catalytic cycle of aza-Henry reactions of isatin-derived
ketimine (R1a) and nitromethane (R2) along four pathways. TDI and TDTS are the TOF-determining
intermediates and TOF-determining transition states, respectively.

Path TDI TDTS TOF (s−1) Product

I-re G1-1a-I-re-IM2 G1-1a-I-re-TS2 2.06 × 1010 P-R (major)
I-si G1-1a-I-si-IM2 G1-1a-I-si-TS2 2.98 × 108 P-S
II-re G1-1a-II-re-IM2 G1-1a-II-re-TS2 1.24 × 1010 P-R
II-si G1-1a-II-si-IM2 G1-1a-II-si-TS2 1.03 × 1010 P-S

Based on the results above, a working model was proposed to explain the activation
of the reactants as well as the chiral induction effect of the guanidine–amide catalyst in
asymmetric aza-Henry reactions. As shown in Figure 8, three factors were important for
the high level of stereoselective outcomes in the catalysis, including: (i) intramolecular
hydrogen bonding between the amide skeleton and imine unit of guanidine enhanced
the stability of catalyst, and fixed the position of the bulky CPh3 group in the chiral
environment; (ii) N-Boc in the ketimine was placed away from the CPh3 group, avoiding
the unfavorable steric repulsion from the CPh3 group; and (iii) the nitronate was oriented
by hydrogen bonding from the imine moiety of guanidine for the favorable re-face attack
for predominant R-configuration products.
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Figure 8. Origin of enantioselectivity in the aza-Henry reaction.

2.3. Design of New Catalysts

In 2012, Lambert et al. developed a chiral 2,3-bis(dialkylamino) cyclopropenimine for
the Michael reaction of a glycine imine substrate. The strong basicity of the cyclopropen-
imine moiety accelerated the deprotonation of glycine imine. In addition, the alcohol
moiety of the catalyst activated methyl acrylate via H-bonding, contributing to the high
enantioselectivity results [57]. Feng and Liu found that the modified guanidine–amide with
1,2-diphenylethylcarbamoyl and the 2,6-difluorobenzenesulfonamide group was efficient in
the asymmetric catalysis [58]. Inspired by the excellent performance of cyclopropenimine in
Brønsted base catalysis, we modified the structure of G1 by replacing the guanidine moiety
with cyclopropenimine. In addition, the diamine with a 2,6-difluorob-enzenesulfonamide
group was introduced into the molecular skeleton of the catalyst. Two new catalysts
(G3 and G4) were designed (Scheme 4), and the corresponding optimized structures are
shown in Figure 9. The mechanism of aza-Henry reaction between N-Boc ketimine (R1a)
and CH3NO2 catalyzed by G3 and G4 in low-energy model I were studied at the same
theoretical level to evaluate their catalytic performance as well as chiral induction effect.
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Figure 9. Optimized geometries of catalysts G3 and G4. The distances are in Å. The H atoms in
phenyl and cyclohexyl groups are omitted for clarity.

The calculations indicated that the reaction mechanisms in the presence of G3 or G4
were the same as that of G1. Due to the strong basicity of cyclopropenimine moiety, the
energy barriers associated with the activation of CH3NO2 were decreased to 7.9 kcal·mol−1

for G3, and 7.2 kcal·mol−1 for G4. When protonated G3 interacted with N-Boc ketimine
R1a, the molecular complexes G3-re-IM2 and G3-si-IM2 were formed, in which the amide
moiety activated ketimine by hydrogen bonding. Compared to G3-si-IM2, the N-Boc in
G3-re-IM2 was closer to the six-membered ring of the chiral skeleton as well as the CPh3
group, with a distance of about 2.51 Å and 2.46 Å, respectively. Suffering from the steric
repulsion from the catalyst, the relative Gibbs free energy of transition state G3-re-TS2 in
the C–C bond formation along the re-face attack pathway was slightly higher than via the
transition state G3-si-TS2 by 0.3 kcal·mol−1 (Figure 10). Consequently, the product with
S-configuration was formed with slight predominance.

Figure 10. Optimized structures and the relative Gibbs free energies (in kcal·mol−1) of two competing
transition states (G3-re-TS2 and G3-si-TS2) in the C–C bonding formation step of the aza-Henry
reaction catalyzed by G3. The distances are in Å.

When G4 was used as the catalyst, the O9· · ·H13 and N3· · ·H11 intramolecular hy-
drogen bonding weakened its structural flexibility (Figure 9). The molecular complexes G4-
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re-IM2 and G4-si-IM2 were formed, in which the cyclopropenimine activated the CH2NO2
anion, and N10-H11 as well as the N12-H13 moiety interacted with ketimine R1a by double
hydrogen-bonding. In the following step, the C–C bond was constructed via transition state
G4-re-TS2 or G4-si-TS2, alternatively (Figures 11 and 12). Compared to G4-re-TS2, the N-Boc
group of ketimine in G4-si-TS2 was closer to 2,6-difluorobenzenesulfonamide, Ph group in
the chiral backbone, as well as Cy group in the guanidine moiety. This unfavorable steric
hindrance made G4-si-TS2 less stable than G4-re-TS2 by 6.3 kcal·mol−1. The activation
barrier from G4-si-IM2 to G4-si-IM3 along the si-pathway was 3.1 kcal·mol−1, which was
higher than ∆G 6= from G4-re-IM2 to G4-re-IM3 along the re-pathway (1.9 kcal·mol−1), con-
tributing to the predominant formation of P-R (inconsistent with G1). In addition, because
G4-re-IM2 was 5.1 kcal·mol−1 lower than that of G4-si-IM2, the catalyst concentration could
be higher in the G4-re-IM2 reaction system.

Figure 11. Optimized structures and the relative Gibbs free energies (in kcal·mol−1) of two competing
transition states (G4-re-TS2 and G4-si-TS2) in the C–C bonding formation step of the aza-Henry
reaction catalyzed by G4. The distances are in Å.

Therefore, the synergistic effects of the stronger Brønsted base (i.e., cyclopropenimine)
and dual hydrogen bonding donor accelerated the activation of CH3NO2 and governed
the facial selectivity in substrate binding, contributing to good reactivity and selectivity.

According to synthesis investigation on guanidine derivatives with 1,2-diphenylethane-
1,2-diamine groups by Feng and Liu [59], and guanidine–cyclopropenimine proton sponges
by Dudding [58], we proposed a possible synthesis route for a new catalyst, G4 (Scheme 5).
We expected that these results would be helpful for the development for the new catalytic
system in the aza-Henry reaction of ketimine.
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Figure 12. Energy profiles for aza-Henry reaction between N-Boc ketimine (R1a) and nitromethane
(R2) catalyzed by G4 along re-face and si-face pathways, respectively.

Scheme 5. A possible synthesis route of catalyst G4.

3. Materials and Methods

All DFT calculations were performed with the Gaussian 09 program [60]. The struc-
tures were optimized using the M06-2X [61] -D3 [62] function with 6-31G(d,p) basis set, and
characterized by the vibrational frequency analysis at 243 K. The SMD solvation model [63]
for toluene was employed in the structure optimization. The intrinsic reaction coordinate
(IRC) [64] paths were traced to check the energy profiles connecting each transition state
to the associated minima of the proposed mechanism. Single point energy was obtained
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using the same functional and 6-311+G(d,p) basis set. Natural bond orbital (NBO) [65] and
reactivity indices (electrophilicity index ω and nucleophilicity index N) analysis for the
reactants and the key intermediates were performed at the M06-2X-D3/6-311+G(d,p)(SMD,
toluene) theoretical level. The gas-phase proton affinity (PA) [66], defined as the enthalpy
change (∆H) of the deprotonation reaction (Equation (1)), was used to evaluate the reactivity
of the nitrogen atoms in guanidine (G):

GH+ (g)→ G (g) + H+ (g) ∆H = PA (1)

To gain insights into the factors affecting activation barriers in the reaction process,
we performed activation strain model (ASM) [67] (or distortion/interaction model [68])
analysis. Accordingly, the energy barrier (∆E) was decomposed into distortion energy
(∆Estrain) and interaction energy (∆Eint) (Equation (2)):

∆E = ∆Estrain + ∆Eint (2)

In addition, the interaction energy (∆Eint) between the strained reactants was further
decomposed into electrostatic interactions (∆Velstat), orbital interactions (∆Eoi), and Pauli
repulsions (∆EPauli) by energy decomposition analysis (EDA) (Equation (3)) [69]. The
EDA and the fragmental orbital interaction analysis were performed with the Amsterdam
density functional (ADF) program package [70] at the M06-2X/TZ2P theoretical level.

∆Eint = ∆Velstat + ∆EPauli + ∆Eoi (3)

Atom in molecule (AIM) analysis was carried out using Multiwfn software [71] to
reveal the inter- and intramolecular interactions between catalyst and reactant. A positive
or negative Laplacian value of the electron density (ρ) at the (3, −1) bond critical point
(BCP) indicates that the electron density is divergent or aggregated, respectively [72,73].
Various possible conformations of the protonated guanidine species were generated by
Material studio software and optimized with Gaussian 09 program. Two low-energy
conformers were studied in the catalytic reaction.

4. Conclusions

The DFT method was adopted to study the reaction mechanism and the origin of
enantioselectivity of the aza-Henry reaction between isatin-derived N-Boc ketimine and
nitromethane catalyzed by the guanidine–amide catalyst. The calculations showed that
the catalytic reaction occurred via a three-step mechanism. The deprotonation of ni-
tromethane was the rate-determining step (RDS), while the C–C bond formation was the
chiral-controlling step. The intramolecular hydrogen bonding formed between the amide
skeleton and imine unit of guanidine enhanced the rigidity of catalyst, facilitating the
imine and amide moiety to simultaneously interact with CH3NO2 and N-Boc ketimine by
hydrogen bonding. The repulsion between the CPh3 group in guanidine and the N-Boc
group in ketimine played an important role in controlling the enantioselectivity of the prod-
uct. An unfavorable steric arrangement at the si-face attack pathway enhancing the Pauli
repulsion energy as well as strain energy of the reacting species, leading to a predominant
R-configuration product. The new catalysts with cyclopropenimine and sulfonamide unit
were designed. The strong basicity of the cyclopropenimine moiety accelerated the activa-
tion of CH3NO2 by decreasing the energy barrier in the deprotonation step. The hydrogen
bonding from diamine oriented ketimine well. The repulsion between the N-Boc group in
ketimine and 2,6-difluoro-benzenesulfonamide and Cy groups in the catalyst raised the
energy of the C–C bond formation transition state along the si-face attack pathway, leading
to the formation of a predominant R-configuration product.

Supplementary Materials: The following are available online. Table S1: Comparison of key geomet-
ric parameters obtained by experiments and theoretical calculations at the M06-2X-D3/6-31G(d,p)
(SMD, toluene) level; Figure S1: Contour line maps of Laplace field for four intermediates. The blue
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points represent BCPs, and the solid and dashed lines represent the areas with positive and negative
Laplacian of electron density, respectively; Figure S2: Selected bond critical points with corresponding
Laplacian (∇2ρ) and electronic density (ρ) values for four transition states G1-I-re-TS2 ~ G1-II-si-TS2
by AIM analysis; Figure S3: Schematic molecular orbital interaction diagram for transition state
G1-I-re-TS2, constructed by G1-R2 (Frag. 1) and N-Boc ketimine (Frag. 2) fragments obtained with
the ADF program; Figure S4: Schematic molecular orbital interaction diagram for transition state
G1-I-si-TS2, constructed by G1-R2 (Frag.1) and N-Boc ketimine (Frag. 2) fragments obtained with the
ADF program; Figure S5: Optimized geometries of transition states G1-I-re-TS2-a ~ G1-II-si-TS2-a.
Relative Gibbs free energies are given in kcal·mol−1; Figure S6: Relaxed potential energy scan of
guanidine cation, calculated by scanning the dihedral angle N5-C1-N2-Cy (a) and N5-C1-N3-Cy (b)
at M06-2X-D3/6-31G(d,p)(SMD, toluene) theoretical level; Figure S7: Noncovalent interaction (NCI)
plots near bulky CPh3 group areas for G1-I-re-TS2 ~ G1-II-si-TS2. Strong and attractive interactions
are blue, weak interactions are green, and strong and repulsive interactions are red; Figure S8: Energy
profiles for aza-Henry reaction between N-COOEt ketimine (R1b) and nitromethane (R2) catalyzed
by guanidine (G1) along re-face and si-face pathways in model I; Figure S9: Energy profiles for
aza-Henry reaction between N-Boc ketimine (R1a) and nitromethane (R2) catalyzed by guanidine
(G2) along re-face and si-face pathways in model I.
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