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Phenol is a hazardous organic chemical that introduced into the
environment by industrial and pharmaceutical discharges. As a
versatile option for phenol removal, adsorption would be viable if
it accompanying with low cost adsorbents. This article described a
natural, very cheap and local available adsorbent for phenol
removal. Phenol showed a high affinity to Citrullus colocynthis
waste ash which mainly composed of SiO2 (41.6%), Al2O3 (17.3%)
and MgO (15.9%). Up to 70% of phenol adsorbed in the first 30min
of agitation. The phenol removal was increased by increasing
adsorbent dose (0.5–10 g/L) and decreasing pH (2–12) and pollu-
tant concentration (10–100mg/L). The positive value of ΔH° in
thermodynamic data (0.06) revealed that the process is endo-
thermic. The high and positive value of ΔS° (13.01) and negative
values of ΔG° (− 5.36 to − 7.28), showed a high affinity of phenol to
the adsorbent and the spontaneous nature of the adsorption. Iso-
therm modelling revealed that the phenol molecules adsorbed in
multilayer with the maximum adsorption capacity of 173.2mg/g.
The rate limiting step in the sorption process was chemisorption,
based on the kinetic data.
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Table 1
The XRF analysis of the Citrullus colo

Element SiO2

Percent 41.6
ubject area
 Chemical Engineering

ore specific subject area
 Adsorption

ype of data
 Table, figure

ow data was acquired
 After sorption process, the residual phenol concentrations were deter-

mined using DR-5000 spectrophotometry (UV–vis) at 500 nm.

ata format
 Analyzed

xperimental factors
 The adsorbent was prepared from a local waste material. Citrullus

colocynthis fruit wastes heated at 550 °C for 4 h in the presence of oxygen
to produce ash.
xperimental features
 The adsorption of phenol was investigated as a function of contact time,
dose, pH, phenol concentration. Kinetic, isotherm and thermodynamic
modeling also presented.
ata source location
 Gonabad, Khorasan Razavi province, Iran

ata accessibility
 Data are included in this article.
Value of the data

� Present data described a very cheap and effective waste material for phenol removal from water.
� FTIR and XRD data for Citrullus colocynthis waste ash are given.
� Data on the effect of operational variables (contact time, adsorbent dose, pH and phenol con-

centration) and kinetic, isotherm and thermodynamic models for phenol removal covered.
� The data will be informative to identify the capacity of the adsorbent and rate limiting step of the

process.
1. Data

Phenol recognized as a priority pollutant by US. Environmental Protection Agency [1]. Wastewater
treatment is a key factor to prevent water bodies from being contaminated by phenol and its sec-
ondary derivatives [2]. Among the physical, chemical and biological techniques, adsorption con-
sidered a very effective, environmental friendly and versatile choice for waste streams treatment [3–
5]. To have a viable prospective in sorption process, many researchers attempt to explore low cost
adsorbents for decontamination of polluted waters [6–10].

On this exploration, we report an adsorbent that prepared from a local available and low cost
waste material.

The adsorbent was characterized using X-ray fluorescence (XRF) for elemental analysis and X-ray
diffraction (XRD) techniques. The elemental composition of Citrullus colocynthis wastes ash shown in
Table 1. As seen, SiO2 and Al2O3 were among the major chemical constituents of the adsorbent. The
XRD pattern of the adsorbent also shown in Fig. 1. The IR spectra of C. colocynthis wastes ash in
Infrared spectroscopy which is an analytical tool that provides information on the chemical structure
of material presented in Fig. 2.
cynthis wastes ash.

Al2O3 MgO Fe2O3 CaO MnO
17.3 15.9 11.9 1.6 0.4



Fig. 1. The XRD pattern of the Citrullus colocynthis wastes ash.

Fig. 2. The IR spectra of Citrullus colocynthis wastes ash.
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2. Adsorbent preparation, materials and solutions, experimental design, measurements

To prepare the adsorbent, the C. colocynthis fruit wastes washed with deionized water and then
dried in oven at 80 °C. The dried materials then heated in furnace at 550 °C for 4 h in the presence of
oxygen to produce ash. Next, ash strained using a 20 mesh sieve and kept in a dry environment for
following use.

All the experiments were performed in batch sorption mode on aqueous phenol solutions. After
adjusting the variable parameters for each run, the solution filtered and then analyzed for residual
phenol. The phenol concentration was determined by spectrophotometer in 500 nm according to the
standard methods for the examination of water and wastewater [12]. The removal efficiency then
calculated using the following equation:

Removal %ð Þ ¼ C0−Cf

C0

� �
� 100 ð1Þ

In which C0 and Cf are the initial and final concentration of phenol.
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3. The effect of adsorbent dose

Adsorbent dose is an important parameter in the sorption process which determine the available
sites for adsorbate attachment to the surface. In this work, the removal efficiency determined by
adjusting the adsorbent dose in the range of 0.5–10 g/L. As shown in Fig. 3, the phenol removal
increased considerably by adsorbent dose and considerable increase in removal observed when the
adsorbent dose adjusted beyond 3 g/L.
4. The effect of initial phenol concentration

The phenol removal efficiency as a function of initial phenol concentration is shown in Fig. 4. As
shown, the adsorption decreased by phenol concentration.
5. The effect of solution pH

The effect of solution pH in the range of 2–12 on phenol adsorption is shown in Fig. 5. As seen, the
removal decreased from about 78% to 58% when pH decreased from 2 to 12.
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Fig. 3. Phenol removal as a function of adsorbent dose (phenol: 50mg/L, time: 60min).
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Fig. 4. Phenol removal as a function of initial concentration (adsorbent: 3 g/L, time: 60min).
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Fig. 5. Phenol removal as a function of pH (phenol: 50 ppm, adsorbent: 3 g/L, time: 60min).

Table 2
Thermodynamic parameters of phenol adsorption.

Temperature (K) Ce (mg/L) ΔG° (kJmol−1) ΔH° ΔS°

293 18.12 −5.365 0.062714 13.01442
303 15.1 −6.016
313 13.4 −6.538
323 11 −7.285
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6. Thermodynamic modeling

The effect of solution temperature on adsorption was determined by performing the experiments
in temperatures ranged from 20 to 50 °C. Three most important thermodynamic parameters are ΔH°,
ΔS° and ΔS° which are standard enthalpy, standard entropy and standard free energy, respectively.
The following equations were used to calculate these parameters [13]:

ΔG1¼−RT ln KL ð2Þ

ln KL ¼
ΔS
R

−
ΔH1
RT

ð3Þ

In the Eqs. (2) and (3), KL, R and T are the Langmuir constant (L/mg), the universal gas constant
(8.314 J/mol K) and the absolute temperature of the solution (K). The increasing the adsorption effi-
ciency by temperature as shown in Fig. 5 as well as the positive sign of ΔH° in Table 2, indicates that
the process is endothermic in nature.

The high and positive value of ΔS° in thermodynamic experiments showed a high affinity of
phenol to the adsorbent and the increasing randomness during the sorption process. Negative sign of
ΔG° also revealed that the adsorption is spontaneous (Figs. 6–8).
7. Kinetic modeling

Kinetic modeling is an important part of a sorption process that investigate the sorption rate in
time. This parameter is important in the economy of the process because it determine the volume of
real sorption reactors. The data fitted with three most used models that presented in Table 3. The
higher conformity coefficient (R2) for Pseudo-second-order kinetic model in this experiments
(Table 4), indicate that the rate of sorption process controlled by chemisorption.
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Fig. 7. Fitting the experimental data with the (a) Pseudo-first-order, (b) Pseudo-second-order and (c) Intraparticle diffusion
kinetic model.
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Fig. 6. Phenol removal as a function of temperature (phenol: 50 ppm, adsorbent: 3 g/L, time: 60min).
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Fig. 8. Fitting the experimental data with (a) Langmuir, (b) Freundlich, (c) Dubinin–Radushkevich and (d) Temkin models.
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Table 3
Kinetic models used for phenol adsorption [11].

Kinetic model Formula Plot

Pseudo-first-order kinetic model Log qe−qt
� �¼ log qe−

k1
2:303 :t log(qe–qt) vs. t

Pseudo-second-order kinetic model t
qt

¼ 1
k2 qе2 þ 1

qе :t
t
qt
vs. t

Intraparticle diffusion kinetic model qt¼ kp:t0:5þc qt vs. t0.5

Table 4
Constants obtained from kinetic models for TC adsorption.

C0[mg/L] qe, exp [mg/g] Pseudo-first order Pseudo-second order Intra-particle diffusion

qe,cal [mg/g] K1 [min−1] R2 qe,cal [mg/g] K2 [min−1] R2 Kp [mg/gmin−0.5] R2

10 85 4.09 −0.03 0.76 28.58 0.06 0.99 0.72 0.77
20 48.1 6.99 −0.05 0.96 48.01 0.03 0.99 1.1 0.84
50 111.6 20.64 0.031 0.81 112.4 0.011 0.99 3.62 0.77

Table 5
Isotherm models for phenol adsorption [11].

Isotherm Linear form Plot Parameter

Langmuir Ce
qe ¼ 1

qm Ceþ 1
qmb

Ce
qe

vs. Ce q max (mg/g) 173.2
KL (L/mg) 0.092
R2 0.986

Freundlich Log qe¼ log KF þ 1
n log Ce log qe vs. log Ce KF(mg/g(L/mg)1/n) 1391.8

n 2.083
R2 0.967

Temkin qe ¼ B1ln:kt þ B1ln Ce qe vs. ln Ce kt (L/mg) 0.999
B1 34.85
R2 0.957

Dubinin–Radushkevich ln qe ¼ ln qm −βϵ2 qe vs. ε2 q max (mg/g) 107.29
β 8.86
R2 0.71
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8. Equilibrium modeling

In general, the higher the capacity of adsorbent toward a specific contaminant, the lower cost for
the regeneration of the sorption media. Isotherm equations model the sorption data when the
adsorption reached equilibrium. The isotherm equations used in the modeling of phenol removal are
summarized in Table 5. The correlation coefficient of 0.99 for Freundlich model indicates that the
adsorption occurred in multilayer. The highest monolayer capacity of adsorbent in this experiments
was 173.2mg/g.
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