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Abstract: Cardiac diseases including heart failure (HF), are the leading cause of morbidity and
mortality globally. Among the prominent characteristics of HF is the loss of β-adrenoceptor (AR)-
mediated inotropic reserve. This is primarily due to the derangements in myocardial regulatory
signaling proteins, G protein-coupled receptor (GPCR) kinases (GRKs) and β-arrestins (β-Arr) that
modulate β-AR signal termination via receptor desensitization and downregulation. GRK2 and
β-Arr2 activities are elevated in the heart after injury/stress and participate in HF through receptor
inactivation. These GPCR regulators are modulated profoundly by nitric oxide (NO) produced
by NO synthase (NOS) enzymes through S-nitrosylation due to receptor-coupled NO generation.
S-nitrosylation, which is NO-mediated modification of protein cysteine residues to generate an
S-nitrosothiol (SNO), mediates many effects of NO independently from its canonical guanylyl
cyclase/cGMP/protein kinase G signaling. Herein, we review the knowledge on the NO system in
the heart and S-nitrosylation-dependent modifications of myocardial GPCR signaling components
GRKs and β-Arrs.
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1. Introduction

G protein-coupled receptors (GPCRs) play important roles in the regulation of cardiac
function. Upon agonist stimulation, GPCRs are phosphorylated by GPCR kinases (GRKs)
and thereafter associate with β-arrestins (β-Arr), which regulate receptor desensitization
and internalization. Nevertheless, activities of these regulatory molecules are augmented
after stress/injury and result in excessive signal uncoupling and receptor desensitization
which contribute to pathogenesis [1,2]. Thus, inhibition of the pathological upregulation of
these myocardial proteins is known to be therapeutic [3–5].

An emerging important regulator of GPCR signaling is nitric oxide (NO), which
in itself has key cardiovascular regulatory properties [6]. NO modulates cardiovascular
function through two different pathways: through activation of soluble guanylyl cyclase
(sGC)/cGMP-dependent protein kinase G (PKG) pathway and through a post-translational
modification, so called S-nitrosylation, that is the coupling of NO moiety to cysteine
residues of target proteins [6,7]. S-nitrosylation mediates many significant cardiac effects
of NO [8–10]. Important GPCR molecules in the heart including β-adrenoceptors (βARs),
GRKs and β-Arr can be modulated by S-nitrosylation that is triggered by NOS-mediated
generation of NO [11–14]. Here, we will review the importance of the NO system in the
heart and findings on S-nitrosylation-dependent modifications of the GPCR regulators,
GRKs and β-Arrs.

1.1. NO: An Essential Signaling Molecule

Nitric oxide (NO) is a gaso-transmitter, which was initially characterized as endothelium-
derived relaxing factor (EDRF) [15]. NO is a small molecule and soluble in both aqueous
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and hydrophobic environments, thus it can easily diffuse across biological membranes
which makes it a suitable biological messenger. Despite its simple structure, it is involved
in many complex reactions and mediates numerous physiological functions [15,16]. It
can exert control on vascular tone, inhibit platelet activity, regulate gene transcription,
influence the immune system, affect neuronal development and behavioral responses,
regulate cardiac function and finally has activity to fight tumor progression and bacterial
infections [16,17].

NO is involved in important biological and physiological reactions which are divided
into two categories: direct and indirect [18]. The direct effects are the chemical reactions that
allow NO to react with a biological target molecule directly. Indirect effects, on the other
hand, require the reaction of NO with oxygen and superoxide to produce reactive nitrogen
species (RNS), which will ultimately react with the biological targets [7,18]. Normally,
direct effects occur at low concentrations of NO while indirect effects require higher NO
concentrations. Indirect effects lead to either nitrosative or oxidative stress [18]. Thus, NO
is a vital molecule at physiological concentrations, however its prolonged production can
lead to various disease states including inflammation and cancer [19,20].

NO is mainly produced by NO synthases (NOS) or by the conversion of endogenous
substances such as inorganic nitrite [10,21]. Three forms of NOS catalyzes the synthesis
of NO, NOS1 (neuronal or nNOS), NOS2 (inducible or iNOS) and NOS3 (endothelial or
eNOS) [9]. They convert L-arginine and oxygen to L-citrulline and NO in the presence
of nicotinamide-adenine-dinucleotide phosphate (NADPH) as co-substrate and tetrahy-
drobiopterin (BH4), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN) as
cofactors [9,22]. NOS generates NO through two steps. The first step is the L-arginine
hydroxylation to Nω-hydroxyl-L-arginine and the second step is the oxidation of Nω-
hydroxyl-L-arginine into L-citrulline and NO [23]. NOS is regulated by other molecules
such as NADPH and calmodulin (CaM) [24,25].

NOS isoforms differ significantly in their regulation, distribution and activity. nNOS
and eNOS are constitutively present in many cell types while iNOS is induced under
stress conditions [7]. Enzymatic activity of all isoforms depends on substrate and cofactor
availability. Reduced substrate availability was reported to result in the generation of
superoxide rather than NO [18]. On the other hand, another substrate oxygen dependency
differs among each isoform. While eNOS is less affected by oxygen fluctuations, nNOS
is the most sensitive isoform [26]. In case of low O2, NOS forms superoxide [27]. Thus,
translocation of NOS to another compartment with a different oxygen levels alter its
activity [18].

1.1.1. Endothelial Nitric Oxide Synthase

Under basal conditions, eNOS is localized to invaginations of sarcolemma called
caveolae [28]. Here, it is maintained in an inactive state as it interacts with caveolin-1 or
3 which are tonic eNOS inhibitors. Upon agonist stimulation, NOS translocates fromthe
membrane and start to interact with regulator proteins, CaM and hsp90, as Ca2+ levels
increase, which in turn leads to enzyme activation [24]. Activated NOS translocates to
the cytosol [6]. eNOS can also be activated independently from intracellular Ca2+ and
induce a long-lasting NO release. Fluid shear stress, stretch, estrogens, vascular endothelial
growth factor, insulin and bradykinin are such stimuli that activate the enzyme in this
manner [6,29]. eNOS is predominantly expressed in endothelial cells with detectable
expression in cardiomyocytes, platelets and some neurons [6,24].

eNOS-derived NO is mainly responsible for vasodilation regulating blood vessel tone.
Additionally, it mediates anti-proliferative, anti-aggregation and anti-apoptotic effects of
the endothelium. Thus, it is important in preventing atherosclerosis [24]. Decreased eNOS
expression may result in endothelial dysfunction. Conversely, increased eNOS is also
reported to be associated with a cardiovascular risk due to excess ROS production [30].

eNOS activity is regulated via various modifications including phosphorylation,
protein–protein interactions, acetylation, and S-nitrosylation [31,32]. Ser1177 is its main
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activation site while Thr495 is the inhibitory site to induce activity [33,34]. Phosphorylation
of Ser615, Ser633 and Tyr81 are also additional sites that stimulates NO synthesis. How-
ever, phosphorylation of Ser114 and Tyr657 decreases NO production through eNOS [6].
Deacetylation of eNOS, on the other hand, decreases NO production due to diminished
CaM association [32]. Moreover, in a product feedback mechanism, eNOS is modified by
S-nitrosylation on Cys94 and Cys99 by NO [32].

1.1.2. Inducible Nitric Oxide Synthase

iNOS is barely detected under normal conditions and its expression is stimulated
in response to pro-inflammatory or oxidative conditions. iNOS is primarily found in
macrophages although its expression levels can be induced in different cell types including
cardiomyocytes, neurons, smooth muscle cells and hepatocytes [35]. When it is expressed,
it is constantly active and is not regulated by intracellular Ca2+ concentrations, in contrast
to eNOS and nNOS [6,24]. Its catalytic activity is 100–1000 times higher than the other
isoforms, thus maintains a high NO output. NO can inhibit enzymes containing iron such
as those involved in mitochondrial electron transport and also interact with DNA of target
cells and cause fragmentation. Through these effects, it can act as cytostatic and cytotoxic
on invading pathogens or tumor cells, thus iNOS signaling is critical for inflammatory
response and the immune system. However, when dysregulated it may also harm healthy
cells. iNOS has been implicated in various pathologies including cardiovascular diseases,
diabetes, cancer, sepsis and neurodegeneration [36].

1.1.3. Neuronal Nitric Oxide Synthase

The initial characterized NOS isoform, nNOS, is constitutively expressed primarily in
nervous system and also cardiomyocytes and vascular smooth muscle cells. It is regulated
by Ca2+ and CaM and typically is located within the endo- or sarco-plasmic reticulum.
Five splice variants of nNOS have been demonstrated: nNOSα, nNOSβ, nNOSµ, nNOSγ
and nNOS2 [37]. Diverse subcellular localization of nNOS contributes to various functions.
In CNS, nNOS modulates synaptic transmission and thereby plays a role in regulating
learning and memory. It has also been implicated in central regulation of blood pressure and
peripheral vascular tone modulation [24]. NO released by nNOS containing nitrergic nerves,
which innervate smooth muscles in blood vessels, mediates a decrease in vascular tone.
In case that eNOS does not function properly, nNOS-mediated vasodilation may become
more prominent [38]. nNOS also produces H2O2 which contributes to vascular relaxation
under physiological conditions and its decline evokes endothelial dysfunction [39].

nNOS signaling is also important for cardiac function. It modulates ion regulation
involving Ca2+ homeostasis and mitochondrial function [37]. To fulfill cardiac functions,
its compartmentation is critical in the heart. It is bound to ryanodine receptors (RyR) on
sarcoplasmic reticulum (SR) membranes, whereas, under stress conditions it translocates
from the SR to the plasma membrane as a protection mechanism against Ca2+ overload [37].
nNOS can be regulated by kinases and also CaM [39,40].

1.1.4. Nitric Oxide Signaling

NO mediates two distinct pathways, one mediated by soluble guanylate cyclase
(sGC) and another through the direct S-nitrosylation of proteins [6,41]. Classically, upon
NO binding to sGC, guanosine triphosphate (GTP) is converted into cyclic guanosine
monophosphate (cGMP), which in turn activates cGMP-dependent kinase (PKG) and
is hydrolyzed by cAMP phosphodiesterase (PDE). Through this pathway, NO mediates
vasodilation, inhibits vascular smooth muscle (VSM) proliferation, diminishes platelet
aggregation, vascular inflammation [42] and positive lusitropic effects [43]. Moreover,
function and phosphorylation of various cardiac proteins such as RyR2, the L-type calcium
channel (LTCC) and phospholamban are affected via the cGMP-dependent pathway [44].

Importantly, and a primary subject of this review, increasing evidence has emerged
over the last decade showing that many effects of NO are mediated via a cGMP-independent
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pathway and one that can affect the activity, cellular localization and regulation through
binding partners of several proteins. This is through NO acting on cysteine residues
through S-nitrosylases generating S-nitrosothiol (SNO) on target proteins generated a
post-translational modification known as S-nitrosylation [9].

1.2. NO-Mediated Signaling: S-nitrosylation

S-nitrosylation is defined by the binding of NO on a thiol (-SH) group of cysteine
residues forming an SNO molecule. The primary sources of NO for this modification are
the three NOS isoforms. Inorganic nitrate and nitrite from endogenous or dietary sources
also contribute to NO formation [45]. Transfer of NO to cysteine residues in target protein
is mediated by two classes of enzymes: SNO synthases and transnitrosylases [46,47]. While
SNO synthases transfer NO from transition metals to cysteine thiol, transnitrosylases
transfer NO between SNO proteins [48]. Trans-S-nitrosylation plays an important role in
the transmission of NO/SNO signal within different compartments of the cell. For example,
although NOS is absent in the nucleus, SNO signaling occurs via trans-S-nitrosylation from
different proteins (e.g., GAPDH) in that compartment [47]. Conversely, SNO is removed
by denitrosylases including S-nitrosoglutathione reductase (GSNOR) and thioredoxin
using NADH and NADPH as electron donors. The equilibrium between S-nitrosylation
and denitrosylation pathways is regulated by SNO-protein abundance rather than NO
production rate [8].

As cysteine thiol-containing proteins are widely available, such proteins are most
likely to be subjected to the regulation via S-nitrosylation. The target protein to be nitro-
sylated can be simple or complex members such as enzymes, G proteins, transcription
factors, transporters and ion channels [49]. As a result of S-nitrosylation, activity, protein
interactions, trafficking, localization and degradation of the target protein are affected [50].
For instance, S-nitrosylation may influence kinase substrate specificity (e.g., ASK1, JNK),
may modify protein isoforms interacting with one another (e.g., β-arrestins), may convert
a protein kinase into a protein nitrosylase (e.g., GAPDH, CDK5, GSK3β) or prevent irre-
versible oxidation [6,47]. While some proteins are activated via S-nitrosylation (such as
dynamin [13], RyR2 [51], β-arrestin2 [13], some others are inhibited such as eNOS [52] and
GRK2 [14].

NOS signaling itself, is also affected by S-nitrosylation. S-nitrosylation of sGC was
also reported to have diminished NO responsiveness [53]. An essential cofactor for eNOS,
BH4 is regenerated by dihydrofolate reductase (DHFR) whose S-nitrosylation is crucial
for its stability and thus the maintenance of eNOS coupling [54]. Importantly, decreased
levels of SNO proteins have been observed in various disease states involving hypoxia.
However, uncontrolled SNO production, termed as nitrosative stress may also contribute
to multiorgan failure [8]. SNO content has shown to be increased in septic shock and acute
respiratory distress syndrome [55,56].

Although all three NOS isoforms produce NO for S-nitrosylation, each isoform can
mediate selective S-nitrosylation of target proteins [57]. Intracellular compartmentalization
of NOS is an important determinant in S-nitrosylation specificity [9,58]. eNOS localized
within the caveolae is in close proximity to LTCC and modulates ion flux through LTCC
S-nitrosylation [9]. eNOS localization on the Golgi apparatus enhances S-nitrosylation
of the Golgi proteins [58]. Within the corporal endothelial cells, eNOS is reported to be
colocalized with GSNOR that catabolizes S-nitrosylated proteins. Thus, eNOS plays a
role in the S-nitrosylation/denitrosylation feedback loop in this tissue [59]. Similarly,
nNOS/GSNOR interaction due to their colocalization maintain skeletal muscle home-
ostasis [60]. Further, nNOS located in sarcoplasmic reticulum (SR) targets the proteins in
this compartment such as RyR1 (in skeletal muscle) and RyR2 (in cardiac muscle) whose
S-nitrosylation alters channel opening probability [35]. Moreover, iNOS-mediated in-
hibitory S-nitrosylation of mitochondrial proteins was demonstrated to initiate apoptotic
programs [61]. iNOS-regulated S-nitrosylation has also been shown to lead to diminished
ER function in obesity [62] and mTOR pathway-related proliferation in melanoma [63].
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Adaptor proteins are claimed to contribute specific substrate cognition by different NOS
isoforms [57]. PSD-95 [64] and CAPON [65] were reported to direct nNOS to the target
protein to be nitrosylated. S100A8/A9 was shown to act as a scaffold for iNOS binding to
GAPDH [57].

1.3. Role of S-Nitrosylation in the HEART

In the cardiovascular system, there are a wide range of factors that undergo S-
nitrosylation [9]. Proteins that are functional in Ca2+ homeostasis, mitochondria, hemoglobin,
as well as sarcomeric proteins and ion channels regulating contractility are targets for S-
nitrosylation by both endogenously produced NO as well by exogenous donors [6,50].
Within the heart, there is a balance between S-nitrosylation and denitrosylation regulated
in concert with NOS and GSNOR. GSNOR, which controls SNO levels by promoting
denitrosylation, is important for cardiac function through regulating vascular tone and
β-AR-activated contractility [66]. GSNOR deficiency was demonstrated to increase regener-
ation post myocardial infarction supporting a cardioprotective role for S-nitrosylation [67].
Conversely, GSNOR overexpression is also shown to protect the heart against sepsis-
induced myocardial depression [68] and chronic β-AR stimulation [69].

S-nitrosylation regulates Ca2+ handling proteins working in concert with phospho-
rylation and plays an essential role cardiac function. S-nitrosylation of RyR2 augments
open channel probability, thus Ca2+ release and catecholamine-induced contractility [51,70].
SERCA S-nitrosylation increases Ca2+ uptake through increased activity [71], whereas
LTCC S-nitrosylation inhibits its function of ion transport [10,72]. Within cardiomyocytes,
nNOS located in SR mediates RyR2 and SERCA S-nitrosylation [51,70,73]. In failing hearts,
nNOS is reported to be transported to the plasma membrane [25] and this translocation
was shown to regulate Ca2+ handling [74]. On the other hand, the caveolae-resident iso-
form, eNOS, S-nitrosylates LTCC [72]. Moreover, S-nitrosylation of phosholamban and
troponin C functioning in parallel with phosphorylation, also plays essential role in cardiac
function [69].

More ion channels participating in excitation–contraction coupling are subject to S-
nitrosylation. For instance, S-nitrosylation of slowly activating delayed rectifier potassium
channel (IKs) channel [75], ultrarapid component of the delayed rectifier (IKur) [76], transient
outward K+ current [77] were all shown to be regulated by S-nitrosylation. Moreover,
nNOS-mediated S-nitrosylation of voltage-gated sodium channel was reported to cause
late sodium current [78]. Sarcomeric proteins are also subject to S-nitrosylation which
results in myofilament desensitization to Ca2+ and depression of contractile activity [79].

Due to the high amount of nitrosylating agents and cysteine consisting proteins in
mitochondria, proteins in that compartment are also subject to S-nitrosylation which mostly
inhibits their activities. S-nitrosylated complex I was shown to mediate attenuated ROS
production during I/R [33]. S-nitrosylated cytochrome c oxidase [80] and F1F0ATPase [81]
has inhibited activity resulting in diminished oxygen and ATP consumption, respectively.
SNO of mitochondrial permeability transition pore (MPTP) blocks its opening and thus
prevents mitochondrial dysfunction leading to cardiomyocyte death [82]. On the other
hand, SNO augments parkin [83] and α-ketoglutarate dehydrogenase [71] activities result-
ing in the modulation of mitochondrial degradation and prevention of oxidative stress.
S-nitrosylation of electron chain proteins were demonstrated to be increased in heart failure
and mediate decreased ATP production [84].

Critical oxygen-responsive elements in cardiovascular system are also regulated via
S-nitrosylation. Alveolar ventilation and perfusion, cardiac muscle performance and
microcirculatory blood flow are modulated through this posttranslational modification
that maintains a crosstalk between NO and oxygen delivery [8]. Reduced O2 delivery in
hypoxia and anemia activates hypoxia inducible factor 1 (HIF-1) that regulates hypoxic
adaptation transcriptionally through NO-mediated S-nitrosylation [85]. A cysteine residue
within hemoglobin (Hb) also exhibits S-nitrosylation to sense oxygen and thereby regulate
vascular tone [86]. Moreover, S-nitrosylation of β2-ARs modulate responses in multiple



Int. J. Mol. Sci. 2021, 22, 521 6 of 17

organs, including airway relaxation in lungs, augmentation of performance in heart and
skeletal muscle [8].

Like other post-translational modifications, S-nitrosylation may also modify protein
function through altering its location and binding partners [48]. For instance, SNO of
GAPDH induces its translocation to the nucleus through binding to Siah1 (and E3 ubiquitin
ligase) and this translocation initiates [10]. Moreover, GOSPEL (GAPDH’s competitor
of Siah1 Protein Enhances Life) is also subject to S-nitrosylation resulting in diminished
GAPDH binding to Siah1 and thus decreased apoptosis [48]. S-nitrosylation competes with
other posttranslational modifications including oxidation and thus prevents thiol(s) from
further oxidation acting as a shield against excessive oxidative stress [87].

Taken together, SNO may exhibit protective or detrimental effects according to level,
location and target protein [10,64,88]. Hyper-nitrosylation mediated by the β-AR results
in SR Ca2+ leak and decreased contractility [66]. Similarly, increased denitrosylation
prevents persistent β-AR activation-mediated LV remodeling [69]. On the other hand,
GSNOR deficiency was also demonstrated to improve SR Ca2+ leak [89] and myocardial
injury [81]. Moreover, in long QT syndrome, a mutation in syntrophin causes aberrant
S-nitrosylation of sodium channels and therefore increased late Na+ currents leading to
cardiac dysfunction [78]. In addition, due to the fact that SNO is a redox-dependent
reaction, increased oxidative stress augments NO consumption and thereby decreases
protein SNO. Additionally, NOS uncoupling leads to ROS production [48]. Therefore,
changes in NOS signaling resulting in dysregulated S-nitrosylation are proposed as a risk
factor for cardiovascular diseases [9,73]. Conversely, SNO can also modify ROS generation
and control redox-active enzymes [10].

1.4. Role of S-Nitrosylation in GPCR Signaling

GPCRs play important roles in a wide variety of physiological and pathological
processes in the cardiovascular system through transducing signals through G proteins.
GPCRs are important targets of S-nitrosylation and NO regulation. Critical GPCRs that
regulate cardiac function include β-ARs where ligand binding leads to a conformational
change in the receptor resulting in the conversion of GDP to GTP. This exchange dissociates
G protein into two units: GTP-bound Gα subunit and Gβγ complex. Both interact with
numerous effectors and mediate different effects [1,2,5].

GPCR activation can initiate regulatory feedback loops to control GPCR signaling
through receptor phosphorylation by GRKs (homologous desensitization) or by second
messenger-activated protein kinases (heterologous desensitization) [4,12]. In addition to
receptor phosphorylation, NO, which is produced following GPCR activation, can also
control GPCR signaling through S-nitrosylation and leads to the inhibition of G protein
coupling [19].

β-ARs are the predominant cardiac GPCR that regulate cardiac function [2]. They play
critical roles both in physiological and pathological conditions and are common targets for
treating cardiovascular disorders. All β-AR subtypes (β1-, β2-, and β3-ARs) are expressed
in the heart but couple to different signaling pathways. β1- and β2-ARs primarily activate
Gs-adenylyl cyclase-cAMP pathway and mediate myocardial contractility in response
to sympathetic nervous system (SNS) activation [1]. β2-ARs are also known to have an
additional coupling to Gi through a PKA-dependent G-protein switching mechanism [90].
While excessive β1AR stimulation exerts detrimental effects via promoting myocyte death
and activation of adverse signaling pathways, β2ARs have been shown to mediate myocyte
survival and have cardioprotective effects [91]. This survival signaling of β2ARs appears
to involve increased eNOS activity [92]. The third subtype, β3ARs couples to both Gs and
Gi and mediates negative inotropy. Although it is expressed at low levels in the heart, it is
a major stimulator of eNOS and nNOS thereby providing cardioprotection [93].

GPCRs are regulated by a dynamic and finely tuned activation–deactivation mech-
anism. As their sustained activation has detrimental effects, regulated termination is
important to maintain normal function [2]. G protein-coupled receptor kinases (GRKs)
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prevent further receptor activation and suppress signaling. GRK phosphorylates ser-
ine/threonine residues of the receptor and facilitates β-Arr recruitment to the receptor [1,4].
Nevertheless, in contrast to classical GRK-mediated phosphorylation of β1 and β2-ARs,
β3-ARs are not subjected to this regulation. Thus, they are resistant to downregulation
and even are upregulated after cardiac injury which makes them uniquely important in
the development of cardiac pathologies [7]. Since β3-ARs robustly couple to NOS-NO
signaling, they are critical to NO regulation and most probably S-nitrosylation in the heart
as well (Figure 1).
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kinase 2; NO, nitric oxide; eNOS, endothelial nitric oxide synthase; nNOS, neuronal nitric oxide synthase. Green arrow is
used to indicate a stimulatory mechanism involved while red bar-headed line indicates an inhibitory mechanism.

GPCRs and β-arrestins regulate GPCR desensitization and internalization through
various posttranslational modifications including ubiquitination [94] and phosphoryla-
tion [95]. GRK2 phosphorylation of β1- and β2-ARs upon agonist stimulation and subse-
quent β-arrestin recruitment followed by receptor internalization have also been shown
to be regulated by S-nitrosylation [14]. S-nitrosylation-mediated GPCR regulation repre-
sents a major mechanism through which NO exerts its various effects [11]. For example,
this modification inhibits GRK2 activity and potentiates cAMP signaling and decreases
internalization.

NO also can directly regulate GPCR activity [19]. NO donors were demonstrated to
inhibit G protein coupling of muscarinic [96] and bradykinin [97] receptors. Treatment with
the NO donor, GSNO, was reported to inhibit α1-AR-mediated vasoconstriction due to
decreased ligand binding and increased S-nitrosylation of the receptor [98]. Likewise, AT-1
receptor S-nitrosylation decreased ligand binding in response to NO-donor treatment [99].
NO donor treatment also can decrease β2-AR-mediated cAMP accumulation [100] and
receptor downregulation while in GSNOR knockout mice, β2-AR expressions were found
to be increased [14].

1.5. Role of S-Nitrosylation in GRK Signaling

GRKs are key molecules in the desensitization and downregulation of ligand-occupied
GPCR activity. Depending on the receptor and the tissue, different GRK subtypes are
involved, for instance GRK2 and GRK5 are the most prominent ones in the heart [101,102].
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They are the primary regulators of β-AR desensitization in response to catecholamines.
Under high catecholamine levels, as in the stressed or failing heart, expression and activity
of GRK2 and GRK5 are increased. This prolonged rise underlies in the pathological β-AR
downregulation and resistance resulting in cardiac dysfunction [103,104].

In addition to canonical functions of GRKs, they also mediate distinct non-GPCR
effects in the heart and emerge as a pleiotropic molecule interacting with many non-GPCR
interactomes and phosphoproteomes [1]. GRK2 binds to structural proteins such as β-
tubulin and HDAC6 and modulates cytoskeletal functions [105,106]. GRK2 also interacts
with heat shock protein 90 resulting in mitochondrial translocation of GRK2 under stress,
which increases oxidative stress and dysregulates metabolism [107]. Insulin receptor
substrate 1 (IRS1) was shown to be another GRK2 substrate, resulting in reduced glucose
uptake and thereby insulin resistance [108]. Moreover, CaM binding to GRK5 induces its
translocation to the nucleus where it phosphorylates HDAC5 and binds to NFAT promoting
pathological hypertrophy [109].

GRK activity is regulated by post-translational modifications and protein–protein
interactions [1,19]. PKA- or PKC-mediated phosphorylation of GRK2 at serine residues
S685 or S29 mediates its translocation to the membrane where it phosphorylates GPCRs
leading to receptor desensitization [110,111]. GRK2 is also phosphorylated by extracellular
signal-regulated kinases [28] at serine residue S670 and by Src at tyrosine residues (Y13, Y86,
Y92) resulting in reduced activity [106,112]. Additionally, GRK5 activity is also decreased
by PKC phosphorylation at serine residues S572, S566, and S568 [113]. On the other hand,
GRK activity is also regulated by GRK-interacting proteins. Caveolin 1 or 3 binding to
GRK2 and CaM binding to GRK5 inhibit their activities [114,115].

Moreover, a cysteine residue of GRK2 in position 340 (C340) has been shown to be
S-nitrosylated both endogenously and exogenously [14]. While Cys340 is the primary
regulatory site, it is also suggested that additional Cys residues may also be subjected
to S-nitrosylation resulting different effects of GRK2 activity by this modification [14].
Inhibitory GRK2 S-nitrosylation confirms the prior findings showing that NO/SNO can
promote GPCR signaling [116,117] since GRK2 inhibition will prevent desensitization of
receptors. GRK6 is also reported to be S-nitrosylated in an age-dependent manner resulting
in enhanced kinase activity and this modification was suggested to contribute Parkinson’s
disease [118] (Figure 2).
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Importantly, GSNOR-deficient mice and mice treated with GSNO have been demon-
strated to exhibit improved βAR signaling and expression following continuous ISO
exposure [14]. Endogenous or exogenous SNOs were shown to inhibit β-arrestin recruit-
ment and GRK2-mediated receptor phosphorylation and desensitization [14]. Inhibitory
GRK2 S-nitrosylation confirms the prior findings that NO/SNO can promote GPCR sig-
naling [116,117]. Additionally, a knock-in (KI) mouse model which has a mutation where
native GRK2 Cys340 is replaced with Ser (GRK2-C340S) was shown to exert GRK2 over-
activity that leads to increased ischemic injury in the heart [12]. Aged GRK2-C340S KI
mice with a global loss of SNO regulation on GRK2 activity have also been demonstrated
to present more pronounced hypertrophy over time compared with age-matched con-
trols [119].

Moreover, inhibition of GRK2 via S-nitrosylation was shown to depend on eNOS.
Binding of GRK2 to eNOS leads to the inhibition of both. Under stress, increased levels
of GRK2 inhibit eNOS resulting in vasoconstriction and remodeling. Conversely, eNOS-
mediated GRK2 inhibition enables β-AR signaling therefore improves cardiac function [12].
This relationship between GRK2 and eNOS results in elevated GRK2 activity decreasing
eNOS activity or vice versa increased NO bioavailability results in inhibited GRK2 activity
via S-nitrosylation acting as an endogenous GRK2 inhibitor. On the other hand, GRK2 was
also demonstrated to be constitutively S-nitrosylated in both eNOS and nNOS expressing
cells [14] but there is no information about the in vivo effects of different NOS isoforms on
GRK2 S-nitrosylation.

Interestingly, S-nitrosylation has opposing effects of GRK2-mediated desensitization
and dynamin-mediated internalization [120]. Internalization of GPCRs, which are either
in clathrin-coated pits or in caveolae, are regulated by dynamin [121]. This large GTPase
binds to eNOS and interacts through S-nitrosylation. This modification augments GTPase
activity of dynamin and facilitates fission of vesicles from the membrane [120]. In the
absence of a ligand coupled to the receptor, dynamin is found in the cytosol bound to
eNOS. Following to the binding of an agonist, dynamin is nitrosylated by eNOS and
recruited to the invaginated vesicle on the membrane. Vesicle scission from the membrane
and receptor internalization are enhanced as a result [19].

1.6. Role of S-Nitrosylation in β-Arrestin Signaling

Among the four-member arrestin family, β-Arr1 and β-Arr2 are well known multi-
functional scaffold proteins that have roles in internalization and desensitization of GPCRs.
They bind to agonist-occupied, GRK-phosphorylated GPCRs where they inhibit further
G protein-coupling leading to decreased responsiveness, known as desensitization and
also promote the binding to clathrin-based vesicles [101,122]. Subsequently, their actions
can be controlled by dynamin [13]. Some receptors (class A receptors, e.g., β2-AR) only
recruit β-Arr2 transiently and translocate into clathrin-coated pits where β-Arr2 disasso-
ciates. They internalize afterwards and recycle to the membrane immediately. However,
class B receptors (e.g., AT1AR) recruit both βarr1 and β-Arr2 and form stable complexes
where they internalize together and are targeted to endosomes for degradation [101,123].
Nevertheless, β1-ARs exhibits a distinct pattern in which β-Arr2 briefly encounters with
the activated receptor and then is localized in clathrin-coated pits where they activate ERK
pathway. β1-ARs do not colocalize with β-Arr2 in internalized structures [123].

β-Arrs are critical elements in GPCR signaling since they not only mediate desensiti-
zation and internalization but also function as transducers activating various pathways
independent of G proteins. For instance, they interact with proto-oncogene Src (c-Src)
resulting its recruitment to the activated receptor and activation of extracellular signal-
regulated kinase (ERK1 or 2) [124]. β-Arrs can scaffold c-Jun amino-terminal kinase (JNK)
and ERK1/2 mitogen-activated protein kinase (MAPK) signaling elements [101]. They also
inhibit NF-KB (nuclear factor kB)-targeted gene expression [125]. Collectively, β-Arrs may
start an additional signaling from their target receptor [19].



Int. J. Mol. Sci. 2021, 22, 521 10 of 17

β-Arrs also degrade second messengers and limit their signals [19]). For example, they
terminate activated Gs-coupled GPCR-mediated-cAMP signals through its degradation
following the interaction with phosphodiesterase (PDE4D) [126]. Upon stimulation of
Gq-coupled muscarinic receptors, β-Arrs binds to diacylglycerol kinase (DGK) that uses
diacylglycerol (DAG) as a substrate and ceases its signaling [127]. Moreover, ligand-
occupied D2 dopaminergic receptors recruit β-Arr2 bound to Akt and phosphatase PP2A
leading to the inactivation of Akt [128].

Binding of β-Arr to the receptor results in a conformational change which allows it to
communicate with signaling intermediates [129]. Depending on the ligand, β-Arr prefers
binding to activated GPCR or undergoing translational modifications such as phosphoryla-
tion [130], ubiquitination [94] and also S-nitrosylation as emerging evidence shows [13].
Ubiquitination is essential for β-Arr-mediated endocytosis. Ubiquitination of the recep-
tor and of β-Arr, catalyzed by E3 ubiquitin ligases, regulates receptor degradation [94].
On other hand, crosstalk between S-nitrosylation and phosphorylation also modulates
β-arrestin function. Both isoforms (β-arrestin1 and β- arrestin2) are either phosphorylated
or nitrosylated at multiple loci [47].

A given ligand can interact with either G protein or β-Arrestin leading to different
cardiac consequences. The concept known as “biased signaling” describes the ability of
different ligands to activate distinct signaling events of one GPCR [2]. Recently, it was
reported that biased signaling is controlled by S-nitrosylation of β-Arr [11]. G protein vs.
β-Arr biased GPCR is determined by which GRK phosphorylates the receptor or whether
β-Arr is S-nitrosylated. In other words, nitrosylation is biased to G protein-independent
signaling [11].

S-nitrosylation of β-Arr1 vs. β-Arr2 mediate distinct effects due to peculiar sites
specific to the subtype. β-Arr2 was demonstrated to be S-nitrosylated on Cys410 by eNOS
and mediates receptor internalization [13] whereas dephosphorylation of Ser412 of β-
Arr1 mirrors this effect [130]. For instance, β2AR stimulation activating eNOS promotes
β-Arr2-eNOS interaction and thus β-Arr2 S-nitrosylation. This modification leads to
disassociation of β-Arr2 from eNOS and its association with clathrin and AP-2 facilitating
β2AR trafficking [13]. β-Arr2 also associates with iNOS resulting in augmented NO
production. Activated bradykinin receptor 1 triggers β-Arr2-ERK-iNOS signaling and
thereby iNOS-mediated NO production [131].

Moreover, β-Arr1/2 were found to be nitrosylated by nNOS and iNOS at Cys251/253.
This modification results in the suppression of β-Arr-mediated canonical function and
independent β-Arr2 effects [11]. This site is known to promote G protein-biased signaling
and prevent SNO augmenting β-Arr signaling and βAR desensitization. Additionally,
S-nitrosylation of both β-Arr1/2 were found to be enhanced in heart failure. Thus, S-
nitrosylation of β-Arr can be considered a unique feature of heart failure.

Collectively, all three NOS isoforms may bind to β-Arr1 or 2 but result in distinct
signaling (Figure 3). While n/iNOS-regulated S-nitrosylation of β-Arr1/2 inhibits re-
cruitment to the receptors, promotes G protein signaling and modulates desensitization,
S-nitrosylation of β-Arr2 by eNOS at Cys410 leads to conformational changes that augment
receptor internalization [11,13]. Mice with a mutation of n/iNOS SNO site on β-Arr2 (β-
Arr2-Cys253) were shown to develop cardiac dysfunction along with β-AR downregulation
upon aging or pressure-overload [11]. Aging is associated with altered NOS expressions
and S-nitrosylation states. Old mice were shown to have increased nNOS and iNOS ex-
pressions (while eNOS decreased) in heart and lung tissues. S-nitrosylation of β-Arr1 was
also enhanced, consistent with S-nitrosylation of Cys251 by nNOS and iNOS. Dimerization
of β-Arr2 was also augmented along with a rise in S-nitrosylation of site Cys253 [11]. On
the other hand, pressure overload-induced heart failure resulted in significantly impaired
cardiac parameters in mutant β-Arr2-C253S mice where S-nitrosylation of β-Arr2 was
greatly diminished. S-nitrosylation of Cys 253 was shown to be necessary to maintain
β-AR inotropic and chronotropic effects in failing heart. These findings demonstrate
that S-nitrosylation of Cys 253 by n/iNOS is cardioprotective through preventing β-AR
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desensitization and downregulation. Additionally, β-Arr expressions were increased in
C253S mice, representing that S-nitrosylation is an important mechanism to suppress β-Arr
function. Nitrosylated β-Arr2 appears to regulate HIF-1 and p53 axis promoting adaptive
cardiac angiogenesis in heart failure [67].
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2. Conclusions

Over the last two decades, key myocardial molecules, GRK2 and β-Arrs, affecting
GPCR signaling have been shown to be profoundly affected by S-nitrosylation. GRK2
is shown to be subjected to SNO regulation by both eNOS and iNOS, whereas β-Arr2 is
S-nitrosylated by distinct NOS isoforms resulting in various consequences. Thus, the desen-
sitization of GPCRs is greatly affected by the changes of all three NOS isoforms. Moreover,
it has been demonstrated that β-Arr vs. G protein-biased signaling of GPCRs appears to be
determined by which GRK phosphorylates a receptor and whether β-Arr is S-nitrosylated
(nitrosylation biases to G protein independent signaling). Together, these findings support
an insight: GPCR stimulation is coupled to S-nitrosylation of multiple GPCR components
and regulates transduction. Cardiac function thus is not only determined by SNS tone, but
also independently by NO bioactivity.

Importantly, these GPCR signaling regulators, GRK2 and β-Arrs, are known to
contribute to pathological signaling in cardiac injury and new data demonstrate that
S-nitrosylation is also altered in the failing heart. Therefore, it is important to understand
cardiac consequences of SNO regulation of key GPCR signaling pathways in the heart.
Since the traditional view is that the beneficial effects of eNOS are limited by being down-
regulated in the heart after stress while iNOS is upregulated mediating negative signaling,
there is an imbalance in this system that now needs to be taken into account regarding
a balance on all of NO’s targets, especially SNO protein targets. For instance, lack of
eNOS-derived NO may cause heart dysfunction due to loss of endogenous inhibition of
this pathological molecule in heart failure, while lack of iNOS-derived NO may contribute
to heart failure via S-nitrosylation of β-Arr2. The coupling of GPCRs to all three NOSs in
the heart as well as SNO in cardiac dysfunction and cardioprotection needs to be evaluated.
Investigation of responsible NOS isoforms and the specific regulatory events will be critical
to elicit new targets with potential therapeutic uses in heart failure and other cardiac
disorders.
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