
����������
�������

Citation: Oh, J.; Lee, Y.; Yoo, J.; Kwon,

S. Improved Feature-Based Gaze

Estimation Using Self-Attention

Module and Synthetic Eye Images.

Sensors 2022, 22, 4026. https://

doi.org/10.3390/s22114026

Academic Editor: Jing Tian

Received: 21 April 2022

Accepted: 22 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Improved Feature-Based Gaze Estimation Using Self-Attention
Module and Synthetic Eye Images
Jaekwang Oh 1, Youngkeun Lee 1, Jisang Yoo 1 and Soonchul Kwon 2,*

1 Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Korea;
dhworhkd11@kw.ac.kr (J.O.); yklee1308@kw.ac.kr (Y.L.); jsyoo@kw.ac.kr (J.Y.)

2 Graduate School of Smart Convergence, Kwangwoon Univeristy, Seoul 01897, Korea
* Correspondence: ksc0226@kw.ac.kr; Tel.: +82-2-940-8637

Abstract: Gaze is an excellent indicator and has utility in that it can express interest or intention and
the condition of an object. Recent deep-learning methods are mainly appearance-based methods that
estimate gaze based on a simple regression from entire face and eye images. However, sometimes,
this method does not give satisfactory results for gaze estimations in low-resolution and noisy images
obtained in unconstrained real-world settings (e.g., places with severe lighting changes). In this study,
we propose a method that estimates gaze by detecting eye region landmarks through a single eye
image; and this approach is shown to be competitive with recent appearance-based methods. Our
approach acquires rich information by extracting more landmarks and including iris and eye edges,
similar to the existing feature-based methods. To acquire strong features even at low resolutions,
we used the HRNet backbone network to learn representations of images at various resolutions.
Furthermore, we used the self-attention module CBAM to obtain a refined feature map with better
spatial information, which enhanced the robustness to noisy inputs, thereby yielding a performance
of a 3.18% landmark localization error, a 4% improvement over the existing error and A large number
of landmarks were acquired and used as inputs for a lightweight neural network to estimate the
gaze. We conducted a within-datasets evaluation on the MPIIGaze, which was obtained in a natural
environment and achieved a state-of-the-art performance of 4.32 degrees, a 6% improvement over the
existing performance.

Keywords: gaze estimation based on feature; eye landmark detection; self-attention; synthetic eye
images

1. Introduction

Accurately estimating gaze direction plays a major role in applications, such as the anal-
ysis of visual attention, research on consumer behavior, augmented reality (AR), and virtual
reality (VR). Because inference results are more improved by using deep-learning models
than other approaches, they can be applied to advanced technologies, such as autonomous
driving [1] and smart glasses [2], and can overcome challenges in the medical field [3].
Using these deep-learning models is quite helpful, but it is difficult to train them due
to lighting conditions and insufficient and poor-quality datasets. Moreover, the value of
gaze datasets is very expensive and complicated to process. To alleviate this problem, we
propose a model that extracts eye features using UnityEyes [4], high-quality synthetic data.
An exact position of a feature is obtained from the enhanced model by using a self-attention
module. Subsequently, gaze estimation is performed through using high-level eye fea-
tures, which is less restrictive as it does not utilize complex information, such as full-face
information and head poses used for gaze estimation [5–7].

Recently, deep-learning-based eye-tracking technology has been developed mainly
through appearance-based methods [5–11] that use eye images or face images. These
appearance-based models currently perform particularly well in a controlled, environment
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in which there are no disturbances, such as noise in an input frame. However, these
models have some drawbacks. First, the cost of datasets is very high, and the quality
of data has a significant impact on the training of the model. Second, most models are
black-box solutions, which pose the challenge of locating and understanding points for
improvement. This study reduces the dependency of the feature map, which is difficult to
interpret and approaches a feature-based method that can estimate a gaze vector through
accurate feature points after acquiring landmarks obtained from an image. Refs. [12,13]
used a stacked hourglass model [14] to extract a few eyelid and iris points.

In this study, we reinforced and used an advanced model, called HRNet [15], which
shows state-of-the-art performance in the pose estimation task to extract high-quality land-
marks. In pixel-wise fields, such as pose estimation and landmark detection, the resolutions
and sizes of images have huge impacts on performance. Therefore, we extracted landmarks
with a high accuracy by remodeling the model using a self-attention module [16–18]. CBAM [18],
a self-attention technology, helps to generate a refined feature map that better encodes
positional information using channel and spatial attention.

Because we aimed to estimate a gaze vector centered on a landmark extraction, a la-
beled gaze vector and eye-landmark dataset were essential. However, because gaze data are
very expensive and difficult to generate, it is more difficult to obtain a dataset that provides
both high-resolution images and landmarks simultaneously. Therefore, UnityEyes, a syn-
thetic eye-image dataset with eye landmarks, was adopted as a training dataset through
high-resolution images and an automatic labeling system. The model was trained by
processing 32 iris and 16 eyelid points from the eye image obtained by fixing the head pose.
Figure 1 shows the predicted heatmaps during the training We evaluated landmark and
gaze performance by composing a test set for UnityEyes and performed a gaze performance
evaluation using MPIIGaze [11], which has real environment settings.

Our paper is organized as follows. We first summarize related work in Section 2.
In Section 3, the proposed gaze estimation method is explained. Section 4 describes the
datasets used in the experiments. The experiment results are provided in Section 5. Finally,
Section 6 presents our discussion on this study, and Section 7 presents the conclusion.

Figure 1. From left to right, the predicted heatmaps are shown as the training epoch increases.
The heatmaps have high confidence scores where the landmarks are most likely to be located, and the
right bar represents the color space corresponding to the confidence score.

2. Related Work

The gaze estimation method is a research topic of great interest as it has excellent
applicabilities to real environments. As it can be applied to various fields, obtaining and
creating accurate gaze values and gaze estimations with less constraints are challenging
tasks. In this section, we provide a brief overview of the research related to our method.
The studies in each subsection are summarized in Tables 1–3, respectively.

2.1. Feature-Based Method

Feature-based estimation [13,19–22], a method of gaze estimation, mainly uses unique
features that have geometric relationships with the eye. Existing research studies have
focused on objects that have a strong visual influences on images.

Roberto et al. [19] used the saliency method to estimate visual gaze behavior and
used gaze estimation devices to compensate for errors caused by incorrect calibrations,
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thereby reducing restrictions caused by user movements. However, the use of these devices
increases the error rate as the head moves and interferes with gaze detection.

Some researchers added multiple cameras to compute and focus head movements in
multiple directions, extending the influence of eye information and head posture informa-
tion [20,21]. Head pose has a significant effect on the gaze and requires many restrictions.

To avoid this problem, studies dealing with the static head-pose problem were con-
ducted [13,22] using the convolutional neural network (CNN) model, in which images
from a single camera are used to perform gaze estimations based on landmarks as they are
less restrictive features. This makes it less difficult to build an experimental environment
because there is no need for separate camera calibrations. As only eye images are used
for gaze estimations, the dependence of the eye landmark feature vector is increased. Af-
ter acquiring eye landmarks using a CNN model, a gaze is inferred using support-vector
regression (SVR) [23].

Bernard et al. [24] used two gaze maps; one represented the eyeball region and the
other represented the iris region. A gaze vector was regressed through the positional
relationship between the two gaze maps.

Table 1. A summary table of the feature-based gaze estimation method.

Author Methodology Highlights Limitations
Roberto et al. [19] Saliency method Fixing the shortcoming of low-quality monocular head and eye trackers Controlled poses

Manolova et al. [20] SDM algorithm Estimating accurate gaze direction based on
3D head positions using a Kinect

Multiple device settings

Lai et al. [21] CFB and GFB approaches Integrating CFB and GFB to provide a robust and flexible system Multiple camera settings

Wood et al. [22] CNN and 3D head scans Providing synthetic eye-image datasets with
landmarks, a head pose and a gaze direction annotation

Weak to unmodelled occlusions

S. Park et al. [13] Hourglass network and SVR Estimating an accurate gaze vector based on
eye landmarks in wild settings

Computational costs

Bernard et al. [24] Capsule network Utilizing two beat maps where one represents the eyeball
and the other represents the iris

Computational costs

2.2. Landmark Detection

We used a deep-learning-based pose-estimation model as a tool to acquire eye region
features. The landmark-detection task includes a key-point detection to detect a skeleton
representing the body structure and a facial-landmark detection to extract landmarks in
the face; this is a field that requires a large number of datasets depending on the domain.
Some models have a direct regression structure based on the deep neural network and have
predicted key points [25]. The predicted key-point positions are progressively improved
using feedback on the error prediction.

Some researchers proposed a heatmap generation method through using soft-max
in a manner that can be fully differentiated [26]. The convolutional pose machine [27]
predicts a heatmap with intermediate supervision to prevent vanishing gradients, which
are detrimental to deep-learning models. A new network architecture called the stacked
hourglass [14] proved that repeated bottom-up and top-down processing with intermediate
supervision is an important process for improving performance. A network structure
that used high to low sub-networks in parallel is one of the networks that are currently
showing the best performance [15]. For a spatially accurate heatmap estimation, high-
resolution learning is maintained throughout the entire process; unlike the stack hourglass,
it does not use intermediate heatmap supervision, which makes it efficient in terms of
complexity and parameters and can generate highly information-rich feature outputs
through a multi-scale feature fusion process. Yang et al. [28] introduced a transformer for
key-point detections using HRNet as a backbone that extracts a feature map. It causes a
performance improvement over existing performance through multi-head self-attention
but is computationally demanding.
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Table 2. A summary table of the landmark detection.

Author Methodology Highlights Limitations
Toshev et al. [25] DNN Introducing a cascade of direct DNN regressors for landmark detection Overfitting problem

Luvizon et al. [26] CNN Using the soft-max function to convert feature maps directly into
landmark coordinates in a fully differentiable framework

Limited memory resources

Wei et al. [27] CPMs Providing a natural learning-objective function that enforces intermediate supervision
to adder the difficulty of vanishing gradients

Enabled for only a single object

Newell et al. [14] Stacked hourglass Processing repeated bottom-up and top-down sampling used in conjunction
with intermediate supervision

Limited input-image size

Sun et al. [15] HRNet Generating highly information-rich feature outputs through
a multi-scale feature fusion process

Limited input image size

Yang et al. [28] TransPose Introducing a transformer for key-point detections to yield performance improvements
through multi-head self-attention

Computationally expensive

2.3. Attention Mechanism

Attention mechanisms in computer vision aim to selectively focus on the prominent
parts of an image to better capture the human visual structure. Several attempts have
been made to improve the performance of CNN models in large-scale classification tasks.
Residual attention networks improve feature maps through encoder–decoder style attention
modules and are very robust to noisy inputs. The attention module reduces the complexity
and parameters by dividing calculations into channels and spaces instead of performing
calculations in the typical three-dimensional space manner in addition to achieving a
significant effect.

The squeeze-and-excitation module [16] proposes an attention module to exploit the
relationship between channels. Channel weights are generated through average pooling or
max pooling to apply attention to each channel. BAM [17] adds a spatial attention module
in addition to the above channel method and places it in the bottleneck to create richer
features. CBAM [18] is not only located in each bottleneck of a network but also forms
a convolution block to configure the network. In addition, the performance is increased
empirically by using the sequential processing method for channel and spatial attention;
this method has an empirically better performance than using only the channel unit and
has achieved state-of-the-art performance in the classification field.

The self-attention module with such a flexible structure has been applied to many
tasks, such as image captioning and visual question answering [29]. The self-attention
module is widely used in detection and key-point detection in which spatial information is
important [30,31].

Table 3. A summary table of the attention mechanism.

Author Methodology Highlights Limitations

Hu et al. [16] SENet Providing a novel architectural unit focusing on the channel relationships
on feature maps

Lack of information
on pixel-wise relationships

J. Park et al. [17] BAM Providing a module which infers an attention map along two separate pathways
(channel and spatial)

Computational complexity

S. Woo et al. [18] CBAM Introducing a lightweight and general module that can be integrated
into any CNN architecture

Computational complexity

3. Proposed Method
3.1. Overview of Gaze Estimation Based on Landmark Features

In this section, we introduce a network structure and a process for extracting a rich
and accurate landmark feature vector from an eye image and then estimating a gaze based
on it. A series of procedures for estimating a proposed gaze is shown in Figure 2. Eye
images can simply be acquired from a single camera. If a frame contains a full-face image,
the frame must be cropped to a 160× 96 sized image centered on the eye area using the face
detection algorithm [32]. The image is converted into black and white image for simple
processing. This can enhance the performance output of the infrared camera.
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Figure 2. Overall flowchart of our feature-based gaze-estimation system.

To obtain eye-feature vectors from processed images, we selected HRNet as a baseline
model that can generate feature maps containing rich information through fusions with
various feature maps while maintaining a high image resolution. HRNet showed the
best performance in the key-point detection task, proving its utility. We modified HRNet
by additionally using the self-attention module CBAM. Channel-wise and spatial-wise
weights were applied to infer the most important channels in the 3D feature map and
most important spatial points in the channels. Section 5.1 shows that the proposed model
achieved higher landmark accuracy than models in previous studies.

The EAR [33] threshold (T), which can be different for each individual, was set using
the initial 30 input frames. The EAR ratio value (E) was calculated for each frame; if the
calculated EAR ratio value was less than the threshold value, it was judged that there was
no need to estimate gaze because the eyes were closed. By reducing false-positive errors,
it was possible to proceed with a gaze estimation that had a computational advantage.
In some cases, 3D gaze regressions use SVR, but we proceeded by constructing an optimal
MLP. The architecture configurations of these models have the advantage of being able to
proceed one step when learning.

The most important task of our proposed method was to acquire a high-level landmark
feature that affects the EAR ratio and gaze. Before training the model, we were faced with
the problem of a lack of a dataset, which is a chronic problem of deep-learning models,
adversely affects their training, and can result in over-fitting. Landmark datasets are
especially expensive, and only a few datasets include both a gaze and a landmark. To avoid
this problem, we used a large set of UnityEyes synthetic data for training the dataset.
UnityEyes synthetic data is a dataset that includes annotations, such as rich eye landmarks
and gazes, by modeling a 3D eyeball based on an actual eye shape created by using the
game engine Unity. The models [4] trained with this synthetic dataset showed good
performances and had a lot of information and high resolutions; therefore, they are very
suitable for processing and applications.

3.2. Architecture of Proposed Landmark-Detection Model

We used a feature vector for gazes with large amounts of eye landmarks obtained
through the model from the input frame that contains eye information from a single camera.
To increase the gaze accuracy, it was important to generate a high-level feature, and we set
the advancement of the model that extracted a heatmap output most similar to the correct
answer as the main goal of this study. Previous studies [12,13] that used eye landmarks
as features mainly adopted [14] the production of feature outputs. However, because the
feature map is restored through decoding after passing forward from high resolution
to low resolution, it is weak in expression learning at a high resolution. Because our
model requires extracting more eye landmarks from small-sized eye images than previous
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studies [13], feature learning at high resolution, which has high sensitivity to positional
information in an image space, was necessary. Therefore, we adopted HRNet, which
maintains multi-resolution learning (including a high-resolution), as a baseline model.

The basic structure of HRNet consists of 4 steps and 4 stages. Each step creates a
feature that doubles the number of channels with half the resolution of the previous step.
Each stage consists of a residual block and an exchange unit, and the feature map of each
step is processed in parallel. The exchange unit is an information exchange process through
fusion between feature maps of each step through fusion, and the second, third, and fourth
stages have one, four, and three units, respectively. At the end of each stage, there are
feature fusion and transition processes that increase a step by generating a feature map
that is half the previous size. Fusion between multi-scale features includes an up-sampling
process that uses 1× 1 convolution, a nearest-neighbor interpolation in the bottom-up path,
and a down-sampling process that uses several 3× 3 convolution blocks with strides of
2 in the top-down path.

input = {X1, X2, ...Xr} output = {Y1, Y2, ...Yr}

Yk =
r

∑
i=1

F(Xi, k) , F(Xi, k) =


identi f y connection, if i = k
up sampling, if i < k (i, k ≤ r)
down sampling, if i > k

(1)

Equation (1) describes the feature fusion process. For input {X1, X2, ...Xr} of dif-
ferent resolutions, output features {Y1, Y2, ...Yr} are generated through an element-wise
summation of features after down-sampling and up-sampling. r represents resolution
numbers; if r is the same, the widths and resolutions of the input and output are the same.
At the end of the 4th stage, all step information is concatenated to create the feature block
Fb
{
[Y4

1 ; Y4
2 ; Y4

3 ; Y4
4 ]
}

and to head to the prediction head.
To solve the problem of the typically acquired eye image having a small resolution,

we introduced an additional residual block layer composed of a 3× 3 convolution to the
model to create feature (Fo) of the origin resolution that stores the information of the largest
resolution. Through the summation of Fo and up-sampled Fb, more spatially accurate
features are created.

Because the heat map, which is the final result of the network, requires accurate spatial
information for each channel, we applied CBAM, a self-attention technique, to the normal
residual and convolution blocks of each stage. Architecture of the modified network is
illustrated in Figure 3. These techniques (adding the residual CBAM layer and applying
CBAM to all stages of the residual block) improved the landmark-detection performance,
which is described in Section 5.1.

Figure 3. Our landmark-detection network architecture used to extract feature map.
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3.3. Network Engineering with the Self-Attention Module CBAM

Attention mechanisms have been widely used for feature selection using multi-modal
relationships. Refining the feature maps using attention module helps the network and
causes it to perform well and become robust to noisy inputs. Based on empirical results,
such as those in [16,17], the CBAM self-attention module has developed rapidly and
showed higher accuracy than existing modules in the image classification task through
various structure and processing experiments. We judged that the positional information
of the refined feature would improve the performance; therefore, we applied the residual
block of the network by replacing the CBAM block. The architecture of CBAM is illustrated
in Figure 4.

Figure 4. Convolutional block attention module (CBAM) architecture in residual block.

CBAM adds two sub-networks that consist of channel attention and spatial attention
networks to the basic residual block. Feature F ∈ R C×H×W is generated through a 3× 3
convolution of the residual, which is the output of the previous block. F goes through the
channel attention and spatial attention networks sequentially. First, in the case of channel
attention, the two types of channel-wise pooling, that is, max pooling and average pooling,
are performed to obtain weight parameters for channels. Feature vectors Fmax ∈ R C×1×1

and Favg ∈ R C×1×1, generated through pixel-wise pooling, share an MLP that has a
bottleneck structure with the advantages of parameter reduction and generalization and are
merged using element-wise summation. Finally, the product is normalized using sigmoid
function to obtain the meaningful weights Mc(F) ∈ R C×1×1 and generate Fc ∈ R C×H×W

by multiplying Mc(F) and F. The above process is described by using Equation (2).

Mc(F) = Fsigmoid(MLP(Fmax) + MLP(Favg)),

Fc = Mc(F)
⊗

F
(2)
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Subsequently, using the channel-refined feature (Fc) as an input, Ms(Fc) is generated
through the spatial attention module.

Ms(Fc) = Fsigmoid(Conv7×7([Fmax; Favg])),

Fsc = Mc(Fc)
⊗

Fc,

output = Residual
⊕

F

(3)

In Equation (3), spatial weight feature Ms(F) ∈ R 1×H×W is made by using sequential
process pooling, concatenation, 7× 7 convolution and normalizing using with sigmoid
function, then Fsc ∈ R C×H×W is merged by multiplying Ms(Fc) ∈ R 1×H×W and Fc.
The output of blocks that are merged by using the element-summation residual and Fsc is
refined with a focus on ‘what’ and ‘where’, respectively. Because we applied this module to
the residual block of the processing stage in parallel, the output at each stage contains very
rich information and encodes channel information at each pixel over all spatial locations
due to attention and fusion.

We applied the CBAM module of the additional residual layer and additionally applied
the CBAM module to all steps of the stage. We showed performance improvement through
the normalized mean error (NME) value, which is a key-point-detection performance value.
Detailed outcome indicators are described in Section 5.

3.4. Gaze-Estimation-Based Eye Landmarks with EAR

We estimated gaze vectors based on an eye feature that consists of a total of 50 eye
landmarks (1 from an eye center, 1 from an iris center, 16 from an eyelid, and 32 from an iris).
We extracted high-accuracy eye landmark localization while optimizing and improving
the network. As the quality of the landmark extracted by the network improved, the gaze
regression performance also improved empirically. Existing feature-based studies [13,34]
mainly used the SVR for gaze regressions. We empirically confirmed that the difference
between the SVR and multi-layer perceptron (MLP) performance is very small and that
the MLP performance is relatively good. The MLP simply contains two hidden layers and
uses Leaky ReLU [35] as an activation function. In addition, when the MLP is used, there
is the advantage that landmark detection and gaze estimation are possible in one-stage
training. The MLP contains two hidden layers and uses Leaky ReLU as an activation
function. The co-ordinates used as the inputs are normalized to the distance between the
eye endpoints, and all eye points are translated with respect to the eye center coordinates.

To reduce false positives and increase efficiency, we utilized an EAR value. The EAR
value was calculated to decide whether an eye was closed or not using 16 eyelid points.
We introduced a new EAR metric based on a method that uses 6 points because we could
obtain richer, high-quality eyelid points. Figure 5 shows the measured lengths of an eye
using images that include a closed eye. We measured the horizontal length through the
p1 and p9 points out of a total of 16 points {p1, p2, ...p16}, and the average value of the
remaining seven pairs of points {(p2, p16), (p3, p15)...(p8, p10)} was defined as the vertical
length. The EAR was calculated using Equation (4).

EAR =
∑7

n=1 ‖ pn+1 − p17−n ‖1
7 ‖ p1 − p9 ‖1

(4)

Because the EAR varies considerably from user to user, we set the EAR threshold (T)
to half the median value after receiving the EARs for the initial 30 frames’ inputs. Then, if
the measured EAR was smaller than T , the network did not estimate gaze.
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Figure 5. EAR was calculated through the displayed landmark coordinates (from P1 to P16). The blue
dots are used to represent the width of the eye and the red the height. The eye on the right is in a
state at which there is no need to estimate the gaze.

3.5. Learning

Two losses, a landmark loss and a gaze loss, were required for the training of our
proposed network. The method of regressing the heatmap, which is the probability of
the existence of each feature point using a CNN model, has fewer parameters than the
method of directly regressing the feature point coordinates and can avoid the problem
of over-fitting. However, it is difficult to precisely detect units below the decimal point
because heatmap regression acquires integer co-ordinates through an arg-max operation
in the process of converting heatmap into coordinates. We used integral regression [36]
to properly compensate for the above two shortcomings. The integral regression module
removes negative values by applying AB ReLU operation to the heatmap and divides
the operation by the total sum to normalize it. As shown in Equation (5), all values of Ĥ
are between 0 and 1 and the total sum becomes 1; therefore, it is defined as a probability
distribution. Subsequently, the co-ordinates of each feature point in the heatmap can be
obtained through the expected value calculation.

Ĥc(x, y) =
FReLU(Hc(x, y))
∑i ∑j(Hc(i, j)

predicted coordinates =

{
xc = ∑i ∑j iĤc(i, j)
yc = ∑i ∑j jĤc(i, j)

(5)

Therefore, the final landmark cost function consists of the mean squared error (MSE)
loss between the output and the ground-truth heatmap, the L1 loss of the ground-truth
co-ordinate and the co-ordinates obtained by using the expected value operation. H

′
is the

predicted heatmap, H is the ground-truth heatmap, (x
′
, y
′
) is the co-ordinate predicted

through the integral module, and (x, y) is the ground-truth co-ordinate.

Lossheatmap = ∑
i

∑
x

∑
y
‖ H

′
i (x, y)− Hi(x, y) ‖2

2 , Losscoordinates = ∑
i
‖ (x

′
, y
′
)− (x, y) ‖1

Losslandmark = Lossheatmap + Losscoordinates

(6)

To compare each gaze performance, experiments were conducted using several meth-
ods. There are two frequently used methods of gaze regression. The first is a method of
directly regressing a 3D vector and the second is a method of encoding a 3D normal vector
into 2D space pitch (θ) and yaw (ϕ) regression. The pitch and yaw are the angles between
the pupil and the eyeball, which can explain the positional relationship. The positional
relationship between an eyeball and a pupil is illustrated in Figure 6. We found that the
generalization was better when a 2D angle vector was encoded empirically and cosine
distance loss and MSE were used as cost functions, and the best performance was obtained
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in MSE. (Pitch, yaw), that is, (θ
′
, ϕ
′
), is the predicted 2D gaze and (θ, ϕ) is the ground-truth

2D gaze.

pitch(θ) = arcsin(y), yaw(ϕ) = arctan(
x
z
)

Lossgaze =‖ (θ
′
, ϕ
′
)− (θ, ϕ) ‖2

2

(7)

We trained our model using a UnityEyes dataset that consists of 80,000 images, and each
validation and test used 10,000 images. We used black and white 1× 160× 96 images and
set batch size to 16. We used the Adam optimizer. The learning schedule followed the
settings in [15]. We used pre-trained data on ImageNet. The base learning rate was set as
4× 10−4 and decreased by every 25 epochs. Specifications of the PC used in the experiment
were an Intel Core i9-11900K, 3.5 GHz CPU, and NVIDIA RTX 3090 GPU with 24 GB of
memory for training.

Figure 6. (a) illustrates the simple network architecture for gaze estimation and (b) shows the relationship
between the pupil and the eyeball. Gray embedding vector encode the landmarks coordinates. Gaze
vector (red) can be explained through a pitch (θ) and yaw (ϕ).

4. Description of the Dataset

This section describes the dataset used for network training and evaluation. Figure 7
shows the original forms of the utilized datasets.

Figure 7. Samples from two datasets: left is UnityEyes and right is MPIIGaze.

4.1. UnityEyes

In a real-world setting, datasets for gaze estimation are very expensive to acquire, do
not support eye landmarks, or are very poor; therefore, they are inadequate for training a
network. We selected UnityEyes synthetic datasets for training to solve the above problem.
UnityEyes creates an eye model by manipulating several parameters using the Unity
game engine and provides high-resolution 2D images from the camera position, high-
quality 3D eye coordinates, and a 3D gaze vector. We also processed rich annotations and
utilized them for network learning. Previous studies [4,13] showed good performance
using synthetic datasets.
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An eye landmark provided in UnityEyes is presented in Figure 8. A total of 53 eye
landmarks consisting of 16 eye edges, 7 caruncles, and 32 iris edges were used. We used
all the labeled eye and iris edges while ignoring the caruncles because it was judged that
they would have no effect on gaze. Subsequently, the eyes and iris centers, which were
mean values of all the eyes and iris edges, were added to configure the ground -truth with
a total of 50. It was possible to create a resolution of 640× 480 up to 4K, and we cropped an
800× 600 image to a 160× 96 size.

Figure 8. An annotated sample from UnityEyes. The red, green, and blue points are 16 eye edges,
7 caruncles, and 32 iris edges, respectively. The yellow arrow represents the 3D gaze direction.

4.2. MPIIGaze

The MPIIGaze datasets were recorded using a laptop for several months over the
daily lives of 15 experimental participants. The datasets were representative evaluations
and very suitable for judging the performance of networks in uncontrolled settings. They
were proposed in 2015 and include a head pose vector, gaze vector, full-face image, and
60× 36 normalized image required for evaluations. The datasets also provide eye landmark
co-ordinates of six eye edges and one iris center but do not provide enough for within-
dataset leave-one-person-out evaluations [11]. That is, the proposed network was trained
using the data of 14 participants (3000 images consisting of left and right eyes) and then
validated on the data of an excluded person. Thus, we made a labeling tool for rich eye
landmarks as one is required by a neural network that is robust against noise.

Figure 9 illustrates an overview of this labeling tool. First, when a user draws a point
on both endpoints of an eye, a line connecting the two points and straight lines dividing the
line into eight equal parts are created. Subsequently, the remaining eye-edge co-ordinates
are obtained by dotting the points at which the eight straight lines and eye region overlap.
At this time, a correction effect is applied so that the drawn points lie on the straight lines.
When a total of 16 eye edges are completed, the user specifies an elliptical area that can
include the iris area. When eight dots are obtained, an ellipse is generated that best contains
the iris through the RANSAC algorithm [37]. Users obtain 32 iris edges spaced at regular
intervals from the ellipse. The datasets and code on 12 April 2022 are available to the public:
https://github.com/OhJaeKwang/Eye_Region_Labeling.

Figure 9. From left to right presents the sequential labeling process. The red and green lines and blue
dots are tools for landmark coordinates, and the red and yellow dots represent annotations. Outputs
are comprised of 16 eye edges, 32 iris edges, 1 eye center, and 1 iris center.

https://github.com/OhJaeKwang/Eye_Region_Labeling
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5. Experiments

In this section, we describe the experiments conducted in this study. The experiments
included an evaluation considering the performance of landmark detection and gaze
estimation with respect to MPIIGaze (45K) and UnityEyes (10K). The NME and mean angle
error (MAE) were adopted as metrics for evaluation.

5.1. Landmark-Detection Accuracy

There are several metrics for evaluating the accuracies of landmarks, but we adopted
the NME [38], which is main metric used in facial landmark detection and is the most
relevant among them. The NME represents the average Euclidean distance between an
estimated landmark position (P

′
) and a corresponding ground truth (P). The NME is

calculated using Equation (8), where N is the number of images, L is the number of
landmarks, and d is defined as average eye width of a test set for the normalization factor.

NME =
1
N

N

∑
i=1

∑L
j=1 ‖ P

′
i,j − Pi,j ‖2

2

L× d
(8)

We compared our approach to a baseline model. Two approaches were introduced
as follows. The first added a CBAM residual layer and the second applied CBAM to
convolution blocks of all stages. We used the model parameters trained on UnityEyes. The
landmark detection results of our approaches and the baseline model (HRNet-W18) with
respect to MPIIGaze and UnityEyes are shown in Table 4. HRNet-w18 and HRNet-w32
are lightweight models of HRNet, and 18 and 32 indicated the channel multiples of the
last stage. In the results, each approach showed a better performance than the existing
model, and the final model achieved an approximately 4% higher NME score compared
to HRNet-W18 on all datasets. Graphs showing the ratios of the test sets according to the
NME value are presented in Figure 10. Similarly, the AUC [39] value (the area under the
curve) demonstrated that the two approaches using self-attention improved performance.
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Figure 10. Comparisons of the cumulative error distribution curves of the test datasets. We compared
our method with baseline approaches (HRNet). HRNet+CBAM and HRNet+CBAM_FULL denote
adding a residual CBAM layer and applying CBAM to all stages of the residual blocks, respectively.

Because the MPIIGaze dataset before pre-processing consisted of a very low resolution
of 60× 36, we interpolated it with a 160× 96 dataset and processed the result; we judged
that the performance with respect to MPIIGaze was inferior to UnityEyes due to noise
generated during this process, problems of poor quality, and reliability of labeling.
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Table 4. The approaches that applied a CBAM module improved the quantitative metric.

Method UnityEyes MPIIGaze
NME (%) ↓ AUC ↑ NME (%) ↓ AUC ↑

HRNet-W18 7.21 75.95 11.71 60.93
HRNet-W32 6.69 78.79 11.13 62.91

HRNet + CBAM 4.95 83.49 10.72 64.20
HRNet + CBAM_FULL 3.18 89.39 8.82 70.59

5.2. Gaze Estimation Accuracy

Our method, which showed the best landmark performance, achieved an angle error
of 1.7 for 10,000 UnityEyes test sets. Subsequently, we compared various systems for
within-dataset evaluation (leave-one-person-out strategy) to the MPIIGaze dataset using
an MAE that represents the differences in the angles of two unit vectors. The results of the
models evaluated using the MPIIGaze dataset, usage techniques, and information used
as inputs are included in Table 5. Our method achieved a competitive degree of error
in the above experiment. Fine-tuning the model parameters pre-trained on UnityEyes
using MPIIGaze improved the performance by approximately 6.80% (from 4.64◦ to 4.32◦),
and our approach surpassed the baseline method (from 4.60◦ to 4.32◦). We improved the
performance by approximately 6.04% compared to the baseline model. Additionally, unlike
the appearance method, our method was less constrained by registration conditions and
had better usability in that we could create high-level landmarks. This result showed that
the performance improvement of landmark detection had an effect on gaze regression. We
show the qualitative predictions of our gaze estimation system with respect to UnityEyes
and MPIIGaze in Figure 11. It was observed that it acquired high-level features even for
noisy MPIIGaze data and had good gaze accuracy.

Table 5. Comparing the MAE, representation, and registration of several methods evaluated using
MPIIGaze. (*: baseline method).

Method MAE (◦) Representation Registration

RF [10] 7.99◦ Appearance Eyes and head pose
Mnist [11] 6.30◦ Appearance Single eye

GazeNet [8] 5.83◦ Appearance Single eye
AR-Net [9] 5.65◦ Appearance Eyes

ARE-Net [9] 5.02◦ Appearance Eyes

* S. Park et al. [13] 4.60◦ Feature and gaze regression
network Single eye

S. Park et al. [12] 4.50◦ Appearance Single eye
FARE-Net [6] 4.41◦ Appearance Face, eyes

Ours 4.32◦ Feature and gaze regression
network Single eye
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Figure 11. Results of our gaze estimation system with respect to UnityEyes and MPIIGaze test sets.
The red, blue points represent the iris edge and the eye edges, respectively. Ground-truth gaze is
represented by green arrows and predicted gaze is represented by yellow arrows.

6. Discussion

Applications that utilize gaze information practically and visually provide novelty
and satisfaction to users, so it is essential to improve the accuracy of predicted information.
To achieve a performance improvement, we conducted a study by adapting the feature-
based method, which is better for generalizing than the appearance-based method. In prior
work, features were usually hand-crafted for gaze using image-processing and model-
fitting techniques. However, because these approaches make assumptions about geometry,
such as the 3D eyeball and 3D head coordinates, they are sensitive to noise in uncontrolled
real-world images.

In this study, we proposed a gaze estimation method using a more accurate and de-
tailed eye region where eye landmarks represent the locations of the iris and eyelid. We used
the UnityEyes dataset, which has high quality annotation that helped the representation
learning of our network.

Since we assumed that the accuracy of gaze estimation increases as the confidence of
the landmarks intended to be used as features increases, we tried to develop an advanced
landmark-detection model. We also assumed that the feature map of the layer should
represent meaningful location information and proposed a method combining the self-
attention module with the model. The first results suggested that adding the self-attention
module improves the inference accuracy. In particular, the best performance improvements
were seen with negligible overheads when the module was applied to all layers. Moreover,
since the inference accuracy for low-quality MPIIGaze had increased, it was shown to be
robust to the noise of the input data. Then, we were able to confirm that the performance of
landmark and gaze were proportional through considering the second result. We obtained
a meaningful study, but there difficulties were encountered during the study.

We had to train the models on the real-world MPIIGaze dataset for the evaluation.
Unavoidably, in order for our network to learn, we needed to take landmark annotations
unconditionally. However, MPIIGaze didn’t have as many as we needed. Consequently,
we made a labeling tool and labeled MPIIGaze (45K) using it. An unsupervised domain
adaptation [40] can solve this limitation. It does not require annotations on the target
domain and is used for only feature training for a target. Using generative adversarial
networks (GAN), the method for a fusion between datasets from different domains might
help a model to perform transfer learning well [41]. To alleviate the limitation, the hope is
that our work will apply these skills to our method.
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7. Conclusions

In this study, we proposed a feature-based gaze system that achieved a higher accuracy
than existing models trained on the same datasets by introducing a network to extract
high-level landmarks. Contrary to the existing methods, we predicted a heatmap with
richer representations from the transferred multi-scale features using HRNet to obtain more
accurate and more spatially precise eye features. Moreover, we achieved the best perfor-
mance improvement by applying a self-attention module that emphasized meaningful
features in the principal dimensions, which were the channel and spatial axes of the feature
map, in addition to achieving efficient computational and parameter overheads. Using
UnityEyes, which supports a high-level annotation and a high resolution, we were able to
extract more and greater landmarks, and these richer landmarks resulted in a competitive
gaze accuracy for a within-dataset evaluation with respect to MPIIGaze. Additionally, our
method had less restrictive registration conditions and great utility in providing landmarks.

During the experiment, we found that the transfer learning of the model through
various real-world gaze datasets was superior to the results of the model trained with
only UnityEyes. However, our model required numerous landmark annotations, and there
was no dataset that satisfied this requirement. To solve this problem, we used a labeling
tool in this study. However, in the next study, we plan to apply the unsupervised domain
adaptation technique to optimize the model using UnityEyes and real-environment datasets
without using a key-point annotation simultaneously.
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