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Cardiovascular disease, preceded by vascular endothelial dysfunction, is a prominent cause of death in dogs. L-carnitine and
taurine, well known for their antioxidative capacity, beneficially affect cardiovascular disease as well as certain dog cardiom-
yopathies. It is well established that vascular endothelial dysfunction precedes cardiovascular disease and that “vasoprotective
factors” (NO and antioxidants) prevent apoptosis, whereas “risk factors” such as oxidized LDL, hyperglycemia, and free fatty acids
trigger it in cultured human vascular endothelial cells. Whereas human vascular cell in vitro models are widely established and
used for the characterisation of potential vasoprotective substances, such models are not available for canine endothelial cells.
In the present study we therefore developed an in vitro model, which allows the testing of the effects of different substances on
proliferation and apoptosis in canine aortic endothelial cells. This model was used to test L-carnitine, taurine, pomegranate extract,
and Soy Isoflavones in comparison to reference substances (glutathione and pioglitazone) previously shown to modulate human
endothelial cell function. L-carnitine and taurine neither exhibited antiproliferative nor antiapoptotic activities in the context of
this study. However extracts from pomegranate and soy isoflavones dramatically reduced proliferation and apoptosis in a dose
dependent fashion, being in line with a vasoprotective activity in dogs.

1. Introduction

The increased life expectancy of dogs over recent years,
probably due mainly to advances in canine nutrition and
health care, has also been associated with an increased preva-
lence of cardiovascular disease [1]. The vascular endothelium
represents a widespread and interactive organ with various
biological actions including barrier function, secretion of
anti/prothrombotic factors, leukocyte and platelet adhesion
and, very importantly, regulation of vascular tone [2, 3].
Macrovascular disease and heart failure are preceded and

predicted by increased apoptosis of endothelial cells and
dysfunction of the vascular endothelium including increased
endothelial cell turnover to maintain an intact endothelial
lining, increased smooth muscle cell migration due to
an impaired endothelial barrier function, and a loss of
vascular elasticity leading to an increased afterload [2, 4–
6]. Moreover, it is well established that heart failure, exper-
imentally induced in dogs by rapid pacing [7], as well as
vascular endothelial dysfunction relate to reduced genera-
tion and/or exaggerated degradation of nitric oxide (NO).
Reduced bioavailability of NO is associated with exaggerated
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superoxide anion production, increased oxidative stress, and
sustained vasoconstriction [2, 8]. Such effects are believed to
trigger vascular endothelial cell apoptosis and, in the long
run, result in progression of human and canine valvular
disease and heart failure [9–12]. Therefore, identification
and characterization of vasoprotective agents and of their
effects on endothelial cell function are of major importance
in order to prevent or ameliorate the sequelae of endothelial
dysfunction and vascular disease.

So far L-carnitine and taurine, both known for their
antioxidative capacity [13, 14], have been shown to be
associated with beneficial effects in human endothelial cells
as well in certain dog cardiomyopathies [15–22]. Similarly,
polyphenolic compounds such as isoflavones found in soy-
beans and tannins present in pomegranate extracts exhibit
antioxidant and cyto- and cardioprotective activities [23–
30]. Concerning the human vascular endothelium, it has
been proven by a considerable number of studies that factors
often termed “vasoprotective factors” (NO, shear stress,
antioxidative agents) prevent, whereas “atherosclerotic risk
factors” (oxidized/glycated LDL, hyperglycemia, proinflam-
matory cytokines, elevated free fatty acids) trigger apoptosis
in cultured human vascular endothelial cells [31–39].

Due to a lack of such models for the canine vascular
endothelium, it was largely unknown to which extent the
beneficial effects of L-carnitine, taurine, soy isoflavones, and
pomegranate extract for the cardiovascular system relate to
direct effects of those antioxidants on canine endothelial cell
health and function. A previous recent study demonstrated
that they could decrease the loss of viability of canine aortic
endothelial cells (CnAoEC) under conditions of oxidative
stress [40]. However the viability assay used in that study
relied on total metabolic activity, and therefore it could be
theorised that there is a risk of artificially good results if the
tested substances concurrently promote significant excessive
proliferation in surviving cells. Information is therefore still
lacking regarding the impact of these substances on key
indicators of functional health in canine endothelial cells
such as apoptosis and proliferation. Moreover, it remains
to be elucidated whether the observed effects of substances
known to modulate these parameters are species dependent
or can be extrapolated from species to species [41].

Therefore, the present study aimed at development of
an in vitro model on the basis of CnAoEC, in order to
characterize the potential beneficial or detrimental effects
of different test agents with respect to canine endothelial
cell proliferation and apoptosis. Different substances (GSH,
NAc, insulin sensitizers, etc.), previously well characterized
in human in vitro models for endothelial dysfunction [34–
38], were used as putative references for the development of
our canine model and as internal controls for subsequent
assays performed with test agents. We hypothesised that
the reference substances would produce similar effects in
CnAoEC to those seen with human endothelial cells. We
further hypothesised that the previously noted beneficial
effect of the four test substances [40] would be associated
with stable or decreased apoptosis and proliferation, thus
confirming the interest of these substances in developing a
multidimensional dietary strategy to reduce the onset and

progression of the canine endothelial degeneration involved
in progressive valvular diseases.

2. Research Design and Methods

2.1. Reagent Sources. CnAoECs and the respective media
(CECBM, HBSS) and growth supplements were purchased
from Cell Applications, Inc. (San Diego, USA). Linoleic
acid (LoIS), γ-linolenic acid (ALens), fibronectin, bovine
Serum albumin (BSA), dimethyl sulfoxide (DMSO), glu-
tathione (GSH), and N-acetylcysteine (NAc) were purchased
from Sigma Chemical Co. Phosphate buffered saline (PBS)
and trypsin ethylenediaminetetraacetic acid (trypsin EDTA)
were from BioWhittaker/Lonza (Belgium), human vascular
endothelial growth factor (VEGF) and basic fibroblast
growth factor (bFGF) were purchased from BioVision, and
[Methyl-3H] thymidine from Amersham Pharmacia. Taurine
and L-carnitine L-tartrate were from Azelis Pharma (Paris,
France), pomegranate extract (40% punicosides) from Poli-
nat (Las Palmas, Spain), and soy extract (standardized at 40%
soy isoflavones) from ADM (Decatur, IL, USA).

2.2. Test and Reference Substances

2.2.1. Reference Substances. GSH (10 mM , equivalent to
3.1 mg /mL), NAc (5 mM , equivalent to 816 μg/mL), VEGF
(25 ng /mL), bFGF (10 ng /mL), LoIS (50 μM, equivalent to
14 μg/mL), ALenS (50 μM, equivalent to 13.9 μg/mL), and
the insulin sensitizers Pioglitazone (Pio) (50 μM, equivalent
to 17.8 μg/mL) and Rosiglitazone (Rosi) (50 μM, equiva-
lent to 17.9 μg/mL) were prepared and used as previously
described [34–38]. In brief, free fatty acids (LoIS and ALenS)
were dissolved in ethanol, the insulin sensitizers (Pio and
Rosi) were dissolved in DMSO, all other reference substances
were soluble in water. Where DMSO or ethanol were
required for the test or reference substances, the respective
control cultures had the equivalent concentrations of DMSO
(1%) or ethanol (1.5%), respectively.

2.2.2. Test Substances. L-carnitine, taurine, pomegranate
extract, and soy extract were kept dry and protected from
light (in brown flasks, covered with parafilm (bottle tops)
and with aluminium foil). Before each experiment, fresh
stock solutions were prepared for each substance: soy
isoflavones were dissolved in DMSO (250 mg/mL), all other
test substances were soluble in water (50 mg/mL). Where
DMSO was required for the test substances, the respective
control cultures had the equivalent concentrations of 1%
DMSO. The sample concentrations to be tested in the
different assays, that is, 1, 50, and 250 μg/mL, were estimated
by reference to existing published studies using human
endothelial cells or data reporting plasma concentrations in
dogs or humans following oral supplementation [15, 19, 42–
44], and the absence of cytotoxicity of the proposed levels of
these substances on CnAoEC (data not shown).

Experimental wells (with test or reference substances)
were related to the respective control wells (without test or
reference substances), set to 100%.
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Figure 1: Proliferation Assay.
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Figure 2: Apoptosis Assay.

2.3. Canine Aortic Endothelial Cell Culture. CnAoECs re-
ceived as cryopreserved vial containing 500 000 cells were
immediately frozen in liquid nitrogen and kept there until
use. For further use, cells were thawed at 37◦C, resuspended
in CECGM (according to the manufacturer’s instructions),
and cultured on Fibronectin (0.0025% in PBS) coated
(2 h/37◦C) cell culture dishes at 37◦C/5% CO2.

For subcultures, confluent cells were rinsed with HBSS
and treated with trypsin/EDTA (6 mL/75 cm2 ), followed by
addition of 8 mL trypsin neutralisation solution (5% BSA
in PBS). After centrifugation (5 min/220 g) the collected
cells were replated in CECGM with a density of 5 000 to
10 000 cells/cm2.

The day after seeding and every other day, the medium
was changed and confluency of the cells monitored by phase
contrast microscopy.

For proliferation and apoptosis assays, cells were used
between passages 5 and 7.

2.4. Proliferation Assays. Proliferation assays (see Figure 1)
were carried out as described previously [34, 35, 37]. In
brief, confluent CnAoECs cultures were replated in flat
bottomed 96-well tissue culture plates (10,000 cells per well)
and allowed to adhere for 6 h . Subsequently, cells were
exposed to 3H-thymidine (final concentration: 1 μCi/mL =
37 kBq/mL) and the respective test agents for 48 h . After
two washing steps with PBS, cells were trypsinized, lysed
by a freeze thaw cycle, harvested, and incorporated. 3H-
thymidine was counted in a Tri-Carb Liquid Scintillation
Analyser (Canberra Packard, Meriden, USA). Samples were
tested in quadruplicates. Results of experimental cultures
exposed to the test substances are presented in relation to
intraindividual control cultures (without test substances).
Control cultures were set to 100%.

2.5. Apoptosis Assays. Apoptosis assays (see Figure 2) were
performed as previously described [34, 35, 39]. In brief,
semiconfluent plates (60 mm) of CnAoECs were labelled
with 3H-thymidine (37 kBq/mL, 36 h) and were subsequently
replated into 24-well culture plates (5 × 104 cells/well).
After their exposure to the test substances (24 hours) cells
were treated with lysis buffer (20 mmol/l Tris.Cl, pH 7.5,
and 0.4% Triton X-100 in PBS). Fragmented (apoptotic)
radiolabeled DNA in the supernatant was counted in a Liquid
Scintillation Analyser (Canberra Packard, Meriden, CT)
and was then related to total incorporated radioactivity of
cells (quantified after digestion of the remaining suspension
with 180 μg/mL DNase, Boehringer Mannheim, Germany).
Experiments were performed in triplicates or duplicates.
Results of experimental cultures exposed to test substances
are presented in relation to intraindividual control cultures
(without test substances). Control cultures were set to 100%.

2.6. Statistics. Data are expressed as means ± SD. Statistical
analysis was performed using Student’s paired t-test.

3. Results

3.1. Proliferation

3.1.1. Reference Substances. As depicted in Figure 3, the
antioxidant GSH, the insulin sensitizers Pio and Rosi, and
the free fatty acids LoIS and ALenS significantly reduced
proliferation in CnAoECs, such results being in line with pre-
vious work in different types of human vascular endothelial
cells [35, 37]. Of note, however, VEGF and bFGF, known to
increase proliferation in human endothelial cells [34], did
not provoke such proproliferative response in canine cells.
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Figure 3: Impact of selected reference substances on the prolif-
eration of CnAoECs (mean of 3 independent experiments each
performed in 4 wells) ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.005.

Ethanol and DMSO, used as solvents for FFAs and insulin
sensitizers, respectively, did not significantly affect CnAoECs
proliferation.

3.1.2. Test Substances. In CnAoECs, L-carnitine and taurine
induced a slight but significant reduction of proliferation by
6.25% and 10.25%, respectively, at the highest concentration
only (250 μg/mL, see Figure 4(a)). However, pomegranate-
extract and soy isoflavones markedly reduced CnAoECs
proliferation, even at a concentration of 50 μg/mL, by 90%
and 25%, respectively, and in a dose-dependent manner
(Figure 4(b)). Exposure of CnAoECs to 250 μg/mL of these
two substances led to an impressive and highly significant
inhibition of the cells’ proliferation to 3.75% and 15.5% of
control (set to 100%), whereas Pio and GSH reduced prolif-
eration only to 62.25% and 54.75% of control, respectively
(Figure 4(b)).

3.2. Apoptosis

3.2.1. Reference Substances. As shown in Figure 5(a), the
antioxidant GSH at 10 mM markedly reduced apoptosis
(by 35%) in CnAoECs. In contrast, in CnAoECs exposed
to 300 μmol/L LoIS and ALenS, death rates dramatically
increased, more than 55% of cells having undergone apop-
tosis after 48 h of incubation (data not shown). Such anti-
apoptotic effects of antioxidants as well as the proapoptotic
response exerted by free fatty acids have previously been
observed in human vascular endothelial cells [34, 35].

3.2.2. Test Substances. L-carnitine and taurine did not
markedly affect apoptosis in CnAoECs, the statistical sig-
nificance observed for 50 μg/mL Carnitine being probably
related to the very low standard deviation observed for that
particular concentration (Figure 5(a)).

The antiapoptotic effect of soy extract was significant
only for the highest concentration tested (250 μg/mL).

In contrast, pomegranate extracts significantly reduced
apoptosis at all concentrations tested and in a dose depen-
dent fashion, showing the most striking effect at 250 μg/mL
by a reduction of 73% compared to control cells (Figure
5(b)).

4. Discussion

Due to the increasing amount of evidence linking endothelial
dysfunction to the onset and progression of heart failure
in dogs [11, 12], it is important to have a method of
screening and/or testing substances that may have potential
to protect endothelial function in vitro. This is already widely
done with human endothelial cells, and the markers of
excessive proliferation and apoptosis are crucial indicators
of dysfunction. However, until now, no such model existed
using canine endothelial cells. This is why we began the
study with the establishment of an in vitro cell culture model
which allowed the reproducible analysis of these markers in
response to different stimuli. This then enabled, as a second
step, the identification of pro- and antiproliferative as well as
of pro- and antiapoptotic agents.

The reference substances were chosen on the basis of their
abilities to exert anti- as well as proproliferative and anti- and
proapoptotic responses in human endothelial cell culture
models. Of note, the observed antiapoptotic and antiprolif-
erative effects were similar in human endothelial cells and
the tested canine endothelial cells for the antioxidants GSH
and NAc as well as for the insulin sensitizers Pio and Rosi
[34, 35, 37]. The free fatty acids exhibit marked proapoptotic
action in canine endothelial cells, which clearly exceeds the
effects exerted in human vascular endothelial cells [35]. Of
course it must be noted that this relates to use of these
particular free fatty acids in isolation, as opposed to the
more normal dietary situation where a balance of Omega-3
and Omega-6 oils will be present, and where the ratio of
these oils has already been shown to be important [45].
In contrast to human umbilical vein endothelial cells [34],
VEGF and bFGF, were not able to provoke a proproliferative
response in CnAoECs. In that context it is of note that it
has previously been speculated that the effects of natural
antioxidant molecules in endothelial cells can be species
dependent [41]. As could be observed for the reference
substances GSH and PIO, which were used as internal
controls in each assay performed for the test substances,
the model exhibited considerable reproducibility throughout
the whole study, even if different settings (coating, growth
factor supplement, etc.) were employed (data not shown).
This therefore partially confirms our initial hypothesis that
substances shown to be beneficial for human endothelial cells
will also produce beneficial results in CnAoECs, but intrigu-
ingly suggests that it is not possible to extrapolate these
results directly across species due to occasional differences
in the intensity of the effects. This confirms the need to test
substances in cells derived from the target species.

For the first time this study shows that extracts of
pomegranate and soy isoflavones are able to exhibit dramatic
antiapoptotic activities in CnAOECs. Pomegranate extract’s
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Figure 4: (a) Modulation of proliferation of CnAoECs by carnitine and taurine in comparison to the reference substances Pio and GSH
(mean of 4 experiments, each in 4 wells) ∗P < 0.05; ∗∗P < 0.01. (b) Modulation of proliferation of CnAoECs by pomegranate extract and
soy isoflavone extract in comparison to the reference substances Pio and GSH (mean of 4 experiments, each in 4 wells) ∗P < 0.05; ∗∗P < 0.01.
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Figure 5: (a) Modulation of apoptosis in CnAoECs by carnitine and taurine in comparison to the reference substance GSH (means of 3
independent experiments, each in 3 wells) ∗P < 0.05; ∗∗P < 0.01. (b) Modulation of apoptosis in CnAoECs by pomegranate extract and soy
isoflavone extract in comparison to the reference substance GSH (means of 3 independent experiments, each in 3 wells) ∗P < 0.05.

antiapoptotic effect was already detectable at the lowest con-
centration tested (1 μg/mL) and was dose-dependently sus-
tained until the highest concentration applied (250 μg/mL).
Accelerated apoptosis of vascular endothelial cells is relevant
in the development and progression of cardiovascular dis-
ease [4–6]. We have previously shown that vasoprotective
agents such as antioxidants (including lipoic acid and
GSH) or insulin sensitizers exhibit both antiapoptotic and
antiproliferative effects in human vascular endothelial cells.
Those effects could prevent loss of the endothelial barrier
function (due to accelerated endothelial cell apoptosis) and
exhaustion of the endothelial cells’ proliferative capacity (due
to accelerated proliferation). Both the antiapoptotic and
antiproliferative activity of pomegranate and isoflavones in
CnAoECs therefore suggest a vasoprotective action of those
polyphenolic compounds in dogs, which could beneficially
affect chronic mitral valvular insufficiency (CMVI), the
major cause of heart failure in this species [1]. Since pro-
gression of CMVI is assumed to be triggered by endothelial

dysfunction and the latter vice versa is potentiated by
CMVI-associated increased cellular oxygen demand [4, 11,
12, 17, 46–48] the cytoprotective antiapoptotic as well as
antioxidative effects of pomegranate [49] and soy isoflavone
extracts could beneficially affect the progression of CMVI to
heart failure in dogs.

Both of these agents are complex biological substan-
ces containing multiple potentially active polyphenols or
isoflavones. It was not possible or appropriate to attempt to
identify the balance of the effects of individual components
of complex natural substances such as these, but indeed this
kind of complexity using agents with a multi-faceted action
has been proposed as a necessary and important part of
rational use of antioxidants to prevent cardiovascular disease
[50].

L-carnitine and taurine were previously shown to exert
protective effects against oxidative stress in human endothe-
lial cells [15, 22]. In a recent study we have shown that
pomegranate extract, alone and in combination with soy
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isoflavones, taurine, and L-carnitine, also shows strong
protective effects against oxidative stress in CnAoECs [40]. In
that context it is of note that the survival signaling pathways
of the Bcl-2 family, PI3Kinase, and estrogen receptor are
assumed to mediate the protective antioxidative effects of
the soy-derived isoflavones genistein and daidzein [30].
Such pathways have previously been shown to mediate
antiapoptotic effects described for lipoic acid [34] in human
vascular endothelial cells. Since taurine and L-carnitine, in
contrast to extracts of pomegranate and soy isoflavones,
did not affect apoptosis in canine aortic endothelial cells,
it is tempting to speculate that different mechanisms are
involved in those substances’ antioxidative and beneficial
vascular effects in dogs. It is also worth noting that any results
obtained for extracts of pomegranate are probably specific
to each type of extract. It has been shown that extracts
obtained from different parts of the plant have widely varying
compositions of active components [49, 51].

Concerning the concentrations applied, there is a wide
range of concentrations described in the literature for
antioxidants, depending on species and compound. To cover
such variety the test substances were used in a broad range
from1 to 250 μg/mL. The lack of any cytotoxic effects at
the highest concentrations we used also provides some
reassurance regarding the potential use of these compounds.

One limitation of a study such as this is related to the
use of an in vitro cell-based model. Indeed it is possible that
there may be differences in the responses of cells in the in vivo
situation compared to the in vitro environment, and it is also
not possible to assess completely the impact of the diseased
state on the function of the endothelial cells. One possible
solution could be to use isolated segments of blood vessel to
assess vasorelaxation responses. However this equally would
have significant limitations and would preclude the direct
assessment of key markers such as apoptosis. On balance,
as substances having beneficial effects on proliferation and
apoptosis of human endothelial cells in the in vitro situation
have been shown to also provide in vivo benefits, this type of
study is a rational step providing key information regarding
the potential benefits of these substances in the canine
species.

In conclusion, this is the first study showing that
pomegranate extract and soy isoflavones inhibit apoptosis
and proliferation in canine aortic endothelial cells. This
supports our hypothesis that these agents could have a role
in prevention or amelioration of clinical endothelial dysfunc-
tion and therefore progression of cardiovascular disease in
dogs [47, 48]. Further studies will, however, be necessary to
evaluate the underlying mechanisms and to which extent the
antiapoptotic and antiproliferative effects observed in our
canine endothelial cell culture model could also apply to the
in vivo situation.

Abbreviations

bFGF: Basic fibroblast growth factor
CnAoECs: Canine aortic endothelial cells
CECBM: Canine endothelial cell basal medium
CECGM: Canine endothelial cell growth medium

FFA: Free fatty acid
FN: Fibronectin
GSH: Glutathione
HBSS: Hank’s Buffered Salt Solution
ALenS: γ-Linolenic acid
LolS: Linoleic acid
NAc: N-Acetylcysteine
Pio: Pioglitazone
Rosi: Rosiglitazone
SD: Standard deviation
VEGF: Vascular endothelial growth factor.
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